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bstract

In this paper, we show how ElectroEncephaloGraphic (EEG) and MagnetoEncephaloGraphic (MEG) data can be analyzed statistically using
onparametric techniques. Nonparametric statistical tests offer complete freedom to the user with respect to the test statistic by means of which
he experimental conditions are compared. This freedom provides a straightforward way to solve the multiple comparisons problem (MCP) and it
llows to incorporate biophysically motivated constraints in the test statistic, which may drastically increase the sensitivity of the statistical test.
he paper is written for two audiences: (1) empirical neuroscientists looking for the most appropriate data analysis method, and (2) methodologists

nterested in the theoretical concepts behind nonparametric statistical tests. For the empirical neuroscientist, a large part of the paper is written in

tutorial-like fashion, enabling neuroscientists to construct their own statistical test, maximizing the sensitivity to the expected effect. And for the
ethodologist, it is explained why the nonparametric test is formally correct. This means that we formulate a null hypothesis (identical probability

istribution in the different experimental conditions) and show that the nonparametric test controls the false alarm rate under this null hypothesis.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

The topic of this paper is the statistical analysis of ElectroEn-
ephaloGraphic (EEG) and MagnetoEncephaloGraphic (MEG)
ata. These data will subsequently be denoted together as
EEG-data. MEEG-data have a spatiotemporal structure: the

ignal is sampled at multiple sensors and multiple time points (as
etermined by the sampling frequency). The data are typically
ollected in different experimental conditions and the experi-
enter wants to know if there is a difference between the data

bserved in these conditions. In most studies, the conditions
iffer with respect to the type of stimulus being presented imme-
iately before or during the registration of the signal. In other

tudies, the conditions differ with respect to the type of response
e.g., correct or incorrect) that was given.

� The methods described in this paper have been implemented in the Matlab
oolbox Fieldtrip, which is available from http://www.ru.nl/fcdonders/fieldtrip.
�� The authors would like to thank Ole Jensen for generously sharing his data.
∗ Corresponding author at: Nijmegen Institute of Cognition and Information

NICI), Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The
etherlands. Tel.: +31 243612651.

E-mail address: maris@nici.ru.nl (E. Maris).
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le comparisons problem

In the statistical analysis of MEEG-data we have to deal with
he multiple comparisons problem (MCP). This problem origi-
ates from the fact that the effect of interest is evaluated at an
xtremely large number of (sensor, time)-pairs. This number is
sually in the order of several thousands. The MCP involves
hat, due to the large number of statistical comparisons (i.e.,
ne per (sensor, time)-pair), it is not possible to control the so-
alled family-wise error rate (FWER) by means of the standard
tatistical procedures that operate at the level of single (sensor,
ime)-pairs. The FWER is the probability under the hypothesis of
o effect of falsely concluding that there is a difference between
he experimental conditions at one or more (sensor, time)-pairs.

solution of the MCP requires a procedure that controls the
WER at some critical alpha-level (typically, 0.05 or 0.01).

In this paper, we discuss nonparametric statistical testing
f MEEG-data. Contrary to the familiar parametric statisti-
al framework, it is straightforward to solve the MCP in the
onparametric framework. Nonparametric tests were first pro-
osed for testing the difference between MEEG-waveforms at
particular sensor (Blair and Karniski, 1993, elaborating on

parametric procedure proposed by Guthrie and Buchwald,

991), then for MEEG-topographies at a particular time point
Achim, 2001; Galán et al., 1997; Karnisky et al., 1994), and
nally also for whole spatiotemporal matrices (Maris, 2004).

http://www.ru.nl/fcdonders/fieldtrip
mailto:maris@nici.ru.nl
dx.doi.org/10.1016/j.jneumeth.2007.03.024
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onparametric tests have also been used very successfully
or frequency domain representations of EEG- and MEG-data
Kaiser and Lutzenberger, 2005; Kaiser et al., 2000, 2003, 2006;
utzenberger et al., 2002). Recently, nonparametric tests were
roposed for distributed inverse solutions obtained by a min-
mum variance beamformer (Chau et al., 2004; Singh et al.,
003) or a minimum norm linear inverse (Pantazis et al., 2005).
inally, nonparametric tests for fMRI-data were proposed by
olmes et al. (1996), Bullmore et al. (1996, 1999), Nichols and
olmes (2002), Raz et al. (2003), and Hayasaka and Nichols

2003, 2004).
The present paper contributes to the literature in several

espects: (1) it explains how the sensitivity of the statistical
est can be drastically improved by incorporating biophysically

otivated constraints in the test statistic, (2) it is written in a
utorial-like fashion, enabling neuroscientists to construct their
wn statistical test, maximizing the sensitivity to the expected
ffect, and (3) it explains why the nonparametric test is formally
orrect, making use of the so-called conditioning rationale, a
oncept that is both rigorous and intuitive. The paper is writ-
en for two audiences: (1) empirical neuroscientists looking for
he most appropriate data analysis method, and (2) methodolo-
ists interested in the theoretical concepts behind nonparametric
tatistical tests. With the empirical neuroscientist in mind, we
ave written Sections 2 and 3 in a tutorial-like fashion, and with
he methodologist in mind, we have written Section 4 that is
ufficiently rigorous.

. Methods

We make use of an example data set that was obtained in
study on the semantic processing of sentences (Jensen et al.,

ubmitted). This study involved a comparison of two experimen-
al conditions that differed with respect to the semantic congruity
f the final word in a sentence with the first part of the sen-
ence. As is the case for most neuroscience studies, the authors
re interested in the difference between experimental conditions
ith respect to the biological data. A central point of the present
aper is that there are many aspects of the biological data that
ay differ between the experimental conditions, and in the fol-

owing we will give some examples. This puts serious demands
n the statistical framework that will be used for the analysis of
hese data, and the nonparametric statistical framework meets
hese demands to a large extent.

For the sake of clarity and simplicity, we will in this section
eliberately ignore three important issues: (1) the exact specifi-
ation of the null hypothesis that is tested by the nonparametric
tatistical test, (2) the proof that this test controls the false alarm
ate, and (3) the issue of how to choose a test statistic. We deal
ith these issues in Section 4.

.1. Example: the magnetic N400
Semantic processing of sentences is often studied by manipu-
ating semantic congruity. Typically, one compares sentences in
hich the last word is semantically congruent with the preceding

entence (e.g., “The climbers finally reached the top of the moun-

l
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t
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ain.”), with sentences in which the last word is semantically
ncongruent (e.g., “The climbers finally reached the top of the
ulip.”). The interest is in the electrophysiological activity that
s observed while the subject processes the last word. EEG stud-
es have convincingly demonstrated that semantic incongruity
roduces a negative going potential deflection with a maximal
mplitude at 400 ms after the onset of the semantically incongru-
nt word. Kutas and Hillyard (1980) termed this the N400 effect.
he N400 effect has been replicated in MEG studies and its pri-
ary sources have been localized in the left superior temporal

ulcus (Simos et al., 1997; Helenius et al., 1998, 2002; Halgren
t al., 2002) and the left prefrontal cortex (Halgren et al., 2002).

Jensen et al. (submitted) conducted an MEG study in which
ubjects listened to sentences that had either semantically
ongruent or semantically incongruent sentence endings. We
btained the data of a single subject that participated in this study.
e want to identify the signature of the differences between

hese two experimental conditions. As will be shown in the
ollowing section, these conditions can differ on several aspects.

