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During real-time language comprehension, our minds rapidly decode complex
meanings from sequences of words. The difficulty of doing so is known to be related to
words’ contextual predictability, but what cognitive processes do these predictability
effects reflect? In one view, predictability effects reflect facilitation due to anticipatory
processing of words that are predictable from context. This view predicts a linear
effect of predictability on processing demand. In another view, predictability effects
reflect the costs of probabilistic inference over sentence interpretations. This view
predicts either a logarithmic or a superlogarithmic effect of predictability on processing
demand, depending on whether it assumes pressures toward a uniform distribution
of information over time. The empirical record is currently mixed. Here, we revisit
this question at scale: We analyze six reading datasets, estimate next-word probabilities
with diverse statistical language models, and model reading times using recent advances
in nonlinear regression. Results support a logarithmic effect of word predictability on
processing difficulty, which favors probabilistic inference as a key component of human
language processing.

language | prediction | reading | nonlinear regression | human language processing

Comprehending language involves continuously integrating new input with context in
order to rapidly form an interpretation of the meanings of the utterances we hear and
read. Precisely how the mind achieves this goal is unknown, but a wealth of prior studies
offer an important clue: The difficulty of processing a word is related to its predictability
in context. This claim is supported by diverse evidence, including self-paced reading
(1–3), eye-tracking during reading (4–6), electrophysiology (7–9), and neuroimaging
(10–12), using both naturalistic stimuli (4) and stimuli specifically designed to manipulate
predictability (3). But what cognitive processes do predictability effects reflect? The
answer to this question is tied to a major open debate about the cognitive architecture of
human language comprehension (1, 3, 13–15).

Some contend that predictability effects reflect facilitation due to anticipatory
processing (e.g., lexical retrieval and structural integration) of future words, e.g., refs. 3
and 16. In this FACILITATION view, the primary work of sentence processing is to
build a mental representation of language structure and meaning, with processing
demand proportional to the difficulty of the cognitive operations required to build
this representation (e.g., recognizing words, retrieving their representations from the
mental lexicon, and integrating those representations into existing syntactic and semantic
structures). Prediction facilitates this process by allowing the processor to deal with some
of this burden in advance when words are highly predictable from context, thus making
more efficient use of processing resources. This view thus predicts a linear effect of
contextual probability: A word can be partially processed in advance in proportion to the
probability with which it can be correctly guessed in a serial processor (see e.g., refs. 1 and
6 for discussion) or in proportion to the processor resources probabilistically allocated to
it in a parallel processor (3). A consequence of the FACILITATION view is that predictability
effects should be driven primarily by highly predictable words, since these are the words
for which predictions are likely to be correct and can therefore confer a substantive
benefit. Small absolute differences in low probability should have little practical impact
on processing demand, since little advance processing is possible. In the limit of total
prediction failure (i.e., encountering a word with contextual probability 0), processing
simply proceeds without any anticipatory benefit, resulting in no facilitation.

Others contend that predictability effects primarily reflect a processing cost, namely,
the cost of probabilistic inference. This COST view draws from information theory in
framing prediction as an intrinsic feature of a generative, probabilistic mental processor
whose primary work is incremental probabilistic inference over a vast (even infinite) space
of possible analyses of the unfolding sentence (17, 18). In this view, an interpretation is a
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probability distribution, and processing demand is determined
by the size of the change in the interpretation: In particular,
the Kullback–Leibler (KL) divergence between the interpreter
states before and after observing a word. This divergence can be
shown to be equivalent to the surprisal (negative log probability,
also known as Shannon information) of a word in context (18).
Thus, this position predicts a logarithmic effect of contextual
predictability (or, equivalently, a linear effect of surprisal) on
processing difficulty (for discussion of possible mechanisms
underlying this predicted logarithmic relationship, see e.g., refs.
1, 19, and 20). A consequence of the COST view is that
predictability effects should be driven primarily by small absolute
differences in low probability, since these differences are large on
a logarithmic (surprisal) scale. In the limit of total prediction
failure, catastrophic processing failure (infinite processing cost)
ensues—by consequence, under this view, next-word probability
is assumed to never be truly zero.

A variant of the COST view is the uniform information density
(UID) hypothesis (21, 22), in which probabilistic inference trades
off with a bias against word-by-word variation in surprisal (thus
smoothing processing load over time). While some versions of the
COST view (like surprisal theory e.g., ref. 18), are indifferent to the
temporal arrangement of information in the linguistic message,
the UID view posits additional pressures toward a more even distri-
bution of information over time, in service of communicative effi-
ciency (23). To the extent that these hypothesized pressures derive
from constraints on comprehenders’ information processing, one
natural basis for UID pressures would be a superlogarithmic
relationship between contextual probability and processing cost:
If highly surprising words (i.e., spikes in information content)
are disproportionately difficult to process, uniform information
density is favored (13). Although early UID proposals did not
specify a processing mechanism, recent work has shown that
some inferential processing algorithms have superlogarithmic
time complexity in predictability, thus potentially grounding
UID pressures in comprehension processes (14).

The hypothesized relationships between predictability and
processing demand under each of these three views are schema-
tized in Fig. 1, which shows all three sets of predictions both
on a probability scale (Left) and a surprisal scale (Right). As
shown, the FACILITATION view (blue) predicts a linear fall-off in
processing demand as predictability drops to zero. On a surprisal
scale, this prediction appears as a plateau in which the slope of the
change in processing demand decreases rapidly on surprisal. By
contrast, the COST view (green) predicts a skyrocketing increase in
processing demand as predictability drops to zero, since surprisal
is climbing to infinity. On a surprisal scale, this prediction
appears as a straight line. The UID view predicts an even steeper
increase in processing difficulty (red). The UID view is most easily
differentiated from the COST view on a surprisal scale, where,
as shown, the slope of the change in processing demand also
increases on surprisal.

The FACILITATION, COST, and UID views thus make testably
different predictions about the relationship between word
predictability and processing demand. However, the empirical
record on this question is currently mixed, with some studies
reporting a linear predictability effect (3), others reporting
a logarithmic predictability effect (1, 15, 24, 25), and still
others reporting a superlogarithmic predictability effect (13, 14).
These differences in results plausibly derive from methodological
differences, some of which concern experimental design. For
example, a key challenge in studying the construct of human
subjective predictability is that it is not observable and must
be approximated using a model of contextual probability, and
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Fig. 1. Expected relationships between word predictability (x-axis) and
processing demand (y-axis) according to the FACILITATION, COST, and UID
views of predictability effects in language comprehension. Hypothesized
effects are represented on both a probability scale (Left) and a surprisal
scale (Right). If, per the FACILITATION view, prediction serves to facilitate
advance processing of highly predictable words, then processing gains will
be proportional to probability. By contrast, the COST and UID views derive
predictability effects from a process that updates a probability distribution
over sentence interpretations, where the cost of this update is logarithmic
or superlogarithmic on word predictability. Thus, as shown in the Left plot,
both the COST and UID views predict rapidly increasing (asymptotically infinite)
processing demand as probability goes to 0, and differ in the rate of this
predicted increase. Equivalently, as shown in the Right plot, the FACILITATION
view predicts a plateau in processing cost as surprisal increases, whereas
the COST and UID views respectively predict a linear or superlinear increase in
processing cost as a function of surprisal.

studies differ in how they implement this approximation. For
example, Smith and Levy (1) quantified contextual word prob-
abilities using statistical language models, whereas Brothers and
Kuperberg (3) used probabilities derived from a cloze task (26)
in which humans predicted the next word based on preceding
context. The advantages of cloze estimates are that i) they directly
reflect human subjective probabilities and ii) they have been
shown to be superior to corpus-based estimates in predicting
human reading patterns (27); although both of these purported
advantages are under debate (Discussion and SI Appendix, 1). The
disadvantage of cloze estimates is the inherent practical difficulty
in accurately estimating degrees of low contextual probability—
millions of samples per context would be needed to reach the
precision of statistical language models. Unfortunately, these are
precisely the probabilities that most strongly differentiate the
empirical predictions of the hypotheses reviewed above.

