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Rational quantitative attribution of beliefs, desires 
and percepts in human mentalizing
Chris L. Baker, Julian Jara-Ettinger, Rebecca Saxe and Joshua B. Tenenbaum*

Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. 
The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be 
probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts 
from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically 
inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility 
agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative 
mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large 
number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic 
motion features reveal the value contributed by each component of our model.

Humans are natural mind-readers. The ability to intuit what 
others think or want from brief nonverbal interactions is  
crucial to our social lives. If someone opens a door, looks 

inside, closes it and turns around, what do we think they are 
thinking? Humans see others’ behaviours not just as motions, but 
as intentional actions: the result of plans seeking to achieve their 
desires given their beliefs; and when beliefs are incomplete or false, 
seeking to update them via perception in order to act more effec-
tively. Yet the computational basis of these mental state inferences 
remains poorly understood.

The aim of the present work is to reverse-engineer human men-
tal state inferences in their most elemental form: the capacity to 
attribute beliefs, desires and percepts to others that are grounded in 
physical action and the state of the world. Our goal is a formal, com-
putational account, analogous in scope and explanatory power to 
computational accounts of visual perception1–3 that represent some 
of the greatest successes of model-building in cognitive science. 
Here we report a key step in the form of a model of how humans 
attribute mental states to agents moving in complex spatial environ-
ments, quantitative tests of the model in parametrically controlled 
experiments, and extensive comparisons with alternative models. 
Taken together, this work brings us closer to understanding the 
brain mechanisms and developmental origins of theory of mind.  
It could also enable us to engineer machines that interact with 
humans in more fluent, human-like ways.

Mental state inference (or ‘mentalizing’) in adults probably draws 
on a diverse set of representations and processes, but our focus is on 
a capacity that appears in some form in infancy4–9 and persists as 
a richer theory of mind develops through the first years of life10,11. 
What we call core mentalizing is grounded in perception, action 
and the physical world: it is based on observing and predicting the 
behaviour of agents reaching for, moving toward or manipulating 
objects in their immediate spatial environment, forming beliefs 
based on what they can see in their line of sight, and interacting with 
other nearby agents who have analogous beliefs, desires and per-
cepts. In contrast to more explicit, language-based theory-of-mind 
tasks, which are only passed by older children, these core abilities 

can be formalized using the math of perception from sparse noisy 
data and action planning in simple motor systems. Hence, core 
mentalizing is an aspect of social cognition that is particularly likely 
to be readily explained in terms of rational computational principles 
that make precise quantitative predictions, along the lines of what 
cognitive scientists have come to expect in the study of perception 
and motor control3,12,13.

We will contrast two general approaches to modelling human core 
mentalizing, which can be broadly characterized as ‘model-based’ 
versus ‘cue-based’. The model-based approach says that humans have 
an intuitive theory of what agents think and do — a generative model 
of how mental states cause actions — which gets inverted to go from 
observed actions to mental state inferences. The cue-based approach 
assumes that mentalizing is based on a direct mapping from low-level 
sensory inputs to high-level mental states via statistical associations, 
for example “you want something because you reach for it”. Although 
a cue-based, heuristic approach is unlikely to provide a satisfying 
account of full theory of mind, it may be sufficient to explain the 
simpler forms of action understanding at work when we see people 
reaching for or moving to objects in their immediate spatial environ-
ment. However, we contend that to explain even these basic forms of 
mentalizing requires a model-based, generative account.

Previous work has proposed both model-based14–19 and cue-
based20,21 models of how both children and adults infer one class 
of mental states: desires, and associated notions such as goals, 
intentions and preferences. Other model-based frameworks have 
considered inference of knowledge about world states and causal 
structure15,22–24, inference of beliefs based on unobserved events25,  
or joint inference of knowledge and intentions in the context 
of epistemic trust and coordination26,27. However, these models  
are unable to reason jointly about beliefs and percepts as well  
as desires, as core mentalizing requires. Our work addresses these 
limitations, and prior models can be seen as important special  
cases of the model-based and cue-based models that we formulate 
and test here.

To make our focus concrete, consider the scenario in Fig. 1a: a 
hungry student leaves his office looking for lunch from one of three 

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. 
*e-mail: jbt@mit.edu



2  NATURE HUMAN BEHAVIOUR 1, 0064 (2017) | DOI: 10.1038/s41562-017-0064 | www.nature.com/nathumbehav

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLES NATURE HUMAN BEHAVIOUR

food trucks: Korean, Lebanese or Mexican. The university provides 
only two parking spots, so at most two trucks can be on campus on 
any given day; parking spots can also remain empty if only one truck 
comes to campus that day. When the student leaves his office (Frame 1),  
he can see that the Korean truck is parked in the near spot in the 
southwest corner of campus. The Lebanese truck is parked in the 
far spot in the northeast corner of campus, but he cannot see that, 
because it is not in his direct line of sight. Suppose that he walks 
past the Korean truck and around to the other side of the building, 
where he can now see the far parking spot: he sees the Lebanese 
truck parked there (Frame 2). He then turns around and goes back 
to the Korean truck (Frame 3). What can an observer infer about 
his mental state: his desires and his beliefs? Observers judge that 
he desires Mexican most, followed by Korean, and Lebanese least 
(Fig. 1a: desire bar plot). This is a sophisticated mentalistic infer-
ence, not predicted by simpler (non-mentalistic) accounts of goal 
inference that posit goals as the targets of an agent’s efficient (short-
est path) reaching or locomotion. Here, the agent’s goal is judged to 
be an object that is not even present in the scene. The agent appears 
to be taking an efficient path to a target that is his mental represen-
tation of what is behind the wall (the Mexican truck); and when he 
sees what is actually there, he pauses and turns around. Consistent 
with this interpretation, observers also judge that the student’s  

initial belief was most likely to be that the Mexican truck was in the 
far parking spot (Fig. 1a: belief bar plot).