We restrict our attention to the data of a single subject. This
oes not reflect current practice in neuroscience, in which typ-
cally multiple subjects are observed in the same experimental
aradigm. However, it serves our purpose of illustrating the main
tatistical concepts by means of a simple example data set. In
ection 5, we show that these statistical concepts also apply to
ulti-subject studies. In that section we will also deal with the

ssue of generalization to a population.

.2. Aspects on which the conditions may differ

The N400 effect refers to an effect at the level of evoked
esponses: the average voltage (for EEG) or magnetic field (for

EG) differs for the two experimental conditions. The evoked
esponses at the different (sensor, time)-pairs can be considered
s different aspects of the biological data with respect to which
he experimental conditions will be compared. In the following,
(sensor, time)-pair will be denoted as a sample.

The statistical analysis is very simple if we know in advance
here (at which sensor) and when an effect may be observed.

n this case, it is sufficient to calculate a single t-value and its
orresponding p-value. The situation is more complicated if the
patiotemporal locus of a possible effect is not known in advance.
n that case, it is not sufficient to calculate multiple t-values, one
or every sample, and their corresponding p-values. In fact, due
o the large number of statistical comparisons (one per sample),
t is not possible to control the FWER by means of the standard
tatistical procedures that operate at the level of single sam-
les (e.g., the t-test). This is the multiple comparisons problem
MCP). A solution of the MCP requires a procedure that controls
he FWER at some critical alpha-level. In the following, when-
ver we use the term false alarm (FA) rate in the context of a
tatistical comparison at multiple samples, we mean the FWER.
he point to remember is the following: if the spatiotemporal
ocus of the effect is not known in advance, we need a specialized
tatistical procedure that takes our prior ignorance into account.

Modulation of evoked responses is just one neural index
hat informs us about the brain mechanisms that underly lan-
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uage processing. Another index is the modulation of oscillatory
rain activity. Oscillatory brain activity is measured by power
stimates obtained from Fourier or wavelet analyses of the
ingle-trial spatiotemporal data. Very often, power estimates are
alculated for multiple data segments obtained by sliding a short
ime window over the complete data segment. In this way, spatio-
pectral–temporal data are obtained from the raw spatiotemporal
ata. The spectral dimension consists of the different frequency
ins for which the power is calculated.

Just as the spatiotemporal evoked responses, the spatio-
pectral–temporal oscillatory power estimates require a
pecialized statistical procedure that takes prior ignorance about
he locus of the effect into account (ignorance with respect to
he spatial, temporal, and spectral dimension). As will be shown
n the following, this can be realized by means of the same
ype of nonparametric statistical test as for the spatiotemporal
voked responses. Besides the spatiotemporal evoked responses
nd the spatio-spectral–temporal oscillatory power estimates,
any other types of data can be compared statistically using a

onparametric statistical test. For instance, it is straightforward
o construct a nonparametric statistical test for the difference
etween conditions with respect to between-sensor coherence,
hich is a spatio-spatio-spectral data structure (between-sensor
easures that are frequency-specific).

.3. The nonparametric statistical test

The nonparametric statistical test is performed in the follow-
ng way:

1) Collect the trials of the two experimental conditions in a
single set.

2) Randomly draw as many trials from this combined data set
as there were trials in condition 1 and place those trials into
subset 1. Place the remaining trials in subset 2. The result
of this procedure is called a random partition.

3) Calculate the test statistic on this random partition.
4) Repeat steps 2 and 3 a large number of times and construct

a histogram of the test statistics.
5) From the test statistic that was actually observed and the

histogram in step 4, calculate the proportion of random par-
titions that resulted in a larger test statistic than the observed
one. This proportion is called the p-value.

6) If the p-value is smaller than the critical alpha-level
(typically, 0.05), then conclude that the data in the two
experimental conditions are significantly different.

This six-step procedure results in a valid statistical test: under
ome well-specified null hypothesis (see Section 4), the prob-
bility of falsely rejecting this null hypothesis is equal to the
ritical alpha-level.

When based on an infinite number of random partitions,
he histogram constructed in step 4 is called the permutation

istribution. The corresponding p-value is often called the per-
utation p-value and the associated statistical test is called a

ermutation test. Besides the permutation test, there is another
onparametric test, which is called the randomization test. The

i

t
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ermutation and the randomization test have a different ratio-
ale (Ernst, 2004), but in practice they often involve the same
alculations. For MEEG-data, it is not necessary to make a dis-
inction between these two types of statistical tests. Therefore,
e restrict ourselves to the permutation test.
In practice, it is not possible to calculate the permutation

-value by repeating steps 2 and 3 an infinite number of times.
nstead, this p-value is approximated by a so-called Monte Carlo
stimate. This Monte Carlo estimate is obtained by repeating
teps 2 and 3 a large number of times and comparing these ran-
om test statistics (i.e., draws from the permutation distribution)
ith the observed test statistic. The Monte Carlo estimate of the
ermutation p-value is the proportion of random partitions in
hich the observed test statistic is larger than the value drawn

rom the permutation distribution. The accuracy of the Monte
arlo p-value increases with the number of draws from the per-
utation distribution. Because the Monte Carlo p-value has a

inomial distribution, its accuracy can be quantified by means
f the well-known confidence interval for a binomial proportion
Ernst, 2004). By increasing the number of draws from the per-
utation distribution, the width of this confidence interval can

e made arbitrarily small. To simplify the presentation of the
esults, in all our example analyses, the Monte Carlo p-values
ere calculated on 1000 random partitions.
As compared to parametric statistical tests, the nonparametric

tatistical test is extremely general. This is because the validity of
he nonparametric test does not depend on the probability distri-
ution of the data (i.e., whether it has a normal or some other dis-
ribution), nor on the test statistic on which the statistical infer-
nce is based (i.e., whether it is a t-, an F-, or some other statistic).
he freedom to choose any test statistic one considers appropri-
te has important advantages, and these will be illustrated and
iscussed in Sections 3 and 4 The two important advantages are
he following: (1) it provides a simple way to solve the MCP,
nd (2) it allows us to incorporate prior knowledge about the
ype of effect that can be expected. This prior knowledge may
rastically increase the sensitivity of the statistical test.

. Results

.1. Evoked responses

.1.1. Single-sensor analyses
For well-studied experimental paradigms, one often knows at

hich sensor the strongest effect can be observed. For instance,
revious EEG-studies in which semantic congruity was manipu-
ated (for a review, see Kutas and Federmeier, 2000) have shown
he maximum effect over parietal cortex near the midline (Pz and
he surrounding electrodes). And previous MEG-studies (Simos
t al., 1997; Helenius et al., 1998, 2002; Halgren et al., 2002)
ave shown a dipolar pattern over left temporal and left frontal
ortex. In panel a of Fig. 1, we show the evoked responses at a
ensor over left temporal cortex, separately for congruent and

ncongruent sentence endings.