Studies also show design differences in their use of constructed
vs. naturalistic language materials. Brothers and Kuperberg used
constructed materials, which they justify in light of the problems
for causal inference presented by observational (naturalistic) data.
However, these inferential gains come at the cost of i) limited
coverage of the critical low-probability interval of the contextual
probability spectrum, ii) data loss due to restricted focus on
a critical region, rather than word-by-word modeling, and iii)
ecological validity (see also, e.g., refs. 28–31, SI Appendix, 1). In
addition, the theoretically predicted patterns should at minimum
hold in observational data, even if the existence of such patterns
is insufficient to establish causal effects. Perhaps in light of these
considerations, most other studies of the functional form of pre-
dictability effects use naturalistic data, e.g., refs. 1, 13–15, and 25.

Design differences aside, all previous studies share a reliance on
standard analysis methods that enforce implausible simplifying
assumptions when applied to complex continuous-time pro-
cesses like language comprehension. These assumptions include
linearity and/or additivity of effects, discrete-time dynamics
(i.e., spillover effects at the word level), time-invariance, and
constant error. All of these assumptions are likely unwarranted
for human language comprehension, and a failure to account
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for their violations can substantially influence effect estimates
and hypothesis tests, especially in naturalistic data (32, 33).
Although some studies (1, 25), relax the linearity assumption
through generalized additive models GAMs (34), which can
flexibly infer nonlinear effects, they still rely on implausible
dynamical and distributional assumptions (i.e., a homoscedastic,
additive, discrete-time stationary model).

In light of these concerns, we revisit the functional form of
word predictability effects by analyzing the largest collection of
naturalistic reading data to date (six large-scale public English-
language datasets with a combined total of over 2.2 million
data points across three different reading modalities), combining
recent advances in statistical language modeling with statistical
analyses based on the recently introduced continuous-time
deconvolutional regressive neural network (CDRNN, refs. 32
and 33). In brief, CDRNNs leverage the power of deep learning
to infer a highly expressive impulse response function (IRF) that
relates features of fixated words to measured reading times as a
function of their distance in continuous time. For example, the
fitted model will contain an estimate of how a given surprisal
value at a given fixated word will affect reading behavior 500 ms
in the future, thus directly taking into account the possibility
of nonlinear and continuously delayed effects. The architecture
of CDRNNs allows them to relax all of the aforementioned
simplifying assumptions: Predictors can exert arbitrary nonlinear
and interactive influences on the response, the response function
can change over the course of the experiment (nonstationarity),
and the predictors can influence all parameters of the predictive
distribution, not just the mean (heteroscedasticity). CDRNNs
thus provide a more flexible analysis approach that substantially
improves fit to reading behavior (32, 33).

To anticipate our results, even though CDRNNs are expressive
enough to learn any of the functional forms discussed above, they
emergently discover a logarithmic effect of word predictability, as
predicted by the COST view (17, 18). Detailed model comparisons
show that this logarithmic effect is better supported by our results
than either the linear effect predicted by the FACILITATION view
or the superlogarithmic effect predicted by the UID view.

Results
We evaluate predictability effects in six publicly available natu-
ralistic reading datasets: The Brown self-paced reading (SPR)
dataset (1), the Dundee eye-tracking (ET) dataset (35), the
monolingual English version of the GECO eye-tracking dataset
(36), the Natural Stories self-paced reading dataset (37), the
Natural Stories Maze dataset (38), and the Provo eye-tracking
dataset (39). In each case, the critical response variable is how
long participants spent reading each word in a running text (for
supplemental analyses of predictability effects on word skipping
in the three eye-tracking datasets, SI Appendix, 2).

We consider word predictability estimates derived from diverse
statistical language models, computational models that define a
probability distribution over the next word given its linguistic
context. Specifically, we consider an n-gram model that predicts
the next word from a table of counts of word sequences in a
text corpus (40), a probabilistic context-free grammar (PCFG)
model that predicts the next word given a set of hypotheses
about the sentence’s structure (syntactic tree, (41)), and three pre-
trained deep neural network language models based on the trans-
former architecture (42): GPT-2(-small) (43), GPT-J (44), and
GPT-3 (45).

We analyze these data using continuous-time deconvolutional
regressive neural networks (32, 33), controlling for numerous

perceptual, motor, and linguistic variables as well as participant
and item effects in a mixed model design (CDRNNs recover
expected effects of our word length and frequency controls; see
SI Appendix, 3). To shed light on the functional form of word
predictability effects, we consider not only models that can find
an unconstrained function of word surprisal (f (SURP)) but also
models that are constrained to be linear in either probability
(PROB) or some fixed power of surprisal (SURP1/2, SURP3/4, SURP1,
SURP4/3, or SURP2).

As in prior work (1, 14, 25), part of our analysis rests
on visualization of the model-estimated relationship between
predictability and processing cost. However, we go beyond these
visual impressions and compare model performance on a held-
out portion of each dataset under different assumptions about
the nature of predictability effects. All statistical comparisons are
based on pre-trained CDRNNs’ performance on data not seen in
training, directly grounding hypothesis tests in how well models
generalize.

For further details about the experimental tasks and materials,
datasets, language models, regression analyses, and statistical
testing protocols, see Materials and Methods. For simplicity,
unless otherwise specified, we report comparisons that aggregate
across all datasets considered in this study. Complete results tables
for all statistical tests conducted in this study (including results
on individual datasets) are given in SI Appendix, 4.

What Is the Estimated Shape of Predictability Effects? We
first establish qualitative impressions about the functional form
of predictability effects by visualizing the estimates from the
unconstrained f (SURP) CDRNN models. Estimates for the effect
of word surprisal on fixations to that word (i.e., at no delay)
are plotted across language models and datasets in Fig. 2 (for
visualization of these effects over time following stimulus onset,
see SI Appendix, 5). With one exception (PCFG surprisal effects
on GECO first pass reading times), all estimates show the
expected positive relationship between surprisal and reading time
(in fact, PCFG surprisal in GECO first pass reading times also
shows a positive surprisal effect, albeit at longer latencies; see
SI Appendix, 5 for visualizations and SI Appendix, 6 for additional
discussion). Furthermore, estimates are primarily consistent with
a logarithmic predictability (linear surprisal) effect. They are
inconsistent with a linear predictability effect, according to which
processing cost should essentially not vary beyond about four
nats of surprisal (around 2% predictability). Although there
are hints of superlogarithmicity (superlinear surprisal effects) in
some configurations (e.g., n-gram effects on Dundee scan path
durations) and of sublogarithmicity (sublinear surprisal effects)
in others (e.g., GPT-2 effects on GECO first pass durations),
the uncertainty interval covers a logarithmic effect in nearly all
cases. In SI Appendix, 7, we also show that CDRNN models tend
to recover a logarithmic predictability effect when provided with
predictability measures on a linear or superlogarithmic scale. This
outcome is at odds with some recent reports of superlogarithmic
effects in a subset of these data, e.g., refs. 13 and 14. They are
likewise at odds with recent claims that better language models
find more strongly superlogarithmic effects (14)—in our results,
estimates using a much larger model (GPT-3) are not systemati-
cally more superlogarithmic than estimates using smaller models
with worse perplexity like GPT-2 (SI Appendix, 8). We return to
these divergences from prior work in Discussion.