These inferences have several properties that any computational 
model should account for. First, our inferences tacitly assume that 
the agent under observation is approximately rational28 — that 
their behaviour will use efficient means to achieve their desires 
while minimizing costs incurred, subject to their beliefs about the 
world, which are rational functions of their prior knowledge and 
their percepts. Second, these inferences are genuinely metarepre-
sentational7,29 — they represent other agents’ models of the world, 
and their beliefs about and desires toward actual and possible world 
states. Third, these inferences highlight the three crucial causal roles 
that define the concept of belief in theory of mind4,10: beliefs are the 
joint effects of (1) the agent’s percepts and (2) their prior beliefs, 
and also (3) the causes of the agent’s actions (Fig. 1b). These mul-
tiple causal roles support multiple routes to inference: beliefs can 
be inferred forward from inferences about an agent’s percepts and 
priors, or backward from an agent’s observed actions (and inferred 
desires), or jointly forward and backward by integrating available 
information of all these types. Joint causal inferences about the situ-
ation, how an agent perceives it, and what the agent believes about 
it are critical: even if we could not see the far side of the building, 
we could still infer that a truck is located there if the student goes 
around to look and does not come back, and that whichever truck is 
there, he likes it better than the Korean truck. Finally, core mentaliz-
ing inferences are not simply qualitative and static but are quantita-
tive and dynamic: the inference that the student likes Mexican after 
Frame 2 is stronger than in Frame 1, but even stronger in Frame 3, 
after he has turned around and gone back to the Korean truck.

We explain these inferences with a formal model-based account 
of core mentalizing as Bayesian inference over generative models 
of rational agents perceiving and acting in a dynamic world. Below, 
we first describe the basic structure of this BToM model, along 
with several candidate alternative models. We then present two 
behavioural experiments showing that the BToM model can quan-
titatively predict people’s inferences about agents’ mental states in 
a range of parametrically controlled scenarios similar to those in 
Fig. 1a. Experiment 1 tests people’s ability to jointly attribute beliefs 
and desires to others, given observed actions. Experiment 2 tests 
whether people can use their ToM to reason jointly about others’ 
beliefs, percepts and the state of the world.

Computational models
The BToM model formalizes mentalizing as Bayesian inference over 
a generative model of a rational agent. BToM defines the core rep-
resentation of rational agency (Fig. 1b) using partially observable 
Markov decision processes (POMDPs): an agent-based framework 
for rational planning and state estimation30, inspired by the classi-
cal theory of decision-making by maximizing expected utility31, but 
generalized to agents planning sequential actions that unfold over 
space and time with uncertainty due to incomplete information. 
POMDPs capture three central causal principles of core mentaliz-
ing highlighted by Fig. 1b: a rational agent (I) forms percepts that 
are a rational function of the world state, their own state and the 
nature of their perceptual apparatus — for a visually guided agent, 
anything in their line of sight should register in their world model  
(perception); (II) forms beliefs that are rational inferences based on 
the combination of their percepts and their prior knowledge (infer-
ence); and (III) plans rational sequences of actions — actions that, 
given their beliefs, can be expected to achieve their desires effi-
ciently and reliably (planning).

BToM integrates the POMDP generative model with a hypothesis 
space of candidate mental states, and a prior over those hypotheses, 
to make Bayesian inferences of beliefs, desires and percepts, given an 
agent’s behaviour in a situational context. More formally, a POMDP 
agent’s beliefs are represented by a probability distribution over states 
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Figure 1 | Experimental scenario and model schema. a, ‘Food-trucks’ 
scenario, using animated two-dimensional displays of an agent navigating 
through simple grid-worlds. The agent is marked by a triangle, three trucks 
are marked by letters (K, Korean; L, Lebanese; M, Mexican), parking spaces 
are marked by yellow regions, and buildings (which block movement and 
line of sight visibility) are marked by black rectangles. Frames 1–3 show 
several points along a possible path the agent could take, on a day when 
the K and L trucks are present but the M truck has not come to campus. 
The agent leaves his office where he can see the K truck (Frame 1), but 
walks past it to the other side of the building where he sees the L truck 
parked (Frame 2); he then turns around and goes back to the K truck 
(Frame 3). Which is his favourite truck? And which truck did he believe was 
parked on the other side of the building? Red bar plots show mean human 
judgements about these desires and beliefs, with standard error bars after 
viewing the agent’s path up to Frame 3. Desire ratings were given for each 
food truck (K, L, M), and belief ratings were given for the agent’s initial 
belief about the occupant of the far parking spot (L, M or nothing (N)). 
All ratings were on a 7-point scale. In this scenario, participants (n =  16) 
judged that the agent most desired the M truck, and that he (falsely) 
believed that it was probably present in the far spot. Our BToM model (blue 
bars) predicts these judgements and analogous ones for many other scenarios 
(see Figs 4, 6). b, Folk-psychological schema for theory of mind. BToM 
formalizes this schema as a generative model for action based on solving a 
partially observable Markov decision process, and formalizes mentalizing 
as Bayesian inference about unobserved variables (beliefs, desires, 
percepts) in this generative model, conditioned on observed actions.



NATURE HUMAN BEHAVIOUR 1, 0064 (2017) | DOI: 10.1038/s41562-017-0064 | www.nature.com/nathumbehav 3

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLESNATURE HUMAN BEHAVIOUR

derived by logically enumerating the space of possible worlds, for 
example, in the food truck setting, the set of assignments of trucks to 
parking spaces (see Supplementary Information: Beliefs). The agent’s 
belief updates, given their percepts and prior beliefs, are modelled as 
rational Bayesian state estimates (see Supplementary Information: 
Bayesian belief updating). A POMDP agent’s desires are represented 
by a utility function over situations, actions, and events; in the food 
truck setting, agents receive a different real-valued utility for eat-
ing at each truck (see Supplementary Information: Desires). The 
agent’s desires trade off against the intrinsic cost, or negative utility 
of action; we assume the agent incurs a small constant cost per step, 
which penalizes lengthy action sequences. The BToM prior takes 
the form of a probability distribution over beliefs and desires — a 
distribution over POMDPs, each parameterized by a different initial 
probability distribution over world states and utility functions. The 
hypothesis spaces of desires and initial beliefs are drawn from dis-
crete, approximately uniform grids (see Supplementary Information: 
Belief and desire priors). The agent’s desires are assumed to be con-
stant over a single episode, although their beliefs may change as they 
move through the environment or the environment itself changes.