Inspection of Fig. 1 reveals a raw effect of semantic congruity
hat is most prominent in the time interval between 400 and
00 ms (see Fig. 1, panel a). We need a statistical test to decide
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Fig. 1. Statistical testing of evoked responses at a single sensor. In panel a, the
evoked responses are shown, separately for congruent (dotted line) and incongru-
ent (solid line) sentence endings. In panel b, the time series of sample-specific
t-values is shown. And in panel c, the significant samples are shown, sepa-
rately for each of three statistical procedures: (1) sample-specific t-tests at the
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ncorrected 0.05-level (two-sided), (2) sample-specific t-tests at the Bonferroni-
orrected level of 0.05/600 = 0.00008 (two-sided), and (3) the cluster-based
onparametric test.

hether this raw effect is larger than can be expected on the
asis of chance alone. Because the raw effect is observed at mul-
iple time samples, an obvious first step is to calculate multiple
ample-specific t-values (see Fig. 1, panel b). On the first line of
anel c in Fig. 1, we show the time samples for which the sample-
pecific t-values exceed the critical value that corresponds to an
lpha-level of 0.05. Equivalently, we could have calculated the
ample-specific p-values and compared them with this critical
lpha-level; in doing so, we detect the so-called significant p-
alues. Unfortunately, the FA rate of this procedure is larger than
he critical alpha-level: under the null hypothesis, the probability
f observing one or more significant p-values is larger than the
ritical alpha-level.1 In fact, the larger the number of time sam-

les, the more this probability approaches one. This is the MCP.

One way to solve the MCP is by lowering the critical alpha-
evel. Using the so-called Bonferroni inequality, it can be shown

1 To determine how much the FA rate exceeds the critical alpha-level, one
as to know the statistical dependence between the p-values, which is typically
nknown.
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hat a critical alpha-level of 0.05/C (C is the number of time
amples, which is 600 in our example data set) results in a
A rate that is less than 0.05. On the second line of panel c in
ig. 1, we show the time samples for which the sample-specific
-values exceed the Bonferrroni-corrected critical alpha-level.
his approach is very conservative if the number of samples

s large. We will illustrate this when we present the results of
ulti-sensor analyses.
We now consider the nonparametric statistical test. For this

est, we use a test statistic that is based on clustering of adjacent
ime-samples that all exhibit a similar difference (in sign and

agnitude). This test statistic was introduced by Bullmore et al.
1999) for the statistical analysis of structural MRI-data. In the
MRI-literature, it is called the cluster mass test. The calculation
f this test statistic involves the following steps:

1) For every sample, compare the MEG-signal on the two types
of trials (semantically congruent versus semantically incon-
gruent sentence endings) by means of a t-value (or some
other number that quantifies the effect at this sample).

2) Select all samples whose t-value is larger than some thresh-
old. (This threshold may or may not be based on the
sampling distribution of the t-value under the null hypothe-
sis, but this does not affect the validity of the nonparametric
test; see further.)

3) Cluster the selected samples in connected sets on the basis
of temporal adjacency.

4) Calculate cluster-level statistics by taking the sum of the
t-values within a cluster.

5) Take the largest of the cluster-level statistics. (For our exam-
ple data, the largest cluster-level statistic is indicated by the
grey part in panel b of Fig. 1.)

The result from step 5 is the test statistic by means of which we
valuate the effect of semantic congruity. This is a test statistic
or a one-sided test; for a two-sided test, we select test statistics
hose absolute value is larger than some threshold (in step 2)

nd we take the cluster-level statistic that is largest in absolute
alue (in step 4). Also, for a two-sided test, the clustering in
tep 3 is performed separately for samples with a positive and a
egative t-value.

The cluster-based test statistic depends on the threshold that is
sed to select samples for clustering. In our example, this thresh-
ld was the 97.5th quantile of a T-distribution, which is used
s a critical value in a parametric two-sided t-test at alpha-level
.05. As will be shown later in Section 4, this threshold does not
ffect the FA rate of the statistical test. However, this threshold
oes affect the sensitivity of the test. For example, weak but
ong-lasting effects are not detected when the threshold is
arge.

The nonparametric statistical test is performed by calculating
p-value under the permutation distribution and comparing it
ith some critical alpha-level. The permutation distribution is

btained by the procedure described in Section 2.3: (1) collect
he trials of the two experimental conditions in a single set, (2)
andomly partition the trials in two subsets, (3) calculate the
est statistic on this random partition, and (4) repeat steps 2 and
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a large number of times and construct a histogram of the test
tatistics.

In the example data, there are eight clusters of time samples.
hese clusters are shown on the first line of panel c in Fig. 1.
he first two of these clusters contain positive t-values and

he others contain negative t-values. Using the cluster-based
ermutation test, only the largest positive cluster had a Monte
arlo p-value less than 0.025 (the critical alpha-level for a

wo-sided test). In fact, its Monte Carlo p-value was zero; none
f the 1000 random partitions resulted in a cluster-level statistic
hat is larger in absolute value. This cluster is shown on the
hird line of panel c in Fig. 1.

It is important to note that the p-values for all eight clusters
re calculated under the permutation distribution of the maxi-
um (absolute value) cluster-level statistic and not under the

ermutation distribution of the second largest, third largest, etc.
he choice for the maximum cluster-level statistic (and not the
econd largest, third largest, etc.) results in a statistical test that
ontrols the FA rate for all clusters (from largest to smallest), but
oes so at the expense of a reduced sensitivity for the smaller
lusters (reduced in comparison with a statistical test that is spe-
ific for the second, third, . . ., largest cluster-level statistic). We
eturn to this point in Section 4.4

.1.2. Multi-sensor analyses
Very often, one does not know at which sensors the effect can

e observed. As compared to single-sensor analyses, our prior
gnorance is much larger: instead of multiple time samples, we
ow have a much larger number of (sensor, time)-pairs (also
alled samples) at which we want to evaluate the effect. Again, it
s an obvious step to calculate multiple sample-specific t-values
n order to evaluate the reliability of the effect. However, as com-
ared to the single-sensor analyses, the MCP is much larger here:
e have 151 MEG sensors and 600 time samples, which results

n 90,600 t-values. With this extremely large number of samples,
onferroni correction results in a very conservative statistical
est. In fact, in our example data, none of the sample-specific
-values exceeded the critical two-sided Bonferroni-corrected
lpha-level of 0.025/90, 600 = 0.0000003. In contrast, the
luster-based permutation test turned out to be very sensitive.

3

t

ig. 2. (a) Temporal evolution of the topography of the raw effect (the difference be
enotes a positive and blue denotes a negative raw effect. The topography is shown f
ame topography as in the top row, but now masked by the spatiotemporal pattern of

o the two significant clusters are colored; all the other samples are transparent. The a
ffect. (For interpretation of the references to colour in this figure legend, the reader i
roscience Methods 164 (2007) 177–190 181

The cluster-based permutation test for multi-sensor analyses
s very similar to the one for single-sensor analyses. In fact, the
alculation of the test statistic differs in a single aspect only:
nstead of clustering the selected time samples in connected
ets on the basis of temporal adjacency, we now cluster the
elected (sensor, time)-samples on the basis of spatial and tem-
oral adjacency. (In the example study, we considered sensors
o be neighbors if their distance is less than 4 cm.) We found
2 clusters of (sensor, time)-samples, 11 positive and 21 nega-
ive. Only two of these clusters have a Monte Carlo p-value less
han 0.025, one positive and one negative. The combined (posi-
ive and negative) significant cluster extends over a time interval
etween 244 and 1630 ms after the onset of the last word.