Are Predictability Effects Robust in Naturalistic Reading? We
now confirm that our analyses replicate numerous prior findings
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Fig. 2. CDRNN-estimated functional form of surprisal (x-axis) effects on reading times (y-axis) across language model types (n-gram, PCFG, GPT-2, GPT-J, GPT-3,
and human cloze) with no delay (i.e. at the surprising word). Plots cover the interdecile range of values in each training dataset (for plots covering the full
empirical range, see SI Appendix, Fig. S9). Kernel density plots show the distribution of surprisal values in the training data over the plotted range.

of predictability effects in reading, e.g., refs. 1, 4, 25, and 46
inter alia. To this end, patterns of fit of pre-trained CDRNN
models to unseen data are visualized in Fig. 3, which shows
the median change in out-of-sample test-set likelihood relative
to a baseline containing no predictability variable. The pri-
mary models of interest—f (SURP)—use unconstrained (possibly
nonlinear) functions of surprisal. The f (SURP) model for each
statistical language model is significant over a baseline model
with no predictability effect, as is the f (SURP) model for all
language models in aggregate, supporting a generalizable effect
of word predictability. Moreover, the more constrained models
PROB, SURP1/2, SURP3/4, SURP1, SURP4/3, and SURP2 are also
significant over the baseline, indicating that this finding does
not critically depend on assumptions about functional form. We
thus find strong evidence that reading behavior is modulated by
predictability in context, consistent with much prior work.

Which Language Model Best Estimates Human Subjective Sur-
prisal? We next evaluate differences in psychometric quality
(predictive fit to reading times) across language models. The
numerically best performing language model overall is GPT-2
(-small), which significantly outperforms all other language
models in the f (SURP) configuration except GPT-J (Fig. 3),
and which shows especially pronounced performance gains over
other models in the more constrained configurations SURP3/4 and
SURP1. The finding that GPT-2-small substantially outperforms
GPT-3 is striking given that GPT-3 has over 1,000 times
more parameters than GPT-2-small, is trained on much more
data, and has better overall perplexity (see the surprisal density
plots in Fig. 2; perplexities by language model and dataset are
provided in SI Appendix, 9). This result suggests that previously
reported correlations between the linguistic and psychometric
performance of language models (25, 47) may not hold for
more recent large transformer language models, and instead
suggests limitations on the benefits of language model perplexity
for modeling human subjective word probabilities (48). Given
these performance differences, although we consider results across
language models in the remainder of this article, we place special

emphasis on results derived from GPT-2, since these most reliably
characterize reading behavior overall.

Main Question: Is Processing Difficulty Linear, Logarithmic, or
Superlogarithmic on Word Predictability? We now turn to the
statistical analyses that bear on our core question, using out-
of-sample model performance to assess hypothesized functional
forms of predictability effects. As shown in Fig. 3, we compare
the performance of the unconstrained f (SURP) models to that
of models constrained to respect some fixed predictability-cost
function, namely models that are linear on raw probability
(PROB, as predicted by the FACILITATION view) and on powers
of surprisal (SURP1/2, SURP3/4, SURP1, SURP4/3, and SURP2), where
the SURP1 model instantiates the logarithmic pattern predicted
by the COST view and the SURP4/3 and SURP2 models instantiate
superlogarithmic patterns consistent with the UID view. The
SURP1/2 and SURP3/4 models instantiate sublogarithmic effects
and are included for completeness, even though no existing theory
predicts these functional forms.

Overall results across language models and datasets (Fig. 4;
see SI Appendix, 4 for full testing results by model and dataset)
indicate i) that PROB significantly under-performs all surprisal-
based models, ii) that SURP1 is the best performing constrained
model overall, significantly outperforming both sublogarithmic
models (SURP1/2 and SURP3/4) and superlogarithmic models
(SURP4/3 and SURP2), and iii) that there is no significant advantage
of unconstrained f (SURP) models over SURP1 models constrained
to have a logarithmic predictability effect. There is thus no
systematic evidence in our study that predictability effects
are anything other than logarithmic, and, of the constrained
models, the logarithmic effect fits the data better than either the
linear effect predicted by the COST view or the superlogarithmic
effect predicted by the UID view. Results from this large-scale
investigation therefore favor a logarithmic predictability effect.

One logical possibility is that both kinds of processes (antic-
ipatory FACILITATION and inferential COST) act simultaneously,
giving rise to a superposition of linear and logarithmic effects
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Fig. 3. Change in test set log likelihood as a function of i) language model and ii) predictability-cost function, relative to a baseline model containing no
predictability measure. Predictability-cost functions include the main CDRNN model that enforces no constraints on functional form ( f (SURP)), along with
models assuming a linear effect of word probability (PROB) and models assuming a linear effect on some exponent of surprisal (from SURP1/2 to SURP2). Bars
represent the median pairwise likelihood difference between the models of the critical and baseline ensembles (10 models each, resulting in 100 likelihood
differences per bar). Error bars show 95% bootstrapped CIs of the median pairwise likelihood difference.

on predictability. This view has been advocated by a prior study
of predictability effects on event-related potentials in electro-
physiology experiments (50), which supported additive linear
and logarithmic predictability effects. This position predicts a
sharper fall-off in processing demand in the low-surprisal interval
due to additional linear facilitation at highly predictable words.
Might a similar pattern hold in reading data? Visual estimates in
Fig. 2 do not appear to support this hypothesis. To address this
hypothesis directly, we focus on GPT-2 (the language model
with the strongest overall psychometric performance) and fit
models that contain strictly linear predictors for one or both
of GPT-2 probability and GPT-2 surprisal. We then compare
the generalization performance of the model containing both
GPT-2 probability and GPT-2 surprisal to that of the models
containing only one or the other (“Prob vs. Surp” of SI Appendix,
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Fig. 4. Results of statistical comparisons across all datasets and language
models between pairs of assumed forms for the effect of word predictability.
For a given pair, cyan indicates that the model on the row has significantly
better test set performance than the model on the column, magenta
indicates that the model on the column significantly outperforms the model
on the row, and white indicates no significant difference. Only the lower
triangle is shown. Tests use false discovery rate correction for multiple
comparisons (49) across all tests. See SI Appendix, Fig. S4 for results by dataset
and language model.