Starting from these priors, BToM jointly infers the posterior 
probability of unobservable mental states for the agent (beliefs, 
desires and percepts), conditioned on observing the agent’s actions 
and the situation (both the world state and the agent’s state) evolv-
ing over time. By using POMDPs to explicitly model the observer’s 
model of the agent’s perceptual, inferential and planning capacities,  
BToM crucially allows the situation to be partially observed by either 
the agent, the observer or both. The joint system of the observer 
and the agent can also be seen as a special case of an interactive 
POMDP (or I-POMDP32), a generalization of POMDPs to multi-
agent systems in which agents recursively model each other in a 
hierarchy of levels; in I-POMDP terms, the observer builds a non-
recursive Level-1 model of a Level-0 observer (see Supplementary 
Information: Rational observer model).

To give a flavour for how BToM computations work as Bayesian 
inferences, we sketch the model inference for a single observed 

event in which the agent forms a percept of their current situation, 
updates their beliefs from an initial belief B0 to a subsequent belief 
B1, and then chooses an action A. (The full BToM model generalizes 
this computation to a sequence of observed actions with recursive 
belief updating over time; see Methods: equation (2).) In the single-
action case, given the prior Pr(B0, D, S) over the agent’s initial beliefs 
B0, desires D and the situation S, the likelihoods defined by prin-
ciples (I–III) above, and conditioning on observations A of how the 
agent then acts in that situation, the BToM observer can infer the 
posterior probability Pr(B, D, P, S|A) of mental states (belief states 
B =   {B0, B1}, desires D, and percepts P), and the situation S given 
actions A using Bayes’ rule:

| ∝
| × | × | ×

B D P S A
A B D B P B P S B D S

Pr( , , , )
Pr( , ) Pr( , ) Pr( ) Pr( , , ) (1)

1 1 0 0

The likelihood factors into three components. Pr(P|S) (corre-
sponding to principle I) represents the observer’s expectations about 
what the agent sees in a given situation. This model of an agent’s 
(visual) perception is based on the isovist from the agent’s location: 
a polygonal region containing all points of the environment within 
a 360° field of view33,34 (see Supplementary Information: Percept 
distribution). Pr(B1|P, B0) (corresponding to principle II) represents 
the observer’s model of the agent’s belief update from initial state 
B0 to B1. Pr(A|B1, D) (corresponding to principle III) represents the 
observer’s model of the agent’s efficient planning process. To cap-
ture ways in which rational agents’ behaviour may deviate from 
the ideal, and BToM observers’ inferences may be correspondingly 
weaker or more graded, we assume that the agent acts by sampling  
actions with probability proportional to their exponentiated 
expected-utility (a softmax function with parameter β). The value 
of β is a parameter fitted to participant judgements. Under this for-
mulation, agents typically choose the highest-utility action at each 
time step but sometimes choose a non-optimal action.

Our goal is not simply to present and test this one model, but also 
to quantitatively contrast BToM with alternative accounts of core 
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Figure 2 | Example experimental stimuli. a, Three frames from an example Experiment 1 scenario. b, Three example scenarios from Experiment 2.
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social perception. We compare BToM with three models inspired by 
previous work, including two model-based alternatives, and one cue-
based alternative (see Supplementary Information: Alternative mod-
els). Earlier model-based accounts14–16 used various adaptations of 
Markov decision processes (MDPs), special cases of POMDPs, which 
assume that the world state is fully observed and known to the agent. 
MDP-based models embody the core notion that intentional agents 
act efficiently to achieve their goals5, but are limited by the assump-
tion of a fully observable world — they cannot represent beliefs that 
differ from the true world state, and they capture only the planning 
capacities of rational agency (that is, only the bottom section of 
Fig. 1b), neglecting the perceptual and inferential capacities, as well 
as their interaction. We demonstrate these limitations by formulating 
a MDP-based alternative model called TrueBelief, and showing that it 
is unable to model the joint inferences about beliefs, desires, percepts 
and world states that are at the heart of core mentalizing, and that our 
BToM model captures. A second alternative model, called NoCost, 
establishes the need for the principle of efficiency in BToM and MDP-
based accounts of people’s belief and desire attributions by assuming 
the agent’s actions are cost-free, and therefore unconstrained by the 
trade-off between effort and desire. We formulate both of these alter-
native models as ‘lesioned’ special cases of the full BToM model.

Several cue-based accounts have used motion features extracted 
from visual input to model human inferences about intentional 
behaviour20,21,35. Non-formal cue-based accounts of infant false 
belief reasoning have also been proposed36, which argue that learned 
associations between agents, objects and scenes underlie clas-
sic demonstrations of infant false belief reasoning8. To test these 
accounts, we formulate a motion-based heuristic alternative, called 
MotionHeuristic, which maps cues extracted from the agent’s motion 
and environment directly onto people’s judgements of agents’ beliefs, 
desires and percepts of the world. For Experiment 1, MotionHeuristic 
fitted five linear weights for desires, and five for beliefs, for a total 
of 10 weights. The first and second weights captured the statistical 
association between the agent’s motion (1) toward each potential 
goal or (2) toward an alternative goal, and attributions of desire for 
that goal or belief that it was present. The last three weights fitted the 
a priori bias toward each desire and belief rating. For Experiment 2, 
MotionHeuristic fitted eight linear weights for each of six possible 
world ratings, for a total of 48 weights. Here, the first three weights 
captured the association between the agent’s motion toward each 

spot and the rating that a more highly desired cart was located there. 
The remaining five weights captured the a priori bias toward each 
possible world rating.

Results
We tested BToM and these alternative modelling approaches against 
human judgements in two experiments based on ‘food truck’ scenar-
ios (as in Fig. 1a). In Experiment 1, participants saw a large number 
of dynamic scenarios (frames from an example stimulus are shown 
in Fig. 2a), and made quantitative inferences about agents’ beliefs 
and desires given their observable actions. Belief inferences were 
made retrospectively about what the agent believed was in the far 
parking spot before they set off along their path, given the informa-
tion from the rest of the agent’s path. Experiment 2 used similar sce-
narios, but participants made inferences about agents’ percepts and 
aspects of the world that only the agent could perceive (three exam-
ple stimuli are shown in Fig.  2b). Both experiments manipulated 
key variables that should affect mental state attribution according to 
the BToM model: the structure and constraints of the environment 
(agent and object locations, physical barriers), the actions observed 
(their cost, whether they are ongoing or completed, the space of 
alternative actions), the set of goals (their number and presence, 
their utility, their availability), and the observability of the state of 
the world (what is or is not perceptible owing to occlusion).