In the top row of Fig. 2(a), we show the temporal evolution in
he topography of the raw effect (i.e., the difference between the
verage MEG in the congruent and incongruent condition) over
he time interval between 100 and 1300 ms. In the bottom row
f Fig. 2(b), we show the same topography but now masked by
he spatiotemporal pattern of the two significant clusters. This
opography is consistent with the findings of previous studies
hat localized the primary source of the magnetic N400 effect in
he left superior temporal sulcus (Simos et al., 1997; Helenius
t al., 1998, 2002; Halgren et al., 2002) and the left prefrontal
ortex (Halgren et al., 2002). By means of an arrow, we have indi-
ated the approximate location of an equivalent current dipole
hat can explain the magnetic N400 effect.

.2. Modulation of oscillatory activity

Just as the spatiotemporal evoked responses, the spatio-
pectral–temporal oscillatory power estimates require a
pecialized statistical procedure that takes prior ignorance about
he locus of the effect into account (ignorance with respect to the
patial, temporal, and spectral dimension). This can be realized
y means of the same type of nonparametric statistical test as
or the spatiotemporal evoked responses.
.2.1. Single-sensor analyses
We used the multitaper method (Percival and Walden, 1993)

o calculate time–frequency representations (TFRs) for our

tween the average MEG in the congruent and the incongruent condition). Red
or segments of 200 ms; within every segment, the raw effect was averaged. (b)
the two significant clusters. Masking involves that only the samples that belong
rrow denotes the approximate location of a dipole that may have generated the
s referred to the web version of the article.)
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Fig. 3. The difference between the time–frequency representations (TFRs) for
congruent and incongruent sentence endings, for a single sensor over left tempo-
ral cortex. (a) Simple difference between the two TFRs. (b) Difference between
the two TFRs, masked by the spectral–temporal pattern of the significant sample-
specific t-values (uncorrected). (c) Difference between the two TFRs, masked
by the spectral–temporal pattern of the significant cluster. Red denotes a positive
and blue denotes a negative raw effect. The TFRs are shown for the frequency
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ange [5 Hz, 80 Hz] and the time interval [0 s, 1.5 s]. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version
f the article.)

xample data. In Fig. 3, we show three ways of presenting
he difference between the TFRs for congruent and incongru-
nt sentence endings, for a single sensor over left temporal
ortex. The upper panel (a) shows the raw effect, the sim-
le difference between the two TFRs. Over the time interval
rom 0.6 to 1 s, brain responses to congruent sentence endings
xhibit a stronger power in the lower beta band (from 10 to
0 Hz) than brain responses to incongruent sentence endings.
o evaluate the reliability of this effect, we performed multiple
ample-specific t-tests. The middle panel of Fig. 3(b) shows the
FR-difference masked by the spectral–temporal pattern of the
ignificant sample-specific t-values (at the uncorrected alpha-
evel 0.05, two-sided). To solve the MCP, we applied Bonferroni
orrection. It turned out that none of (frequency, time)-specific
-values exceeds the Bonferroni corrected alpha-level. In con-
rast, the cluster-based permutation test turned out to be very
ensitive.

The cluster-based permutation test for single-channel TFRs
s very similar to the one for multi-sensor evoked responses. In
act, the calculation of the test statistic differs in a single aspect

nly: instead of clustering selected (sensor, time)-samples in
onnected sets on the basis of spatial and temporal adjacency,
e now cluster the selected (frequency, time)-samples on the
asis of spectral and temporal adjacency. In the example data,

t
(
e
H
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here are 75 clusters of (frequency, time)-samples, 42 positive
nd 33 negative. Only the largest positive cluster has a Monte
arlo p-value that is less than 0.025. The raw TFR-difference
as masked by this spectral–temporal cluster and the resulting
attern is shown in the bottom panel of Fig. 3. This pattern is
ery similar to the one in the middle panel. Thus, we draw almost
he same conclusion as on the basis of the middle panel, but do
ot suffer from the MCP.

.2.2. Multi-sensor analyses
In multi-sensor analyses, we evaluate the effect at a much

arger number of samples than in single-sensor analyses: instead
f multiple (frequency, time)-samples, we now have a much
arger number of (sensor, frequency, time)-samples. The cluster-
ased permutation test for multi-sensor analyses is very similar
o the one for single-sensor analyses. In fact, the calculation of
he test statistic differs in a single aspect only: instead of clus-
ering the selected (frequency, time)-samples in connected sets
n the basis of spectral and temporal adjacency, we now cluster
he selected (sensor, frequency, time)-samples on the basis of
patial, spectral, and temporal adjacency.

In the example data, there are 519 clusters of (sensor, fre-
uency, time)-samples, 309 positive and 210 negative. Only the
argest positive cluster has a Monte Carlo p-value that is less
han 0.025. The vast majority of the (sensor, frequency, time)-
riplets in this cluster are in the beta band ([15 Hz, 30 Hz]). In
he top row of Fig. 4(a), we show the temporal evolution in
he topography of the raw effect for overlapping segments of
00 ms. This raw effect is the difference between the TFRs for
he congruent and the incongruent condition, averaged over the
requencies in the beta band. In the bottom row of Fig. 4(b), we
how the same topography but now masked by the significant
luster: the difference between the two TFRs was masked by
he spatio-spectral–temporal pattern of the significant cluster,
nd this structure was subsequently converted into a spatiotem-
oral structure by averaging over the frequencies in the beta
and. Two aspects of this topography should be mentioned: (1)
ver time, the location of the effect changes from the right to the
eft hemisphere, and (2) in the time interval [500 ms, 1500 ms],
he effect is largest over the area that also shows an effect with
espect to the evoked responses (see Fig. 2).

. Justification

Until now, we have deliberately ignored three important
ssues: (1) the exact specification of the null hypothesis that
s tested by the nonparametric statistical test, (2) the proof that
his test controls the FA rate, and (3) the issue of how to choose a
est statistic. The theory of nonparametric statistical tests is not
ell documented and not very accessible. Surprisingly, the cen-

ral argument in this theory (the so-called conditioning rationale,
ee further) is rather intuitive and can easily be made accessible
o the neuroscience community. This argument can be found in

he introductory chapter of a recent book on permutation tests
Pesarin, 2001), but it also appears in the context of parameter
stimation for models of achievement test data (Maris, 1998).
owever, it is not clear who deserves the credit for this argument.
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Fig. 4. (a) Temporal evolution of the topography of the raw effect (the difference between the TFRs for the congruent and the incongruent condition, averaged over
the frequencies in the beta band [15 Hz, 30 Hz]). Red denotes a positive and blue denotes a negative raw effect. The topography is shown for overlapping segments of
400 ms. These segments are overlapping because the power spectra were calculated on overlapping time-windows. (b) Same topography as in the top row, but now
m maski
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asked by the spatio-spectral–temporal pattern of the significant cluster. After
tructure by averaging over the frequencies in the beta band. (For interpretatio
ersion of the article.)

o make the argument accessible to the neuroscience commu-
ity, we need some definitions, and these are introduced now. To
eep this paper self-contained, there will be some overlap with
aris et al. (2007) in the remaining of this section.