Tables S5–S8). We only find significant contributions of GPT-
2 probability (linear effect) above and beyond GPT-2 surprisal
(logarithmic effect) in two datasets (Natural Stories SPR and
Natural Stories Maze). However, in the largest of these (Natural
Stories SPR), the GPT-2 probability effect does not go in the
predicted direction: More probable words are associated with
longer reading times (SI Appendix, Fig. S7). Thus, although the
overall contribution of GPT-2 probability over GPT-2 surprisal
alone across datasets is significant (SI Appendix, Table S9), this
significance is driven largely by the opposite pattern from that
predicted by the FACILITATION view. We therefore do not find
evidence to support the additive linear and logarithmic effects
of word predictability reported by ref. 50, a difference that
could be due to modality differences (reading in our study vs.
electrophysiology in theirs). Instead, overall results are primarily
consistent with logarithmic predictability effects alone.

Nonetheless, there are potentially important differences in
testing outcomes between individual datasets and language
models, as visualized in SI Appendix, Fig. S4. For example, su-
perlogarithmic models tend to show stronger performance in the
Natural Stories SPR dataset: Aggregating across language models,
SURP4/3 outperforms SURP1. In addition, across all datasets,
the larger transformer language models (GPT-J and GPT-3)
favor a superlogarithmic model over a logarithmic one: SURP4/3

outperforms SURP1 using GPT-J predictability estimates, and
SURP2 outperforms SURP1 using GPT-3 predictability estimates.
Both of the outcomes above (superlogarithmic effects in Natural
Stories SPR and a bias toward superlogarithmicity in larger
language models) are consistent with recent findings from ref. 14.
However, they should be interpreted with caution, since i) we
find no evidence that these dataset-specific superlogarithmicities
are characteristic of reading in general (across our entire sample;
see SI Appendix, 8 for in-depth discussion of this point), and
ii) the GPT-J and GPT-3 language models perform worse in
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overall psychometric comparisons than GPT-2 (especially in the
critical SURP1 condition; Fig. 3), which does not exhibit a bias
toward superlogarithmicity. The GPT-J and GPT-3 patterns
are therefore a questionable basis for claims about predictability
effects in humans, in the absence of similar patterns in better-
performing GPT-2 models. In addition, GPT-3 in particular
was trained on a large web corpus that is not publicly available.
Given that all the reading stimuli in these experiments are
available online, it is plausible that GPT-3 was trained on
some or all of these texts, which could artificially reduce its
surprisal estimates for them, especially for highly surprising words
that contribute large training gradients. This could give rise
to artifactual superlogarithmicities when using GPT-3 surprisal
estimates to predict human reading times, since compression
in the high-surprisal regime will lead to steeper increases in
processing cost if the underlying cost function is logarithmic
on human subjective probabilities. Therefore, although these
exceptions are noteworthy and warrant future research, the overall
pattern emerging from our study is most favorable to logarithmic
predictability effects.

Do Results Change under Cloze Estimates of Word Predictabil-
ity? The results reported here derive from statistical language
models that perform next-word prediction. However, the current
experimental gold standard measure of word predictability is
the cloze task (26) in which predicted next-word continuations
given a context are collected from human participants, e.g.,
refs. 3, 6, 27, 46, and 51–53. Because cloze estimates are
human-derived, they avoid potential confounds due to mismatch
between statistically estimated and human subjective next-word
probabilities. Indeed, the use of statistical rather than cloze
predictability estimates has been cited as a criticism of prior
work on the functional form of word predictability effects
[ref. 3; see SI Appendix, 1 for extended discussion]. However,
some have argued that the cloze task may measure different
cognitive processes than those that underlie real-time language
comprehension (27, 52), and there is currently debate as to
whether cloze estimates perform better (27, 51, 53) or worse
(54, 55) than statistical language models as estimators of human
processing difficulty (SI Appendix, 1).

Thoroughly investigating this question in our current experi-
mental setup is prohibitive, since it would require word-by-word
cloze distributions for all the large naturalistic texts in this study
(including an entire novel in the case of the GECO dataset).
However, the Provo dataset was fully cloze-normed as part of its
design (6). We therefore use Provo to address two questions: i)
Do results depend critically on the use of statistical predictability
estimates, and ii) how does our best statistical language model
(GPT-2) perform relative to cloze?

Regarding (i), estimates using cloze surprisal for the Provo
dataset are plotted in Fig. 2. As shown, estimates are if anything
more strongly superlogarithmic than estimates using any of the
statistical language models, and the f (SURP) model significantly
outperforms the PROB model for all duration types. Despite the
visually superlogarithmic estimates in Fig. 2, the performance
profile for cloze is similar to that of other predictability estimates
(Fig. 3), with peak performance from logarithmic (SURP1) or
slightly sublogarithmic (SURP3/4) models, and worse performance
from either superlogarithmic model (SURP4/3 and SURP2). Thus,
results under cloze remain most consistent with logarithmic
predictability effects.

Regarding (ii), GPT-2 surprisal numerically outperforms cloze
surprisal in all comparisons, significantly so for first pass and go-
past durations (Fig. 3). This outcome suggests that at the scales

of training corpus, language model architecture, and cloze norm
dataset size investigated here, the benefits of artificial model-
based surprisal estimation (e.g., differentiating among degrees
of low probability, or capturing variability that may be under-
represented by cloze distributions, see SI Appendix, 1) may now
outweigh whatever disadvantages model-based estimates might
have in principle relative to cloze norms, at least for naturalistic-
text datasets (54, 55).

Discussion
In this study, we revisited a longstanding question about
predictive processing during language comprehension, namely,
what is the functional form of predictability effects on measures
of incremental comprehension difficulty? We evaluated five
statistical language models (n-gram, PCFG, GPT-2, GPT-J,
and GPT-3 models) on six large-scale reading datasets using
recent advances in nonlinear regression modeling for naturalistic
language processing data (CDRNNs, (32, 33)). Unlike most
prior work on this question (cf., 13), our statistical tests are
based exclusively on out-of-sample model fit, thus grounding the
outcomes of tests in the generalizability of effects.

Results favor a logarithmic effect of word predictability
(linear effect of word surprisal, 1) compared to a linear (3) or
superlogarithmic (13, 14) effect. Nonlinear CDRNN models
of human reading emergently discover estimates consistent
with a logarithmic predictability effect, improve upon models
constrained to have a linear or superlogarithmic predictability
effect, and generally do not improve upon models constrained
to have a logarithmic predictability effect. Similarly, models
constrained to have a logarithmic effect generally outperform
models constrained to have a linear effect, as well as models
constrained to have slightly sublogarithmic or superlogarithmic
effects. Supplementary analyses (SI Appendix, 7) suggest that
this logarithmic effect of word predictability is not due to an
inductive bias of the CDRNN model. Moreover, when we
reanalyze data from Brothers and Kuperberg (3)—the strongest
current counterevidence supporting linear rather than logarith-
mic predictability effects—we find (SI Appendix, 1) that GPT-2
predictability estimates instead favor a logarithmic over a linear
effect and fit Brothers and Kuperberg’s self-paced reading data as
well as the cloze estimates used in the original study.

Our findings have implications for current understanding of
the cognitive processes that give rise to predictability effects,
favoring the view that predictability effects primarily reflect
the cost of probabilistic inference (17) over the view that
predictability effects primarily reflect anticipatory facilitation
(3). Furthermore, our results do not support the hypothesis
that processing demand is superlogarithmic in predictability,
which might give rise to uniform information density pressures
(13, 14, 22).