Experiment 1: Predicting human inferences about beliefs and 
desires. In each scenario of Experiment 1, participants observed a 
unique action–situation pair, and rated the agent’s desire for each 
goal object (food trucks: Korean (K), Lebanese (L), and Mexican 
(M)), and the agent’s initial belief about the state of the world (pos-
sible occupant of the far parking spot: L, M, or nothing (N)). BToM 
predictions were obtained by computing the posterior expectation 
of the agent’s utility for each goal object, and the posterior expec-
tation of the agent’s degree of belief in each possible world state  
(see Methods: equation (2)).

Model predictions were compared with participants’ judgements 
on 73 distinct scenarios generated through a factorial design (see 
Fig. 3 and Methods: Experiment 1).  A total of 78 scenarios were 
produced, five of which were not consistent with an assumption of 
rational agency (as characterized in Supplementary Information: 
Experiment 1); we analyse only the 73 rationally interpretable 
scenarios here. These scenarios can be organized into seven basic  
scenario types (Fig. 4a–g) based on the environment’s structure and 
the agent’s actions.

The scenario types differ in the number of trucks present: two 
trucks in Fig. 4a–d; one truck in Fig. 4e–g. The high-level structure 
of the agent’s actions varies between types: initially, the agent can 
either go to the truck visible in the near parking spot (Fig. 4a,e) or 
go behind the building to see which truck (if any) is in the far spot 
(Fig. 4b,f). After checking the far spot, the agent can either return 
to the first truck (Fig. 4c,g), or continue to the far truck, if it is pres-
ent (Fig. 4d). In all scenarios in which the agent goes around the 
building, at the moment when they can first see the far parking spot 
the agent either pauses for one frame before continuing to one of 
the trucks (Fig. 4c,d,g), or the trial ends with an incomplete path 
(Fig. 4b,f). Our model predictions also assume a one-frame pause 
at this moment. We first present an analysis of the model’s quantita-
tive predictive power over all scenarios, and then highlight the most 
revealing qualitative predictions across these scenario types.

Figure 4h shows the quantitative desire and belief fits of BToM, 
averaged within the seven scenario-types defined above (desire 
judgements rBSCV  =   0.97 (95% CI 0.95,0.98), belief judgements 
rBSCV =  0.91 (95% CI 0.87,0.98)). Figure 5a shows the quantitative 
desire and belief fits of BToM at the level of all 73 individual scenar-
ios (desire judgements rBSCV =  0.91 (95% CI 0.89,0.92), belief judge-
ments rBSCV =  0.78 (95% CI 0.72,0.85)). These correlations and 95% 

Goal
configuration

Environment
configuration

Initial
location

Agent
path

1 2

1 32

1 32

1 3 4

5 6 7

2

K

...

K

L

.

.

Figure 3 | The four factors varied in the factorial design of Experiment 1.  
(1) Goal configuration, (2) environment configuration, (3) initial agent 
location and (4) agent path.



NATURE HUMAN BEHAVIOUR 1, 0064 (2017) | DOI: 10.1038/s41562-017-0064 | www.nature.com/nathumbehav 5

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLESNATURE HUMAN BEHAVIOUR

confidence intervals were computed using bootstrap cross-validation  
(BSCV; see Methods: Statistics), and all were highly significant.

Although BToM quantitatively predicted both belief and desire 
judgements, belief judgements were fitted less well and were also 
intrinsically more variable than desire judgements in ways that 
BToM predicted. Desire judgements varied primarily between the 
seven scenario types, but minimally within scenarios of the same 
type. This shows that small differences in scene geometry, which 
varied within scenario types, had minimal impact on desire judge-
ments. Consistent with this finding, BToM predictions averaged 
within scenario types showed a high correlation with human desire 
judgements (r =  0.95 (95% CI 0.94,0.96)), whereas BToM predic-
tions at the individual scenario level showed no partial correlation 
with human judgements after controlling for scenario type (partial 
r =   0.066 (95% CI − 0.067,0.20)). Human belief inferences varied 
in more complex ways: in particular, they varied both between and 
within the seven scenario types. BToM predictions averaged within 
scenario types, combined with individual scenario BToM predic-
tions, explain 75 percent of the variance in human belief judgements 
(r =  0.88 (95% CI 0.84,0.90)). Moreover, both types of predictions 
yielded significant partial correlations with human belief judge-
ments when controlling for the other (individual-scenario: partial 
r =  0.28 (95% CI 0.15,0.39); type-averaged: partial r =  0.63 (95% 
CI 0.54,0.70)). Consistent with the greater empirical variability in 
human belief inferences relative to desire inferences, the BToM 
model showed three times greater variance within scenario types 
for beliefs (σ2 =  0.34) than for desires (σ2 =  0.11; F(218,218) =  3.24 
(95% CI 2.59, infinity, one-sided)). In short, people’s belief judge-
ments were much more affected (relative to desire judgements) by 
the small variations in scene geometry that varied within scenario 
types, and this overall trend was also predicted by the BToM model.

We also compared three alternative models with BToM, in terms 
of how well they could predict human belief and desire judgments 
across all 73 individual scenarios (see Supplementary Information: 
Experiment 1 for details). Figure  5b,c shows that both TrueBelief 
and NoCost were able to predict desire judgements to some 

extent but significantly less well than BToM (rBSCV =  0.72 (95% CI 
0.68,0.77), rBSCV =  0.75 (95% CI 0.69,0.81), respectively). Figure 5b,c 
shows that neither TrueBelief nor NoCost could predict belief 
judgements at all (rBSCV =  − 0.022 (95% CI − 0.16,0.11), rBSCV =  0.10 
(95% CI 0.045,0.16), respectively). The motion-based heuristic 
was able to predict belief inferences as well as BToM (rBSCV =  0.77  
(95% CI 0.69,0.83)) but fared worse than all models on desire 
inferences (rBSCV =  0.62 (95% CI 0.51,0.70)). Figure 5d shows that 
although the motion-based heuristic correlates relatively highly 
with the human data, it is qualitatively poorly calibrated to human 
judgements; the range of model predictions is compressed, and the 
predictions mostly fall into two clusters, which are aligned with the 
data, but which have little variance internally. These results illustrate 
the value of the full POMDP architecture underlying the BToM 
model, and more generally the need to model joint inferences about 
beliefs and desires, even if we only want to predict one of these two 
classes of mental states.