.1. The structure in the data

In this section, we only consider single-subject MEEG-
tudies. Multiple-subject studies will be considered in section
. In single-subject MEEG-studies, the units of observation
re trials that belong to different experimental conditions and
he research question is about the effect of these experimen-
al conditions on the MEEG. The trails can be assigned to
he experimental conditions according to two schemes: (1) the
etween-trials design, in which every trial is assigned to one
f a number of experimental conditions, or (2) the within-trials
esign, in which every trial is assigned to all experimental con-
itions in a particular order. The between-trials design is by far
he most common in practice. In fact, there is only one type of
ithin-trials study that is performed regularly: the within-trials

ctivation-versus-baseline study. This type of study involves
ultiple trials that consist of a baseline (the interval preceding

he stimulus) and an activation condition (the interval following
he stimulus), which have to be compared. In this section, we
nly consider the between-trials design. Nonparametric statisti-
al testing for single-subject within-trials studies proceeds along
he same lines as for multiple-subject within-subjects studies.

e will briefly return to this point in section 5.
To describe the structure in the data, we make the usual dis-

inction between a dependent and an independent variable. In
EEG-studies, the dependent variable is the recorded EEG or
EG. This variable is denoted by D, and it is assumed to be a

andom variable. This means that we consider D as a variable
hose value is the result of a random process. The value of D that

as actually observed in the experiment (the realization of D) is
enoted by d. In a between-trials MEEG-study, the dependent
ariable D is an array of n smaller component data structures
r (r = 1, . . . , n), each one corresponding to one trial: every

s
d
t

ng, the spatio-spectral–temporal structure was converted into a spatiotemporal
he references to colour in this figure legend, the reader is referred to the web

omponent Dr is a spatiotemporal data matrix observed in a
iven trial.

The independent variable specifies the different experimental
onditions. In the example, there are two experimental con-
itions: semantically congruent and semantically incongruent
entence endings. In general, the experimental conditions can
iffer with respect to a number of factors: stimulus type, task
ype, response type, characteristics of the data in an epoch
rior to the dependent variable, etc. The independent variable
s denoted by I. In a between-trials study, I is an array of n
maller components Ir (r = 1, . . . , n), each one corresponding
o one trial: every component Ir denotes the condition to which
he trial belongs. For instance, Ir equals 1 if the trial belongs to
he semantically congruent condition and 2 if it belongs to the
emantically incongruent condition. The independent variable I
an be both random and fixed, but at this point it is not necessary
o make this distinction. Later, we will return to this issue.

.2. The null hypothesis

.2.1. Formulation
The null hypothesis of a permutation test involves the proba-

ility distributions of the trial-specific data structures Dr. These
robability distributions are denoted by f (Dr = dr), and abbre-
iated by f (Dr). These probability distributions do not have to
e of a familiar type (e.g., normal, binomial, Poisson). Instead,
e only need the assumption that there is some rule f that assigns
robabilities f (Dr = dr) to all possible realizations dr; we do
ot have to know what this rule is. Now, the null hypothesis of
permutation test involves that all n probability distributions
(Dr) (r = 1, . . . , n) are equal:

(D1) = f (D2) = · · · = f (Dn). (1)
In other words, the null hypothesis involves that all trial-
pecific data structures Dr are drawn from the same probability
istribution, regardless of the experimental condition in which
hey were observed (Ir = 1 or Ir = 2).
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The same null hypothesis is also tested using the familiar
arametric statistical tests (i.e., the t-, the F-test, and their mul-
ivariate generalizations). This may sound unfamiliar, because
n statistics handbooks the parametric null hypothesis is for-

ulated as equality of the two conditions with respect to some
arameter of the probability distribution (typically, the expected
alue, but also the variance, the covariance, etc.). However, the
amiliar parametric statistical tests also make auxiliary assump-
ions about the probability distributions in the two conditions
i.e., normality and equal variances), and together with the null
ypothesis of interest (equality with respect to some parame-
er of interest) this implies equality of the complete probability
istributions.

.2.2. Strong and weak control of the FA rate
It is important to keep in mind that the data structures Dr are

patiotemporal. This implies that, under the null hypothesis in
q. (1), the probability distribution of the MEEG is identical for
ll (sensor, time)-pairs. If this null hypothesis is rejected, one
oncludes that the probability distribution of the MEEG is mod-
lated by the experimental conditions for at least some (sensor,
ime)-pairs. With respect to the localization of this effect, it is
ot possible to control the FA rate at the level of a single (sensor,
ime)-pair. This issue was introduced in the fMRI-literature by
olmes (1994) (see also, Friston et al., 1996). In the fMRI-

iterature, the MCP involves inference at a large number of
oxels in a three-dimensional volume. In this context, it makes
ense to distinguish between weak and strong control of the FA
ate. The null hypothesis behind weak control of the FA rate
s equivalent to the one in Eq. (1): no difference between the
xperimental conditions for none of the voxels. We will call this
he global null hypothesis. The null hypothesis behind strong
ontrol of the FA rate is voxel-specific: no difference between
he experimental conditions for a given voxel but unknown dif-
erences for the other voxels. If it is possible to control for all
oxels the probability of incorrectly rejecting this voxel-specific
ull hypothesis, then we have strong control of the FA rate. With
trong control of the FA rate, we can quantify the uncertainty in
he localization of the effect. The price that has to be paid for this
tronger control, is a reduced sensitivity for detecting violations
f the global null hypothesis.

In contrast to fMRI-data, for MEEG-data it does not make
ense to distinguish between a global and a sample-specific null
ypothesis. This is because the spatial correlation between MR-
ignals is much weaker than between MEEG-signals. In fact,
he MR-technology makes use of spatial magnetic field gradi-
nts that allow the BOLD-response at a particular voxel to be
easured with high spatial specificity. In contrast, the MEEG at
particular sensor is produced by physiological sources (usu-

lly characterized mathematically as current dipoles) that also
ffect the MEEG at the other sensors. As a consequence, if
he experimental conditions differ with respect to the physi-
logical sources that produce the MEEG, then this effect is

resent at all sensors (however, with a different magnitude at
ifferent sensors). This has an important implication: if a sensor-
pecific null hypothesis is false for one sensor, then it is also
alse for the other sensors. For this reason, it does not make

t
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ense to distinguish between a global and a sensor-specific null
ypothesis.

For the temporal dimension in the MEEG-data, the argument
gainst sample-specific null hypotheses (a sample is a (sensor,
ime)-pair) is a bit different. Although the temporal resolution
f the MEEG is excellent, it very often does not make sense to
est null hypotheses at the level of individual time points (also
alled time samples). This is because the duration of most effects
nvolves several tens and often several hundreds of time points. If
e want strong control of the FA rate, we have to test time-point-

pecific null hypotheses. Given the duration of most effects,
his would result in a strongly reduced sensitivity for detecting
iolations of the global null hypothesis. In the following, we will
estrict ourselves to this global null hypothesis and the associated
eak control of the FA rate.