In making this claim, we stress that we have used the term
facilitation more narrowly than it is sometimes used in the field:
By “FACILITATION view,” we are referring specifically to theories
of a linear form for the predictability–cost relationship whereby
predictability effects are driven primarily by highly predictable
words, rather than the more general idea that contextually
preactivated words are read more quickly. Our findings agree
with the construal of predictable words as “facilitated” in this
more general sense: When surprisal is low, the COST view predicts
fast reading (because the inferential update is small).

Implications for Theories of Language Comprehension. A com-
mon stance among psycholinguists is that prediction serves a
largely facilitatory (3)—and possibly optional (56)—role in a
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comprehension process dominated by the demands of incre-
mentally assembling an ever-richer representation of sentence
structure and meaning. These hypothesized demands include
lexical retrieval (57) and syntactic integration (58), and successful
prediction might allow the processor to discharge these demands
early and thus use computational resources more efficiently. As
word predictability nears zero, the processor gets little of this
anticipatory benefit and converges to a wait-and-see mode. This
view predicts little difference for processing between next-word
probabilities of e.g., P = 0.001 vs. P = 0.0001: In both cases,
the full processing burden will fall on the word itself. Our results
challenge this FACILITATION view, instead showing large changes
in processing cost due to small absolute differences within the
low probability regime.

Rather, our results support an information-theoretic view
(17, 18) in which a major driver of processing cost is probabilistic
inference over a (possibly vast) space of interpretations of the
unfolding sentence (possibly including syntactic parses,
predicate logic, and any other cognitively-relevant form of
sentence representation). Under this view, an interpretation is
a probability distribution over this representation space, and
words with small absolute differences in probability can have
large differences in the size of the update they require to the
interpretation distribution, due to the logarithmic form of
the KL divergence between the interpreter states before and
after observing a word. Our results bear out this prediction by
supporting a linear increase in reading latencies as a function of
this logarithmic divergence (surprisal), thereby supporting the
COST view that prediction is not merely an aide to comprehension,
but an inherent consequence of what it means to comprehend.

The importance of probabilistic inference draws support
from computational parsing algorithms, the design of which is
dominated by the problem of finding (rather than assembling) the
correct analysis of a sentence e.g., refs. 59–67. Computationally
implemented approaches thus suggest that the problem of
local ambiguity in sentence interpretation goes well beyond
the garden-path constructions and attachment ambiguities that
have largely preoccupied psycholinguistic treatments of this
problem (68–78), and may instead be the primary obstacle to
successful comprehension (79–81). It is therefore not surprising
to find evidence that probabilistic inference may also be a major
preoccupation of the human language comprehension system.

That said, two points of clarification must be emphasized.
First, our claims are not at odds with the notion of preactivation
per se, but only with a facilitatory construal of its influence
on processing cost. Diverse experimental evidence supports
the hypothesis that predictable linguistic units are represented
in the mind and brain before they are encountered (82–87).
Probabilistic inference is perfectly compatible with this evidence,
since the candidate interpretations among which the processor
allocates probability mass might contain information about as-yet
unobserved material. Our study simply constrains the hypothesis
space around how these representations influence incremental
processing demand.

Second, our claims are compatible with the existence of other,
surprisal-independent determinants of incremental processing
demand. In other words, our claims do not entail commitment
to a strong view of surprisal as the sole causal bottleneck between
representations and processing demand (c.f., 18). Experiments
have identified diverse surprisal-independent influences on pro-
cessing demand, including lexical (88, 89) and repetition (90)
priming, word frequency (91, 92), dependency locality (93, 94),
and garden path constructions (95). Whether all such influences
can be reconciled with surprisal theory is currently unclear (for
recent attempts to address some of them, see refs. 96 and 97).

But the results of our study are orthogonal to this issue: We are
not claiming that surprisal is the only determinant of processing
difficulty, only that it is an important one, and that predictability
effects in natural reading cannot be reduced to mere facilitation at
highly predictable words. As a result, we argue that mechanisms
of probabilistic inference should feature prominently in theories
of language comprehension, regardless of any other constraints
on constructing sentence representations in memory.

One potential challenge for the COST view that we have
advocated is a well-replicated finding that invalid parafoveal
preview (i.e., replacing words near the current fixation with other
words or random characters) eliminates predictability effects
in early eye movement measures first fixation duration and
first pass duration, e.g., refs. 98–100. This finding has been
taken to indicate that, at least in early measures, predictability
primarily affects only the earliest stages of lexical processing,
when visual cues to word identity are poorly resolved in the
parafovea and must be supplemented by top–down predictive
signals (100). This interpretation is hard to reconcile with our
construal of predictability effects as primarily reflecting high-
level structural and semantic inference. Although we cannot
address this concern empirically since all of our data used
valid preview, we offer three comments. First, three of our six
datasets used self-paced designs that have no preview (but still
show strong predictability effects), and the same experimental
studies above found that predictability effects were preserved
under invalid preview in later measures go-past durations and
N400 amplitudes (99, 100). Thus, predictability effects register
consistently in later measures that plausibly reflect high-level
inferential processing. Second, our finding of predictability
effects (under valid preview) in early eye movement measures
like scan path and first past durations may reflect inferential
processing that began during parafoveal preview and continues
after fixation (some models of surprisal effects, e.g., Smith and
Levy (1), assume that inferences are continuously updated,
rather than than being strictly post-lexical, which is consistent
with inference during preview). Invalid preview would delay
the start of such processing, potentially pushing predictability
effects outside the time window within which they would
normally be captured by earlier measures (but preserving them
in later ones). Third, one interpretational challenge for studies
that manipulate preview validity is that the parafovea provides
incorrect information about the future realization of the text.
Although participants are usually not conscious of the preview
validity manipulation, invalid preview could still send signals to
the language processing system that predictions are incorrect with
unusual frequency (when in fact they are not). This could result
in a strategic adaptation in which the processing system relies less
on prediction (or, put information-theoretically, generates more
entropic predictions), thereby attenuating predictability effects.
The high-cloze (i.e., very predictable) items typically used in
these experimental studies may be especially susceptible to such
an attenuation, since they encourage strong predictions that are
temporarily disconfirmed parafoveally. Current evidence about
preview validity may therefore be compatible with the view of
predictability effects we have advocated, although the discussion
above offers many opportunities for follow-up study.

Our results also discriminate between extant information-
theoretic models of language comprehension by favoring the
logarithmic effect of word predictability predicted by standard
surprisal theory (17, 18) over the superlogarithmic effect that
has been hypothesized to give rise to pressures toward uniform
information density (13, 14); although there are visually apparent
superlogarithmicities in some model estimates (Fig. 2 and SI
Appendix, Fig. S8), superlogarithmic models generally underper-
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form logarithmic or sublogarithmic ones (Fig. 3). Our results
nonetheless highlight the challenge of discriminating between
fine differences in hypothesized functional form on the basis of
reading data, even at scale. Despite some statistically significant
advantages of a logarithmic effect shape, we tend to find a
broad range of near-equivalence in model performance across
the sublogarithmic–superlogarithmic spectrum, with variation
across language models and datasets as to the precise peak of
this continuum (Fig. 3). Since UID does not make precise
claims about how strong superlogarithmicity should be (and is
thus consistent with an arbitrarily diminishing exponent on log
probability), it may not be possible to rule out UID pressures
on the basis of this kind of data. Our evidence is simply more
consistent with a logarithmic than a superlogarithmic effect
of word predictability on reading times, while placing some
constraints on the strength of superlogarithmicity (e.g., squared
surprisal is likely too strongly superlogarithmic).