A more qualitative analysis of specific scenario types illus-
trates how BToM captures many subtleties of human mentalizing. 
Figure 4a–c shows that both BToM and human judgements are con-
sistent with the intuitive inferences about beliefs and desires sketched 
in the introduction. BToM closely predicts the differences between 
these scenario types, and also between these scenarios and analogous  
ones in which no truck is present in the other spot (Fig. 4e–g). For 
instance, in scenarios with two trucks present (Fig.  4a–d), BToM 
correctly predicts stronger inferences when the agent checks which 
truck is parked in the far spot (Fig. 4c,d) as opposed to going straight 
to the K truck in the near spot (Fig. 4a): only in Fig. 4c,d can we 
clearly distinguish the strengths of the agent’s desire for all three 
trucks, and the strengths of the agent’s initial beliefs for all three pos-
sible worlds. When there is no truck parked in the far spot, BToM 
correctly predicts how inferences become weaker when the agent 
goes to check that spot (compare how belief and desire inferences 
for M and L trucks become indistinguishable in Fig. 4f,g, relative  
to 4b,c), but not when the agent goes straight to the near spot with-
out checking (observe no effect of the second truck’s presence in 
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Fig. 4a versus Fig. 4e). BToM also predicts stronger inferences from 
complete paths as opposed to incomplete paths (compare both the 
belief and desire inferences in Fig. 4c,d with 4b), and the subtle dif-
ferences in people’s judgements about the agents’ beliefs and desires 
in the two incomplete path scenarios, varying in whether a second 
truck is present: when a truck is present in the far spot, the agent’s 
brief pause at the end of the incomplete path is interpreted as weak 
evidence that the second truck might not be what the agent was 
hoping to see (Fig. 4b), whereas if there is no truck parked in the 
far spot, the same brief pause is uninformative about which of the 
other two trucks the agent was hoping to see (Fig. 4f). These are just 
a few examples of the qualitative predictions that the BToM model 
makes in accord with human intuition — predictions that are not 
specifically or explicitly wired in, but that fall out naturally from the 
general principle of Bayesian inference over generative models of 
rational agents’ planning and state estimation.

Experiment 2: Reasoning about others’ percepts from their 
actions. From early childhood, mentalizing is useful not only in 
explaining people’s behaviour, but also in learning about unob-
served aspects of the world by observing other actors and infer-
ring what they must have seen and believed in order to explain the 
way they acted5,15,22,23,25,37,38. Our BToM model was not developed to 
account for such social inferences, but if it is really capturing core 
mentalizing abilities, it should generalize to handle them naturally.  
Experiment 2 tested this hypothesis, using similar scenarios to 
Experiment 1, in which an agent searched for his favourite food cart 
in a spatially complex environment that constrained movements and 
visibility. Now, however, participants could not observe the locations 
of three food carts, and were tasked with inferring these locations 
on the basis of the agent’s actions. The carts served Afghani (A), 
Burmese (B) and Colombian (C) food, and they could be in any of 
three locations: north (N), west (W) and east (E) spots (see Fig. 6a). 
Participants were told that the agent preferred A over B, and both 
A and B over C, and would always search through the environment 
until he found the highest-preference cart that was open. To add 
further complexity, carts A and B could be either open or closed, 
while C was assumed always to be open (so the agent always had 
at least one available option). The agent thus could be in one of 24 
possible worlds (24 =  6 ×  2 ×  2, for six assignments of carts to loca-
tions, and two states (open, closed) for each of the A and B carts). 
Although the cart locations and availabilities (specifying which of 
the 24 possible worlds applied) were hidden from participants, they 
were observable to the agent — although only within line of sight. 
Based only on the agent’s search behaviour, participants were asked 
to infer the locations of all three carts.

We generated 19 experimental scenarios (including three simpli-
fied introductory scenarios; see Methods: Experiment 2), varying the 
agent’s path and including both complete paths (when the agent had 
successfully found the best available cart) and incomplete paths (show-
ing only the first part of a complete path). Figure 6a shows the envi-
ronment and one representative complete path from the experiment:  
initially only the north location is within the agent’s line of sight; 
after taking several steps, the agent also sees what is present in 
the west location; finally, the agent returns to the starting point 
and chooses the cart in the north location. After observing this 
path, participants rated the probability of all six possible spatial  
configurations of the three food carts. Participants overwhelm-
ingly judged one configuration as most probable, and the BToM 
model agrees: cart B is in the north location, cart A is in the west, 
and cart C is the east. The model captures human performance by 
first generating a contingent POMDP plan for each of the 24 pos-
sible worlds, and for each initial belief the agent could hold (see 
Supplementary Information: Belief and desire priors), then com-
puting a likelihood assignment for the agent’s action conditioned 
on each possible cart configuration (and marginalizing over initial 

belief and whether the carts were open or closed; see Methods: equa-
tion (3)). Assuming equal prior probabilities on all possible worlds 
and initial beliefs, and applying Bayes’ rule, these likelihoods deter-
mine the relative posterior probabilities on possible worlds that  
participants are asked to judge.