.2.3. Exchangeability
Very often, researchers are willing to make the assumption of

tatistical independence between the trials. In fact, this assump-
ion is always made if one uses parametric statistical tests in
etween-trials studies. The assumption of statistical indepen-
ence will be violated if the MEEG-data in one trial depend on
he MEEG-data in another trial. A biologically plausible form
f statistical dependence is temporal autocorrelation: correlation
etween the MEEG-data in neighboring trials. To avoid temporal
utocorrelation, it is good practice to have the trials separated by
ome minimum time interval (determined by the lag of the tem-
oral autocorrelation). In this paper, as in parametric statistics,
e make the assumption of statistical independence between the

rials. We need this assumption to show that the permutation test
s a valid test of the null hypothesis of identical distributions in
q. (1).

From the null hypothesis of identical distributions together
ith the assumption of statistical independence, it follows that

he probability distribution of the dependent variable D, f (D) =
(D1, D2, . . . , Dn), is exchangeable. Exchangeability means

hat the probability of D is invariant under permutation of the
omponent data structures Dr. Exchangeability is a useful con-
ept because it allows us to show the validity of the permutation
est in a straightforward way. In the following, we will present
he permutation test as a statistical test of exchangeability, and
ot as a statistical test of the null hypothesis of identical distri-
utions. However, this is just a matter of presentation: under the
ssumption of statistical independence, the null hypothesis of
dentical distributions and exchangeability are equivalent.

.3. The permutation test

In principle (but not in practice), one could test the hypothesis
f exchangeability by constructing the probability distribution
f some test statistic under this hypothesis, and by evaluating the
ctually observed test statistic under this distribution. However,
t turns out to be much easier to construct a particular condi-

ional probability distribution of the test statistic (also under
he hypothesis of exchangeability). This conditional probabil-
ty distribution is the permutation distribution and the resulting
tatistical test is the permutation test. As will be shown in the
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unconditionally

At first sight, controlling the FA rate in this conditional sense
(i.e., conditional on {D} = {d}) is not very appealing. After all,
who is interested in the conditional FA rate of a statistical test

Fig. 5. Schematic representation of the permutation test. We use a box to denote
the random variable D|{D} = {d}. The observed realization of D (i.e., d) is
printed black, and the draws from f (D|{D} = {d}) that are used to construct
the permutation distribution of the test statistic (i.e., d̂1, d̂2, d̂3, etc.) are printed
grey. The observed test statistic is denoted by S(d, I), and the draws from the
permutation distribution by S(d̂1, I), S(d̂2, I), S(d̂3, I), etc. The permutation
E. Maris, R. Oostenveld / Journal o

ollowing, using a conditional instead of the unconditional prob-
bility distribution results in exactly the same FA rate. Before
ntroducing the permutation distribution, we first describe a pro-
edure that effectively draws from it.

.3.1. Drawing from the permutation distribution
Drawing from the permutation distribution involves ran-

omly permuting the components of d, the realization of the
andom dependent variable D. For instance, in a study with four
rials, d has the following structure: (d1, d2, d3, d4). In a permu-
ation test, the data matrices in d are randomly permuted in such
way that every permutation of d has the same probability. With

our trials, there are 4! = 24 different permutations, and they all
ave a probability of 1/24.

Very often, it is sufficient to perform random partitions
nstead of random permutations. This is the case for all test
tatistics for which the order of the trial-specific data matrices
ithin the conditions is irrelevant. For instance, the cluster-
ased test statistic that was used in the example analyses (i.e.,
he maximum over the clusters of the cluster-level statistics)
s of this type. To show this, assume that the first two trials
elong to the semantically congruent condition, and the last
wo belong to the semantically incongruent condition. Now, the
luster-based test statistic is identical for the following four per-
utations: (d1, d3, d2, d4), (d3, d1, d2, d4), (d1, d3, d4, d2), and

d3, d1, d4, d2). This is because the sample-specific t-values for
he trial pairs (d1, d3) and (d2, d4) do not depend on the order
f the trials within the pairs, and therefore the same holds for
he cluster-level statistics (sums of sample-specific t-values) and
heir maximum. As a consequence, the permutation distribution
f the test statistic is identical to the so-called partitioning dis-
ribution, which is obtained by randomly partitioning the trials
nto two sets. The number of different partitions is equal to the
o-called multinomial coefficient, which depends on the num-
er of trials in each of the two conditions. In the mini-example
bove, there are two trials in every condition, and the multino-
ial coefficient is equal to (4!/(2!2!)) = 6. In the following, we
ill not make a distinction between the permutation and the par-

itioning distribution; one should remember that the permutation
nd the partitioning distribution are identical if the test statistic
s independent of the order of the trials within the conditions.

.3.2. The permutation p-value is a conditional p-value
The permutation p-value is the p-value that is obtained in a

ermutation test. The permutation p-value is a conditional p-
alue because it is calculated under a conditional distribution.
o show this, let f (D) be the unknown probability distribution
f the dependent variable D. Exchangeability involves that f (D)
s invariant under permutation of the trial-specific data matrices

r. Now, the permutation distribution is the conditional distri-
ution of D given the unordered set of trial-specific data matrices
r = dr. This unordered set is denoted by {D} = {d}. In a study
ith four trials, d = (d1, d2, d3, d4), the unordered set {d} is the
ollection of all permutations of (d1, d2, d3, d4): (d1, d2, d3, d4),
d1, d2, d4, d3), (d1, d4, d3, d2), plus 21 more. The conditional
istribution of D given the unordered set {D} = {d} is denoted
y f (D|{D} = {d}). Now, if the unknown distribution f (D) is
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xchangeable, then the conditional distribution f (D|{D} = {d})
s the permutation distribution, which is known. In other words,
f f (D) is exchangeable, then the draws from f (D|{D} = {d})
re permutations of the observed array d, and each of these
ermutations has the same probability.

The previous paragraph was about a conditional probability
istribution of the dependent variable D. However, in statistical
esting, we are not interested in the complete D, but in some test
tatistic, which is a function of D and I, the independent variable.
his test statistic is random and it is denoted by S(D, I). The test
tatistic that was actually observed in the experiment (the real-
zation of S(D, I)) is denoted by S(d, I). Now, because we can
raw from the conditional distribution f (D|{D} = {d}), we can
alculate f (S(D, I)|{D} = {d}), the conditional distribution of
(D, I) given {D} = {d}. In Section 2, we have described how
(S(D, I)|{D} = {d}) can be approximated by randomly parti-

ioning the trials and constructing a histogram of the test statistics
(D, I). The Monte Carlo p-value is calculated under this his-

ogram, and therefore it is a conditional p-value. In Fig. 5, we
ive a schematic representation of the permutation test in which
e refer to the fact that, under exchangeability, f (D|{D} = {d})

s the permutation distribution.
The permutation test is based on a p-value that is calculated

nder the conditional distribution f (S(D, I)|{D} = {d}). There-
ore, the permutation test controls the FA rate in the following
onditional sense: given the unordered set {D} = {d}, under
xchangeability, the probability of observing a p-value that is
ess than the critical alpha-level is exactly equal to the critical
lpha-level.