Why do our results differ from those reported in other recent
studies using partially overlapping data (13, 14)? With respect to
Meister et al. (13), the strongest evidence for superlogarithmicity
came from offline acceptability judgments; the evidence from
online reading measures was more equivocal. The relationship
between online and offline measures of comprehension difficulty
is currently poorly understood, and we leave this discrepancy to
future investigation. With respect to Hoover et al. (14), their
claims of superlogarithmicity are based on visual estimates (and
descriptive statistics derived from those estimates) from models
fitted only to the Natural Stories SPR dataset. Our results in
fact partially replicate theirs, since estimates tend to be visually
superlogarithmic in Natural Stories SPR (especially over the
long right tail of surprisal values, see SI Appendix, Fig. S9),
and a slightly superlogarithmic model (SURP4/3) outperforms a
logarithmic one on that dataset, aggregating over all language
models. However, this outcome appears to be largely restricted to
Natural Stories SPR and does not generalize to a broader sample
of reading data. Furthermore, a recent study of predictability
effects across languages (15) obtained strongly logarithmic
estimates (with little hint of superlogarithmicity) in ten non-
English languages. In the absence of reasons to think that Natural
Stories SPR is an especially reliable source of evidence on this
question (see SI Appendix, 8 for counterarguments), our results
suggest that the pattern reported by Hoover et al. may not be
characteristic of reading in general.

Implications for Statistical Modeling of Human Subjective Word
Probabilities. Our results additionally differentiate computa-
tional models of human next-word prediction. Surprisal estimates
from GPT-2(-small) (43) substantially outperform surprisal
estimates from n-gram, PCFG, GPT-J, and GPT-3 models.
GPT-2 therefore appears to reside in a “Goldilocks” region of
psychometric performance between language models that are
too constrained on the one hand (n-gram and PCFG models)
and too powerful on the other (GPT-J and GPT-3). This
outcome challenges the notion that previously reported corre-
lations between the linguistic and psychometric performance of
language models (25, 47, 101) will extrapolate to models of ever-
increasing size, complexity, and quantity of training data (48).
Instead, the task of using language model predictions to estimate
human reading times may be akin to tasks in natural language
processing that show an “inverse scaling” property, whereby
task performance is inversely related to model size (102–104).
This result has both methodological and scientific implications.
From a methodological standpoint, bigger is not always better;
the selection of a language model for psycholinguistic research

may need to consider additional dimensions (beyond perplexity).
From a scientific standpoint, homing in on classes of models that
best mimic human processing patterns offers the opportunity for
new insights into the learning and processing mechanisms that
underlie human language abilities (9, 105), a direction that we
leave to future work.

In addition, our results also bear on the widespread perception
of cloze norms as the gold standard method for estimating human
next-word predictability. Prior work has raised theoretical con-
cerns about this perception, arguing that cloze predictions may
reflect distinct cognitive processes from those recruited during
real-time language comprehension (27, 106). Relatedly, some
recent studies have found cloze estimates to underperform model-
based predictability estimates in predicting human language
processing measures (54, 55). Our results accord with these prior
findings by showing that, when used as estimators of human
reading effort, surprisal values from GPT-2 are, on average, at
or beyond parity with cloze norms (based on the Provo dataset).
Although additional research is needed to characterize the relative
strengths of statistical vs. cloze predictability estimates in specific
cases, our results suggest that the use of statistical predictability
estimates, especially those from incremental transformer language
models like GPT-2, should not generally be viewed as a design
weakness relative to cloze norms in studies of language processing
(see SI Appendix, 1 for extended discussion).

Although this comparison between GPT-2 and cloze may seem
purely methodological, it is in fact bound up in our core theoret-
ical question about the cognitive sources of word predictability
effects. This is because of the asymmetric importance assigned
by the FACILITATION vs. COST views to low-probability events, for
which the cloze task (under realistic sample sizes) provides poor
quality estimates. Under a FACILITATION (linear predictability)
view, the main drivers of predictability effects are high-probability
words. If this view is correct, then accurately estimating degrees
of low probability is of little consequence, and cloze is the
preferred estimator. Under a COST (logarithmic predictability,
i.e., surprisal) view, the main drivers of predictability effects are
low-probability words, since small absolute differences in low
predictability can correspond to large differences in surprisal.
If this view is correct, then accurately estimating degrees of
low probability is essential, and cloze is not the preferred
estimator. Therefore, one consequence of the COST view is that
accurately estimating fine-grained differences in low probability
(via e.g., GPT-2) should be more important than accurately
estimating human subjective probabilities within the high-
probability regime (via cloze). Our results support this position.

Conclusion. In conclusion, using recent advances in computa-
tional language modeling and time series analysis, and using
diverse large-scale naturalistic reading datasets, our results
support a logarithmic effect of word predictability on processing
difficulty (1), and therefore support probabilistic inference as a
core component of human language comprehension.

Materials and Methods
Data. The datasets considered in this study span three modalities: self-paced
reading, the Maze task, and eye-tracking during reading. In a self-paced reading
task, participants are presented with texts in which words or characters are
occluded until the participant reveals them one-by-one in left-to-right order
by pressing a button. In a Maze task (107), like in a self-paced reading task,
participants press buttons to progress word-by-word through a text. However, at
each word position in the text, participants are presented with a forced choice
between the true next word and a distractor, and they are tasked with selecting the
correct continuation. In an eye-tracking during reading task, texts are presented
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on a screen to participants who read naturally, and their sequence of fixations
to words in the text is recorded by an eye tracker.

The self-paced reading and Maze tasks yield a single word-by-word dependent
variable: reading time (or reaction time, RT), that is, the time elapsed between
stimulus presentation (a word in self-paced reading or a forced-choice decision
in Maze) and pressing a button to indicate a decision (to reveal the next word
in self-paced reading or to choose the continuation in Maze). Modeling eye
movements during free reading is more challenging because the eyes do not
progress linearly through the textual sequence of words. Studies of eye-tracking
during reading have used a variety of measures derived from the reading record,
each with a somewhat different cognitive interpretation (see e.g. ref. 108 for
review).

In this study, we consider three different measures of fixation duration:

• Scan path duration, e.g., ref. 109. Time elapsed from when the eyes enter any
word region from either the left or the right to when they next enter a different
word region (either to the left or to the right), regardless of whether the fixation
is a part of a regressive eye movement. This definition of scan path duration
sums across all consecutive fixations to the same word region, since we do not
wish to treat consecutive fixations to the same word as distinct events (a word
should likely not influence our analyses three times more for having been
viewed by three consecutive fixations rather than one). Under this definition
(and unlike the first pass and go-past durations discussed below), a given
experimental participant can have more than one observation associated with
a given word token in the text (when words are refixated). For example, if a
word sequence ABC is fixated in the order ACBBC, the scan path record will
contain a sequence of four events: the duration of the fixation to A, followed
by the duration of the first fixation to C, followed by the summed durations of
the fixations to B, followed by the duration of the second fixation to C. Scan
path durations thus encode the entire sequence of word fixations in time
rather than textual order, including fixations that are part of regressive eye
movements (e.g., refixations and fixations to words that were skipped in the
initial pass). Regressive and nonregressive scan path events are distinguished
in our analyses by a binary indicator variable (SI Appendix, 10).