Analogous judgements to those shown in Fig.  6a were made 
in all 19 scenarios for all six cart configurations, for a total of 114 
judgements per participant. Figure 7a shows that BToM accurately 
predicted participants’ mean judgements (Fig.  5g, rBSCV  =   0.91  
(95% CI 0.86,0.94)). We also compared the performance of our three 
alternative models (Supplementary Information: Experiment 2).  
Figure  7d shows that the motion-based heuristic correlates only 
weakly with human judgements (rBSCV =  0.61 (95% CI 0.10,0.83)), 
arguing for the necessity of mental-state reasoning even in  
a task that does not directly ask for it. Figure  7b,c shows that  
both TrueBelief and NoCost also fit poorly, suggesting that joint 
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reasoning about beliefs, percepts, and efficient action-planning is 
essential for this task (rBSCV =  0.63 (95% CI 0.24,0.83), rBSCV =  0.46 
(95% CI 0.17,0.79), respectively).

Figure  6b–g illustrates the BToM model’s ability to capture 
analogous judgements for more and less complex paths, including 
incomplete paths. In Fig.  6b, the agent goes directly to the north 
location, suggesting that they saw cart A there (and A was open), 
but leaving the locations of B and C unknown. Figure 6d shows a 
path that begins like Fig.  6a but terminates in the west location. 
Here, both people and BToM infer that the agent probably saw A 
at the west spot, but it is also possible that they saw A in the north 
location, and it was closed, leading them to go west where they 
found the B cart open. Figure 6g shows the longest trajectory from 
this experiment, with the agent first seeing the north location, then 
checking west, then east, before returning to the west location. 
Although the path is longer than that in Fig. 6a, people’s inferences 
are less certain because the multiple reversals could be explained 
by several different cart configurations depending on which carts 
are open or closed; BToM captures this same ambiguity. Figure 6c,e 
shows incomplete paths, which leave both people and BToM more 
uncertain about the world configuration in ways that reflect ratio-
nal expected values: locations that the agent has seen but moved 
away from are most likely to contain his least preferred option C; 
if he has seen and moved away from two different locations (as in 
Fig. 6e), it is most likely that they contain his two least preferred 
options B and C (although in unknown order). Figure 6f shows a 
continuation of Fig. 6e that terminates at the east location: people’s 
inferences are similar in both scenarios, which BToM explains by 
predicting the likely outcome of the path as soon as the agent turns 
away from the west location; the additional steps in Fig. 6f provide 
little additional information beyond the partial path in Fig. 6e. As 
with Experiment 1, these and many other qualitative predictions 
consistent with human intuitions fall out naturally from BToM, sim-
ply from the principle of mentalizing based on Bayesian inference 
over models of rational agents and the constraints and affordances  
of the situation.

Discussion
We proposed that core mental state inferences can be modelled as 
Bayesian inversion of a probabilistic state-estimation and expected-
utility-maximizing planning process, conditioned on observing oth-
ers’ actions in a given environment. Our BToM model quantitatively 
predicted many social inferences in complex new scenarios, varying 
both environmental contexts and action sequences, and including 
both inferences about others’ beliefs, desires and percepts, as well 
as unobservable world states posited to explain how others explore 
and exploit their environment. Alternative models that did not rep-
resent others’ costs of action or uncertain world beliefs consistently 

diverged from human judgements, as did combinations of special-
purpose motion features that did not model mental states and had 
to be custom-fitted to each experiment. That people’s judgements 
require joint reasoning about beliefs, desires and percepts is further 
supported by the failure of models that lesioned any one of these 
representations: these models show a deficit not only in the missing 
representations, but also in the remaining mental state inferences 
with which they are causally entwined. Bayesian inversion of mod-
els of rational agents thus provides a powerful quantitative model of 
how people understand the psychological and social world.

It is important to clarify what we mean when we say that par-
ticipants, like the BToM model, are performing joint inferences 
about an agent’s beliefs, desires and percepts. To us, joint inference 
is about representing a joint hypothesis space of the agent’s beliefs 
and desires, such that in explaining a complete action sequence, the 
observer’s posterior distributions over the agent’s beliefs and desires 
are coupled; inferences about the agent’s beliefs inform inferences 
about the agent’s desires, and/or vice versa. In the Marr hierarchy 
of levels of explanation2, this is a computational-level claim. It does 
not require that algorithmically, at each point in time, the observer 
is simultaneously considering the full joint space of all possible 
belief–desire combinations and updating their inferences about 
beliefs and desires simultaneously. The algorithmic implementation 
of our BToM model in fact works this way, but this could be intrac-
table for more complex settings, and indeed there are other infer-
ence algorithms that people could use to perform joint belief–desire 
inference more efficiently by alternating between updating belief 
inferences given current desire inferences and updating desire infer-
ences given current belief inferences. For instance, in Experiment 1, 
observers could initially posit a uniform distribution for the agent’s 
beliefs, then infer the agent’s desires from their full trajectory while 
tracking their belief updates based on isovists and finally use the 
inferred desires to retrospectively infer the agent’s most likely ini-
tial beliefs. Developing such an algorithmic account of BToM infer-
ences and testing it on a more general set of stimuli and inferences 
is an important direction for future work.

Similarly, inverse rational POMDP planning is a computational-
level theory of human core mentalizing. Although optimal POMDP 
planning is computationally intractable in general, optimal POMDP 
solutions can be tractably approximated in certain cases39, and modern  
solvers can scale to problems with millions of states40,41. In the 
domains we study here, near-optimal solutions can be computed 
efficiently using approximate solvers: for Experiment 1 we used a 
grid-based approximation42, and for Experiment 2 we used a point-
based algorithm43. Testing a broader range of approximate solvers 
within BToM will be critical for developing algorithmic theories of 
human core mentalizing, and for scaling the framework to more 
complex domains.
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The POMDP formulation that we adopt here is at best only a first 
approximation to the true agent model in core mentalizing, but its 
value is in giving an elegant integrated account of three crucial func-
tions that beliefs should fulfill in any intuitive theory (Fig. 1b) — 
rational updating in response to both the agent’s perception of their 
environment and inference based on their other beliefs, and ratio-
nal action planning to best achieve the agent’s desires given their 
beliefs — in a form that embeds naturally inside a Bayesian cog-
nitive model to capture judgements from sparse, incomplete data. 
A complete account of mentalizing will probably invoke both less 
sophisticated and more sophisticated agent models. At one extreme, 
entirely model-free approaches based on motion features failed to 
explain judgements in our tasks, but the deep network architectures 
that have driven recent successes in computer vision could help 
to speed up routine BToM computations by learning to generate 
fast approximate inferences in a bottom-up, feed-forward pass44.  
At the other extreme, theory of mind in adults draws on language to 
represent recursive beliefs and desires, with propositional content 
that goes well beyond what infants can entertain45. Consider the fol-
lowing belief: “Harold believes that the morning star is beautiful, 
but not as beautiful as the evening star, and not nearly as beautiful 
as Julie wants him to think she is.” It is an open question whether 
BToM models can be extended to such cases.