.3.3. The permutation test controls the false alarm rate
istribution of the test statistic is shown as an histogram, and the p-value is
enoted by the black tail-area under the permutation distribution. In the lower-
eft corner, we show possible values for d, d̂1, d̂2, and d̂3, which are all permuted
ersions of the same set of lowercase letters. Each lowercase letter represents
he data that was observed in a single trial.
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iven an event that occurs so rarely ({D} = {d}, the data that
ere observed in this experiment, but regardless of the trial
rder)? However, what matters is not this rare event, but the
roperties of a decision that is made on the basis of this p-value.
he decision is about exchangeability of the probability distri-
ution of D: if the permutation p-value is less than some critical
lpha-level, this hypothesis is rejected; otherwise, it is main-
ained. The FA rate is a property of this decision rule. Now, the
A rate is equal to the critical alpha-level, regardless of whether
he p-value has a conditional or an unconditional interpretation.
his is because, for each of the events {D} = {d} on which we
ondition, the FA rate is equal to the same critical alpha-level.
herefore, if we average over the probability distribution of {D},

he FA rate remains equal to this critical alpha-level.
This can also be shown in a short derivation. In this derivation,

he FA rate under the conditional distribution f (D|{D} = {d}) is
enoted by P(Reject H0|{D} = {d}, H0) and the FA rate under
he distribution f (D) by P(Reject H0|H0). We also use

∑
{d} to

enote the sum over all realizations of {D} and α to denote the
ritical alpha-level:

P(Reject H0|H0)

=
∑

{d}
P(Reject H0|{D} = {d}, H0)f ({D} = {d})

=
∑

{d}
αf ({D} = {d}) = α

n the first line of this derivation, we make use of the fol-
owing equality from elementary probability theory: P(A) =

bP(A|B = b)P(B = b). And in the third line, we make use
f the fact that the probabilities f ({D} = {d}) sum to 1.

We can conclude that an FA rate that is controlled under
he conditional distribution f (D|{D} = {d}) is also controlled
nder the corresponding unconditional distribution f (D). This
onclusion is a special case of the following general fact: for
very event (in our case, falsely rejecting the null hypothesis)
hose probability is controlled under a conditional distribu-

ion, also the probability under the corresponding unconditional
istribution is controlled. This general fact will be called the
onditioning rationale. Note that the conditioning rationale is
sed to prove the unconditional control of the FA or type 1 error
ate, and not the unconditional control of the type 2 error rate
i.e., the probability that null hypothesis is maintained while in
act the alternative hypothesis is true). This is similar to classi-
al parametric statistics, in which only the type 1 error rate is
ontrolled.

.3.4. The permutation test for a random independent
ariable

Until now we have not made a distinction between random
nd fixed independent variables. For an empirical neuroscien-
ist who only wants to apply permutation tests there is no need

o make this distinction, because the calculations are identical
or both types of independent variables. However, a methodolo-
ist may be interested in the rationale behind this fact. We now
escribe the difference between random and fixed independent
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ariables. An independent variable I is random if a replication of
he experiment may show a different value of I with some proba-
ility (possibly unknown). This can happen in two ways: (1) the
xperimenter assigns the trials to the experimental conditions
y means of a randomization mechanism (which usually calls
random number generator), and (2) the independent variable
epends on the subject’s behavioral response (e.g., accuracy,
peed). When I is a random variable, we have to make a dis-
inction between the random variable itself and its realization,
.e. the value that was actually observed. The realization of I is
enoted by i.

An independent variable I is fixed if a replication of the exper-
ment always shows the same value of I. This is the case if the
xperimenter assigns the trials to the experimental conditions
ccording to a fixed scheme (e.g., a fixed pattern that is repeated
very x trials). Until now, we have tacitly assumed that the inde-
endent variable was fixed; only the dependent variable D was
onsidered random.

If both the dependent and the independent variable are ran-
om, then we have to give a rationale for the permutation test
n terms of the joint probability distribution f (D, I) instead of
(D). It turns out that this rationale is very simple if the random

ndependent variable is treated as if it is fixed. In probability the-
ry, this conceptual move is called conditioning on the random
ndependent variable. Conditioning on the random independent
ariable involves that we express our hypothesis in terms of
he conditional probability distribution of the biological data D
iven the assignment I = i, which is denoted by f (D|I = i).
ow, our hypothesis involves that f (D|I = i) is exchangeable

or all realizations i.
We can use the conditioning rationale to show that con-

itioning on a random independent variable does not affect
he FA rate. We begin by observing that the permutation p-
alue is calculated under the double conditional distribution
(D|{D} = {d}, I = i), which is the permutation distribution
nder exchangeability of f (D|I = i). A statistical test based
n this p-value controls the FA rate under the conditional
istribution f (D|{D} = {d}, I = i) and, because of the con-
itioning rationale, also under the unconditional distribution
(D).

.4. The choice of a test statistic

False alarm rate control by means of a nonparametric statis-
ical test does not depend on the test statistic that is used. This is
n enormous advantage of nonparametric over parametric sta-
istical testing. In parametric statistics, one can only use test
tatistics whose sampling distribution under the null hypothe-
is is known. In practice, this constraint forces us to use a test
tatistic whose sampling distribution is known under multivari-
te normality. In contrast, in nonparametric statistics, one is free
o choose any test statistic that one considers appropriate. This
reedom has at least four advantages: (1) it provides a simple way

o solve the MCP, (2) it allows us to incorporate prior knowledge
bout the type of effect that can be expected, (3) it allows us to
ocalize the effect on the spatial, spectral, and temporal dimen-
ion (however, without strong control of the FA rate), and (4)
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t allows us to make use of test statistics with a vector-valued
utcome.

.4.1. A solution for the MCP
In the nonparametric statistics, the MCP is solved in the fol-

owing way: instead of evaluating the difference between the
xperimental conditions for each of the samples separately, it is
ow evaluated by means of a single test statistic for the complete
patio-(spectral)–temporal grid. Thus, the multiple comparisons
one for every sample) are replaced by a single comparison, and
herefore the MCP does not exist any more.

.4.2. Incorporating prior knowledge
Incorporating prior knowledge about the type of effect that

an be expected will increase the sensitivity of the test. For
nstance, when comparing spatiotemporal data matrices in two
xperimental conditions, one can make use of the fact that adja-
ent (sensor, time)-pairs are likely to exhibit the same effect.
herefore, it makes sense to use a test statistic that is based on a
lustering of these adjacent (sensor, time)-pairs, such as the size
f the largest connected cluster that exceeds some threshold, or
he sum of the t-values in that cluster.

To examine the differential sensitivity of the different test
tatistics, we analyzed the example data set by means of eight dif-
erent test statistics, two cluster-based and six non-cluster-based
est statistics. The sensitivity of a test statistic was quantified
y the minimum number of trials that is required to obtain a
ignificant effect of semantic congruity in the multi-sensor anal-
sis of the evoked responses. Details of this small sensitivity
tudy are given in the supplementary material. It was found that
he two cluster-based test statistics (the largest within-cluster
ummed t-value, and the size of the largest cluster) required
pproximately 30% of the number of trials that is required by
he non-cluster-based test statistics.

.4.3. Localization by means of the maximum-statistic
When comparing spatiotemporal data structures in two con-

itions, one is almost always interested in the spatiotemporal
ocalization (where and when) of the effect. Usually, the interest
n the null hypotheses of exchangeability is only indirect: one is
nterested in these null hypotheses because they are violated by
ome localized effect. There is a conflict between this interest
n localized effects and our choice for a global null hypothe-
is: by controlling the FA rate under this global null hypothesis
ne cannot quantify the uncertainty in the spatiotemporal local-
zation of the effect. On the other hand, as argued in Section
.2.2, it usually does not make sense to test sensor-specific or
ime-point-specific null hypotheses.