• First pass duration, e.g., ref. 108. Time elapsed from when the eyes first enter
a word region from the left to when they enter a different word region (either
to the left or to the right). The sequence of first pass durations excludes all
regressive eye movements, such that refixations or fixations to words that
were skipped in the initial pass are not modeled.

• Go-past duration, e.g., ref. 108. Time elapsed from when the eyes first enter
a word region from the left to when they enter a different word region to its
right (including all intervening regressive fixations). Like first pass durations,
the sequence of go-past durations excludes all regressive eye movements,
such that refixations or fixations to words that were skipped in the initial pass
are not modeled (except indirectly via their influence on go-past durations for
words that were fixated in the initial pass).

Scan path and first pass durations are both early measures, restricted to the
fixation duration of a single word (108). They differ only in whether regressive eye
movements are included (scan path) or discarded (first pass). Go-past duration
is a late measure designed to capture all processing (including regressive eye
movements) involved in moving beyond the current “frontier” in progressing
through the text.

In all eye tracking datasets except the GECO dataset (see below), a stimulus
“event” is considered to be any fixation to a word region in the text. Thus,
the full sequence of fixations before entering a target word region, regressive
or nonregressive, is used to predict all three types of fixation duration at that
region. Note that this differs from standard regression analyses of first-pass and
go-past durations in eye-tracking data, which typically discard the full sequence
of fixations and only consider the linear sequence of words. The ability to recruit
the full scan path record to predict all response variables is an advantage of the
deconvolutional regression approach described below.

In all datasets, following prior analyses of the Dundee and Natural Stories
SPR datasets (109), we partition the data into training, validation, and test splits
(approximately 50, 25, and 25%, respectively) using modular arithmetic on a
split variable i, defined as a function of participant index p and sentence index s:

i = (s + p) mod 4, [1]

where datapoints are cycled into training if i ∈ {0, 1}, validation if i = 2, and
test if i = 3. Models are only fitted to data from the training set. Validation
data are used for tuning and early stopping, following ref. 33. Test data are only
used for statistical comparisons between models. Per ref. 109, to enable valid
deconvolution, all data partitioning and filtering (see below) are applied only to
the response vectors (the modeled reading times). The entire predictor matrix
(sequence of word fixation features) is retained in all models.

The preprocessed datasets are available at https://osf.io/6wvqe/. For instruc-
tions on reproducing our preprocessing pipeline for the reading data, see
https://github.com/coryshain/cdr.
Brown SPR. The Brown SPR dataset (1) contains self-paced reading data from 35
participants reading short (292-902 word) passages from the Brown dataset of
American English (110). The data can be accessed online at https://github.com/
wilcoxeg/neural-networks-read-times.

The dataset contains a total of 450 sentences, 7,188 words, and 136,907
responses. Following established protocol for Natural Stories SPR (another self-
paced reading dataset, described below), we remove sentence boundaries and
RTs that were less than 100 ms or greater than 3,000 ms.
Dundee ET. The Dundee ET dataset (111) contains eye-tracking data from 10
participants who read newspaper articles from The Independent on a computer
monitor. The data can be accessed online at https://github.com/wilcoxeg/neural-
networks-read-times.

The dataset contains a total of 2,388 sentences, 51,501 words, and 408,439
distinct fixations to word regions on the screen. The responses in the Dundee
dataset are filtered to exclude fixations following large outlier saccades (>20
words in either direction), based on the assumption that such outliers reflect
track loss or inattention, rather than language processing. Following prior work,
e.g., ref. 109, we also remove fixations to words adjacent to a screen, line, or
sentence boundary, as well as fixations interrupted by blinks.
GECO ET. The GECO ET dataset (36) contains eye-tracking data from participants
who read The Mysterious Affair at Styles by Agatha Christie on a computer
monitor. The full dataset contains data from 19 Dutch-English bilinguals who
read the first half of the novel in either Dutch or English and the second half
in the other language, along with data from 14 English monolinguals who
read the entire novel in English. Because the computational language models
used in this study are English-specific, here we only used the data from the
14 monolingual English readers. Unlike the other ET datasets analyzed in this
study, the GECO dataset does not provide the full scan path record, but only
a distilled format that contains first pass and go-past times by word. Thus,
in the case of GECO, we do not analyze scan path durations, and we treat
each fixated word in textual order as a stimulus “event” (rather than individual
fixations) for the purposes of deconvolution. The data can be accessed online at
https://expsy.ugent.be/downloads/geco/.

The portion of the dataset that we analyzed contains a total of 5,300 sentences,
56,440 words, and 374,179 events. Following the Dundee protocol (above), the
responses in the GECO dataset are filtered to exclude fixations following large
outlier saccades (>20 words in either direction) and fixations to sentence
boundaries (screen and line boundaries were not annotated).
Natural stories SPR. The Natural Stories SPR dataset (37) contains crowd-
sourced self-paced reading responses from 178 participants to 10 naturally
occurring narrative or nonfiction pieces modified in order to over-represent rare
words and syntactic constructions without compromising perceived naturalness.
The stimuli are thus designed to reflect the typical conditions of story
comprehension, while subtly taxing the language processing system. The data
can be accessed online at https://github.com/languageMIT/naturalstories.

The dataset contains a total of 485 sentences, 10,256 words, and 1,013,377
responses. Following previous work, e.g., ref. 109, RTs are removed if they are
less than 100 ms or greater than 3,000 ms, if they are to words adjacent to
a sentence boundary, if participants answered less than 5/8 comprehension
questions correctly, or if, subject to the aforementioned constraints, participants
have fewer than 100 RTs.
Natural stories maze. The Natural Stories Maze dataset (38) contains crowd-
sourced Maze task responses from 95 participants to the same materials as in
the Natural Stories SPR dataset above, using a recently developed technique
(A-Maze) to generate high-quality forced-choice alternatives for long naturalistic
passages (112). The data can be accessed online at https://github.com/vboyce/
amaze-natural-stories.
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The dataset contains a total of 97,527 responses (the textual statistics are the
same as Natural Stories SPR above). Following ref. 38, RTs are removed if they
are less than 100 ms or greater than 5,000 ms, if they are to words adjacent to
a sentence boundary, or if the subject responded incorrectly (i.e., selected the
wrong continuation). Inattentive subjects (defined as subjects with lower than
80% accuracy) are also removed.
Provo ET. The Provo ET dataset (39) contains eye-tracking data from 84
participants who read 55 short (39 to 62 word) passages from various
online sources on a computer monitor. The data can be accessed online at
https://osf.io/sjefs/.

The dataset contains a total of 134 sentences, 2,745 words, and 213,224
distinct fixations to word regions on the screen. Following the Dundee protocol
(above), responses are filtered to exclude fixations following large outlier
saccades (>20 words in either direction), fixations to words adjacent to a
sentence boundary (screen and line boundaries were not annotated), and
fixations interrupted by blinks.

Surprisal Estimates. Weobtainthesurprisalestimatesusedinourexperiments
from three different families of language models. First, we consider surprisal
estimates derived from an n-gram model, a simple count-based method
that estimates word probabilities by interpolating over prefix counts up to
a fixed length, estimated from large text corpora. Many prior studies have
reported n-gram effects in human language processing, (e.g., refs. 1, 12,
and 113 inter alia). We compute n-gram surprisal values using a 5-gram
model estimated on the WikiText-103 dataset (114)—a large, popular language
modeling dataset extracted from Wikipedia—with Kneser–Essen–Ney smoothing
(115). Model parameters are estimated using the KenLM (116) library with
default hyperparameter settings.