BToM models can be extended to include richer environment 
and action models sensitive to intuitive physics12, and multi-agent 
planning to parse competitive or cooperative social interactions 
such as chasing and fleeing46 or helping and hindering47. Generative 
models of multiple agents’ interactive behaviour can be expressed as 
Markov games48, and simpler game-theoretical models have already 
been useful in modelling other theory of mind tasks49. Extending 
these models to capture (as BToM requires) agents’ subjective beliefs 
about the world, and nested beliefs about other agents’ beliefs50,51, is 
an important direction for future research.

Another aspect of theory of mind that our model does not fully 
address is the distinction between instrumental (expected utility  
maximizing) goals and epistemic (information seeking) goals. 
People intuitively make this distinction: for instance, in Fig. 1a, if 
asked why the agent went around the wall, people might reply that 
his preferred truck is M, his goal was to get to that truck, and he 
was hoping that M would be there, but one might also say that his 
immediate goal was to see what truck was parked on the other side, 
and with the intention of going to that truck if it turned out to be 
his preferred one. The latter explanation posits an epistemic sub-
goal as part of a larger instrumental plan. Extending our model to 
include explicit epistemic goals is an important direction for future 
work. However, it is interesting that even without explicit epistemic 
goals, BToM is able to explain a wide range of information-seeking  
behaviours as implicit epistemic goals that emerge automati-
cally in the service of an instrumental plan. For instance, imagine 
that the wall in the scenarios in Experiment 1 has a window that 
allows the agent to look but not pass through to the other side  
(extending only the isovist, but not the potential routes). In some 

cases, BToM would predict that the agent should first go to the win-
dow, rather than moving around the wall, provided that the window 
is closer to its start position.

Although our work was motivated by action-understanding 
abilities that are present in young children, we evaluated our model 
only against adult judgements. It is thus an open question at what 
age children become able to make the kinds of inferences that our 
experimental tasks tap into, and what if any stage in children’s devel-
opment of mentalizing capacities our model might be capturing. 
Our definition of core mentalizing is not meant to imply that BToM 
is an account of infants’ innate capacities for understanding agents, 
what has been called ‘core knowledge’52. Our use of the term ‘core’ is 
meant to imply that our model builds only on representations of the 
world — specifically, representations of space and spatial constraints 
on visibility, objects as goals, and actions as movement guided by 
efficiency — that are part of early-emerging human knowledge,  
and metarepresentations of beliefs and desires defined over those 
representations. In our view, there is much room for core mentaliz-
ing capacities to develop and change through experience; regardless 
of the extent to which they build on innate capacities, they need  
not be hard-wired.

Finally, it is worth commenting on the contrast between BToM’s 
framing of human planning as approximately maximizing expected 
utility, and prominent experiments in psychology suggesting the 
opposite53. In part, this may reflect the limited domain in which 
core mentalizing operates, relative to studies in behavioural eco-
nomics: moving through space to reach concrete sources of reward 
(such as food), where costs are due primarily to energy expended 
(or distance travelled), is a developmentally and evolutionarily 
ancient setting where humans may well plan efficiently, have finely 
tuned expectations that others will behave likewise, and make  
approximately optimal Bayesian inferences subject to these assump-
tions. In these cases, mechanisms of human action planning and 
action understanding may converge, yielding mental-state infer-
ences via BToM that are not only rational but veridical. But humans 
could also overextend their core mentalizing capacities to settings in 
which people do not in fact plan well by expected-utility standards: 
BToM-style models could be correct in positing that people assume 
that others act rationally in some domain, even if modelling people 
as rational actors is not correct there. This tension could explain 
why demonstrations of people violating expected-utility norms are 
often so compelling. They are counter-intuitive, in domains where 
our intuitions over-attribute rationality to ourselves and others.  
And the fact of their counter-intuitiveness may be the best evidence 
we have that intuitive theories of minds — if not always actual 
human minds — are rational to the core.

Methods
Computational modelling. Full technical details of BToM are available in 
Supplementary Information: Computational modelling. Here we outline the 
basic technical information underlying Equation (1). "e BToM observer uses 
POMDPs to represent agents’ beliefs, desires, percepts, actions and environment. 
A POMDP30 represents a state space S , a set of actions A, a state transition 
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distribution T , a reward function R, a set of observations Ω  and an observation 
distribution O. We decompose the state space S  into a fully observable state space, 
X  (the agent location), and a partially observable state space Y  (the truck locations 
and availability), such that S X Y= 〈 〉, . (Technically, this is a mixed-observability 
MDP (MOMDP)54, an extension of POMDPs in which portions of the state space 
are fully observable, as in MDPs, and portions of the state space are partially 
observable, as in POMDPs. However, we will refer to the model as a POMDP for 
consistency and clarity, as this term is more widely known.)

The BToM observer’s belief and desire inferences (Experiment 1) are given 
by the joint posterior marginal over the agent’s beliefs bt and rewards r at time t, 
conditioned on the state sequence x1:T up until T ≥  t, and the world state y:

|P b r x y( , , ) (2)t T1:

The BToM observer’s inferences of world states (Experiment 2) are given by 
jointly inferring beliefs, desires and world states, and then marginalizing over the 
agent’s beliefs and desires:

∑| = |P y x P b r x y P y( ) ( , , ) ( ) (3)T
b r

t T1:
,

1:
t

Experiment 1. Experimental design. Figure 3 shows our factorial design, which 
varied four factors of the situation and action: (1) goal con#guration, (2) 
environment con#guration, (3) initial agent location and (4) agent’s high-level 
path. Of the scenarios generated by varying these factors, 78 were valid scenarios in 
which the actions obeyed the constraints of the environment (avoiding obstacles, 
and ending at a present goal). For example, combinations of Environment 1 
with agent path 7 were invalid, because the path passes through the obstacle. 
Combinations of goal con#guration 2 with agent path 7 were also invalid, because 
the path ends at a spot with no goal present. "e full set of experimental scenarios 
is shown in Supplementary Information: Experiment 1 scenarios and results.

Five factors were randomized between subjects. Truck labels were randomly 
scrambled in each scenario (for clarity we describe the experiment using the 
canonical ordering Korean (K), Lebanese (L), Mexican (M)). Scenarios were 
presented in pseudo-random order. Each scenario randomly reflected the display 
vertically and horizontally so that subjects would remain engaged with the task and 
not lapse into a repetitive strategy. Each scenario randomly displayed the agent in 
1 of 10 colours, and sampled a random male or female name without replacement. 
This ensured that subjects did not generalize information about one agent’s beliefs 
or desires to agents in subsequent scenarios.

Stimuli. Stimuli were short animations displayed at a frame-rate of 10 Hz, depicting 
scenarios featuring an agent’s path through a static environment. Three frames 
from an example stimulus are shown in Fig. 2a.

Procedure. Subjects first completed a familiarization stage that explained all  
details of our displays and the scenarios that they depicted. To ensure that  
subjects understood what the agents could and could not see, the familiarization 
explained the visualization of the agent’s isovist, which was updated along each 
step of the agent’s path. The isovist was displayed during the testing stage of the 
experiment as well.

The experimental task involved rating the agent’s degree of belief in each 
possible world (Lebanese truck behind the building (L); Mexican truck behind 
the building (M); or nothing behind the building (N)), and rating how much 
the agent liked each truck. All ratings were on a 7-point scale. Belief ratings 
were made retrospectively, about what agents thought was in the far parking 
spot at the beginning of the scenario, based on their subsequent path. The rating 
task counterbalanced the side of the monitor on which the ‘likes’ and ‘believes’ 
questions were displayed.

Participants. Participants were 17 members of the MIT Brain and Cognitive 
Sciences subject pool, 6 female and 11 male. One male subject did not understand 
the instructions and was excluded from the analysis. All gave informed consent, and 
were treated according to protocol approved by MIT’s Institutional Review Board.

Experiment 2. Experimental design. Scenarios involved 24 possible worlds  
(six possible permutations of the carts’ locations multiplied by four permutations  
of carts A and B being open or closed) and were generated as follows.  
We assumed that the agent always started at the entrance of the north hallway, 
and chose between entering that hall, going to the west hall, or going to the east 
hall. An exhaustive list of possible paths was constructed by listing all possible 
combinations of short-term goals of the agent (go to entrance of W hall, go to 
entrance of N hall, or go to entrance of E hall), assuming that the #rst time a hall 
is selected it is for the purpose of exploration, and any selection of a hall that had 
been selected previously is for exploitation, meaning the agent has chosen to eat 
there. From the 11 exhaustively enumerated paths, two paths that only produced 
permutations of beliefs were removed, leaving a total of nine complete paths.  
In addition, seven incomplete paths (partial sequences of the nine complete paths) 
that produce di$erent judgements were selected. Finally, three of these paths were 

duplicated in initial displays in which all carts were assumed to be open,  
shown to familiarize subjects with the task. "is produced a total of 19  
di$erent paths (see Supplementary Information: Experiment 2 scenarios  
and results) for which each subject rated six possible con#gurations of carts,  
for a total of 114 judgements per subject. Food cart names as well as stimulus  
order were randomized across subjects (for clarity we describe the experiment 
using the canonical cart names and ordering: Afghani (A), Burmese (B) and 
Colombian (C)).

Stimuli. Stimuli were static images depicting scenarios featuring an agent’s path 
through a static environment. Example stimuli from three scenarios are shown  
in Fig. 2b.

Procedure. Subjects first completed a familiarization stage, which explained the 
basic food cart setting, then collected judgements for three introductory scenarios 
where the food carts were assumed to always be open. Next, the possibility that 
carts could be closed was introduced with a step-by-step example. The remaining 
16 experimental scenarios immediately followed.

In each scenario, subjects were shown either a complete or an incomplete  
path. They were then asked to rate on a scale from 0 to 10 (with 0 meaning 
‘definitely not’; 10 ‘definitely’; and 5 ‘maybe’) how likely each of six possible  
cart configurations was to be the real one.

Participants. We recruited 200 US residents through Amazon Mechanical Turk.  
Of these, 176 subjects were included in the analysis, with 24 excluded owing to 
server error. All gave informed consent, and were treated according to protocol 
approved by MIT’s Institutional Review Board.

Statistics. Bootstrap cross-validation. BSCV is a non-parametric technique for 
assessing goodness of #t55. BSCV is useful when comparing di$erent models with 
di$erent numbers of free parameters, as we do here, because it naturally controls 
for possible over#tting.

For each experiment, we generate 100,000 random splits of the total set of 
individual scenarios into non-overlapping training and test sets. Identical training 
and test sets are used to evaluate each model. We then compute the predictive 
accuracy (r, or Pearson correlation coefficient) of each model on each test set, 
using parameters fit to the corresponding training set. The statistic rBSCV denotes 
the median value, and confidence intervals span 95% of the 100,000 sampled 
values. Bootstrapped hypothesis tests compute the proportion of samples in which 
the r value of one model exceeds that of another.

BSCV analyses for BToM, TrueBelief, and NoCost selected best-fitting 
parameters on each iteration from the discrete ranges shown in Supplementary 
Information: Experiment 1 and Supplementary Information: Experiment 2. For 
MotionHeuristic, best-fitting parameters were selected on each iteration from a 
continuous range using linear regression.

It may be surprising that BSCV correlations often exceed overall correlations. 
This happens because the Pearson r statistic involves estimating slope and intercept 
values to optimize the model fit to each test set. However, because we use the same 
bootstrapped training and test sets to evaluate each model, the effect does not 
favour any particular model.

Data availability. The data that support the findings of this study are available at 
https://github.com/clbaker/BToM.

Code availability. The code for all models and analyses that support the findings 
of this study are available at https://github.com/clbaker/BToM.
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