Second, we consider surprisal estimates from a probabilistic context-free
grammar (PCFG) parser, which conditions its next-word predictions on hypothe-
ses about the syntactic structure of the sentence, rather than on the preceding
word sequence. Although incremental generative parsers generally perform
poorly as language models due to their highly constrained representation of
context, recent work has shown that they perform unexpectedly well as models of
measures of sentence processing (48). Our PCFG (41) is trained on a generalized
categorial grammar reannotation (117) of the Penn Treebank (118).

Third, we consider surprisal estimates from large autoregressive language
models based on the transformer architecture (42), namely GPT-2(-small) (43),
GPT-J (44), and GPT-3 (45). These models generate next-word predictions via
a deep neural network transform of the linguistic context (preceding word
sequence). Recent work has shown strong alignment between autoregressive
transformer representations and measures of human sentence processing, both
behavioral (101) and neural (119). GPT-2 is a 124M parameter model that
has been open-sourced through the Hugging Face library (120). We generate
GPT-2 surprisals using the default Hugging Face implementation of GPT-2 (GPT-
2-small). At the time we conducted this study, GPT-J was among the largest
fully open-source transformer language models, with 6B parameters. Open-
source models are a critical asset to repeatable science since their weights
and training data are available for direct inspection, and the inclusion of
GPT-J therefore allows us to incorporate more recent advances in language
modeling since the release of GPT-2 without compromising replicability. GPT-3
is a large (175B parameter) proprietary commercial language model trained
on proprietary data, and its weights have not been publicly released. At the
time we conducted this study, access to GPT-3 surprisal estimates was only
available through a paid service. Considering GPT-3 surprisal allows us to
explore more recent advances in language modeling, at the expense of full
replicability given the reliance on a proprietary model. In this study, we use
GPT-3-davinci-002.

Before computing the GPT-2 and GPT-J surprisal estimates, text from all
corpora is pre-processed using the Moses decoder (http://www.statmt.org/
moses/) tokenizer and punctuation normalizer. Capitalization is kept intact.
No text preprocessing is used for GPT-3. Note that additional tokenization is
performed internally by the tokenizers associated with each of the neural models
(likewise provided either by the Hugging Face library for GPT-2 and GPT-J and by
the OpenAI API for GPT-3). Because of these tokenization protocols, transformer
language models sometimes predict at the level of subwords. To align surprisal
values from transformers to word tokens, we therefore sum surprisal values
across tokens within each word to generate a word-level value. This procedure

is licensed by the chain rule. Texts were entered to each model in their entirety
when possible (except in the case of the PCFG, which requires sentence-tokenized
text). In cases where text length exceeded the maximum allowed by the model,
we used a sliding window approach guaranteeing at least 200 words of context
per prediction. Code for reproducing our n-gram, GPT-2, and GPT-J estimates is
available at https://github.com/rycolab/revisiting-uid. Code for reproducing the
PCFG and GPT-3 estimates is available at https://osf.io/6wvqe/.

Models also include a number of control predictors described in SI Appendix,
10; see SI Appendix, 11 for detailed model formulae. The preprocessed datasets,
including all control and surprisal predictors, are available at https://osf.io/
6wvqe/.

Analysis.
Continuous-time deconvolutional regression. All analyses use continuous-
time deconvolutional regressive neural networks (CDRNNs; 32, 33); see
SI Appendix, 12 for a formal definition of the regression model. In brief, CDRNNs
convolve the recent history of predictors (word features) in the experiment
with continuous-time filters generated by deep neural networks in order to
parameterize the distribution over the response (e.g., scan path duration) at
a point in time. CDRNNs thus implicitly estimate continuous-time impulse
response functions (IRFs) representing the effect of an impulse (a word)
on the response (comprehension difficulty) at some delay. The properties of
these IRFs can be queried using a combination of perturbation analysis (121)
and Monte Carlo dropout (122), enabling interpretation of a black box deep
neural model. Unlike standard approaches to time series regression like linear
mixed-effects models (LMEs; 123) and generalized additive models (GAMs;
34), CDRNNs simultaneously relax assumptions that the IRF is discrete-time,
linear, and stationary (time-invariant), all within a distributional regression
framework, e.g., ref. 124 that captures stimulus-driven effects on all parameters
of the distribution over the dependent measure, not just its expected value.
Critically, CDRNNs can be constrained to enforce linearity for certain predictors,
permitting statistical evaluation of nonlinearity by comparing the fit of models
that relax or enforce it. Full description of the CDRNN approach can be found
in ref. 33. CDRNN implementation details used in this study are described in
SI Appendix, 13. Code for reproducing all analyses in this study can be found at
https://github.com/coryshain/cdr. See SI Appendix, 14 for evidence that more
commonly used generalized additive models (GAMs) yield similar results to our
own.
Response distribution. Because the distribution of reading times is known
to be heavily right skewed, (e.g., ref. 8), we assume an exGaussian response
distribution, (see e.g., refs. 5 and 125 for evidence that the exGaussian provides
a strong distributional fit to human sentence reading). The exGaussian has three
parameters: location (�), dispersion (�), and skewness (�), where location,
dispersion, and skewness all increase on their respective parameters. The
quantity of interest targeted in this study is the influence of word probability
estimates on the mean of this predictive distribution, where the mean depends
linearly on the location and skewness parameters:

EF(�,�,�)(X) = � + �. [2]

Thus, a linear influence of surprisal on either � or � will yield a linear influence
of surprisal on the mean of the response distribution. See SI Appendix, 15 for
evidence both that assuming an exGaussian response substantially improves
model fit over assuming a normal response and that similar findings to our main
results still obtain when assuming normally distributed reading times.
Baseline models. The main CDRNN models in this study are fully nonlinear on
surprisal and can thus find any functional form (f (SURP)) to a range of control
models. The baseline model contains no predictability effect of any kind and thus
provides a reference for the overall effect of including a predictability measure.
The PROB model is constrained to be linear on probability, rather than surprisal,
as predicted by some theories, e.g., ref. 3. The SURP1/2, SURP3/4, SURP1, SURP4/3,
and SURP2 are constrained to be linear on some power of surprisal (denoted in
superscript) and thus represent a cline of functional forms for the predictability
effect, from sublogarithmic (SURP1/2) to logarithmic (SURP1) to superlogarithmic
(SURP2).
Statistical procedure. Statistical testing within our continuous-time decon-
volutional framework relies on out-of-sample model comparison: Models
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instantiating the null vs. alternative hypotheses are trained on a portion of the
data (training set), and conditional likelihoods from these models over an unseen
portion of the data (test set) are statistically compared in order to determine
whether the model instantiating the alternative hypothesis generalizes better
than the model instantiating the null hypothesis (109). All results reported
in this study are based in ensembles of 10 models, which reduces variability
in effect estimation and predictive performance due to stochastic initialization
and optimization. Following ref. 33, ensembles are compared using paired
permutation tests of out-of-sample conditional likelihood. Full details of the
testing protocol are described in SI Appendix, 13.

Data, Materials, and Software Availability. Previously published data were
used for this work (1, 35–39).
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