Instead of opting for strong control of the FA rate over the
patial and the temporal dimension, we propose a localization
rocedure that is much less ambitous. An important motivation
or this procedure is the fact that cluster-based test statistics turn
ut to be very sensitive. After thresholding, cluster-level statis-

ics are calculated by taking, for instance, the size of the cluster
r the sum of the t-values within the cluster. These cluster-level
tatistics will be called ClusterStats. Our localization procedure
nvolves identifying clusters on the basis of their ClusterStat. To

s

a

roscience Methods 164 (2007) 177–190 187

ontrol the FA rate of the localization procedure, we need a criti-
al value for the ClusterStats with the following property: under
he null hypothesis, the probability that one or more Cluster-
tats exceed the critical value CV, is controlled at some critical
lpha-level. Formally,

(at least one ClusterStat ≥ CV) = α.

his is equivalent to an equation in terms of the maximum-
unction (Max):

(Max(ClusterStat) ≥ CV) = α.

hus, the critical value for the Max(ClusterStat)-statistic can be
sed to identify significant clusters while controlling the FA rate.

.5. Vector-valued test statistics

In situations where several different effects can co-occur, it
s natural to use a vector-valued test statistic. For instance, when
omparing the spatiotemporal data matrices of two experimental
onditions, there may be multiple spatiotemporal clusters that
xhibit a significant difference. In this situation, it makes sense
o quantify the effect by an ordered sequence of ClusterStats.
his is our vector-valued test statistic. Because very small clus-

ers are unlikely to reflect important physiological activity, this
ector only contains the ClusterStats of clusters that have some
inimum size (chosen a priori).
Contrary to a parametric statistical test, it is straightforward

o construct a nonparametric statistical test on the basis of a
ector-valued test statistic. In particular, with a vector-valued
est statistic, we obtain a multivariate permutation distribution
nder which we can identify a multivariate tail area that contains
probability volume equal to the desired FA rate. This multi-

ariate tail area is defined by a vector-valued critical value that
ontrols the following probability: the probability of observing
vector-valued test statistic whose elements exceed the criti-

al value on one or more dimensions. If the vector-valued test
tatistic is an ordered sequence of ClusterStats, the first dimen-
ion corresponds to the cluster with the largest ClusterStat, the
econd dimension to cluster with the second largest ClusterStat,
tc.

We applied such a vector-valued statistical test to the evoked
esponses in the example data. Clusters of less than 250 (sensor,
ime)-pairs were considered too small to be of interest. There
ere three significant clusters: the two clusters that were also

ignificant in the analysis with the Max(ClusterStat)-statistic,
lus an additional negative cluster over right temporal sen-
ors in the time interval 900–1100 ms. In the supplementary
aterial, we show a figure of the topography of the raw effect
asked by the spatiotemporal pattern of the three significant

lusters.

. The permutation test for multiple-subject MEEG

tudies

In practice, one is often interested in a null hypothesis about
population of subjects, instead of a single subject. In a very
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imilar way as for a single-subject MEEG study, the null hypoth-
sis about a population can be tested by means of a permutation
est. To test the null hypothesis at the level of a population, a
ample of subjects is drawn from this population. The first step
nvolves taking the average2 over all trials within every subject,
hich produces subject-specific evoked responses or average
ower. There are two types of multiple-subject studies: in a
etween-subjects study, every subject is observed in one exper-
mental condition, and in a within-subjects study, every subject
s observed in all experimental conditions (in a particular order).

e will first consider between-subjects and then within-subjects
tudies.

A permutation test for a between-subjects MEEG study
nvolves exactly the same calculations as a permutation test for a
etween-trials single subject MEEG study. The only difference
s that the calculations are now performed on the subject-specific
verages of a group of subjects instead of the trial-specific
EEG data of a single subject. Typically, the number of subjects

n a between-subjects study is much smaller than the number of
rials in a between-trials single subject study. This has conse-
uences for the calculation of the permutation p-value: if the
umber of subjects is not too large, the permutation p-value can
e calculated exactly by enumeration. For instance, with 16 sub-
ects, 8 in every experimental condition, there are 12870 (i.e.,
16
8 )) possible values under the permutation distribution for one
f the cluster-based test statistics. Note that, with a small number
f subjects, it may be impossible to reach significance, regardless
f the difference between the conditions. For instance, with four
ubjects, two in every condition, the smallest possible p-value
s 0.16667.

With this permutation test, we test a null hypothesis about
he probability distributions of the subject-specific averages.
his null hypothesis involves that all subject-specific averages
re drawn from the same probability distribution, regardless
f the experimental condition in which they were observed.
hus, the null hypothesis is about the probability distribution

rom which the subjects are drawn. Because we can make a
tatement about a probability distribution that characterizes a
opulation of subjects, the permutation test allows us to gen-
ralize from a sample to a population. This is an interesting
onclusion because the permutation distribution under which
e calculate our p-value is specific for our sample. (This is very
ifferent from the sampling distribution of a parametric statis-
ical test, which does not depend on the values observed in our
ample.)

In a within-subjects MEEG study, every subject has one
ubject-specific average for each experimental condition. For
implicity, we assume there are only two experimental condi-

ions. Then, the subject-specific averages for the r th subject are
pair (Dr1, Dr2), with Dr1 the data observed in the first experi-
ental condition, and Dr2 the data observed in the second. In the

2 In principle, the permutation test does not require that the trial-specific data
ave to be combined by means of an average; other ways of combining the
rial-specific data are also possible. However, most null hypotheses of interest
nvolve an average over the trial-specific data.
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alculation of the cluster-based test statistic, the sample-specific
tatistical values are now obtained from the formula for the
aired-samples (dependent-samples) instead of the independent-
amples t-value, which is used in a between-subjects MEEG
tudy. The rest of the calculation is identical. The construction
f the permutation distribution is again different for a between-
nd a within-subjects MEEG study. Instead of randomly per-
uting the subjects (such that they become associated with

ifferent experimental conditions), we now randomly permute
he subject-specific averages (Dr1, Dr2) within every subject.

oreover, this random permutation is performed independently
or every subject. With n subjects, this results in a permutation
istribution with 2n possible values that are all equally probable
nder the null hypothesis (see next paragraph). The p-value is
hen obtained by locating the observed test statistic under this
ermutation distribution.

The hypothesis of interest in a within-subjects MEEG study
s about the probability distribution of the subject-specific aver-
ges in the different experimental conditions. Let the joint
robability distribution of the subject-specific averages be
enoted by f (Dr1, Dr2). Now, the null hypothesis of a within-
ubjects permutation test involves that this joint distribution is
xchangeable:

(Dr1, Dr2) = f (Dr2, Dr1).

The null hypothesis of exchangeability implies that the
arginal distributions for the two experimental conditions,
(Dr1) and f (Dr2), are equal. This is our hypothesis of inter-
st. Thus, the permutation test for a within-subjects MEEG
tudy tests the null hypothesis of exchangeability of the joint
istribution f (Dr1, Dr2), and this null hypothesis will be vio-
ated if the marginal distributions f (Dr1) and f (Dr2) are
ifferent.

The permutation test for a within-subjects MEEG study
an also be applied to the data of a single-subject within-
rials MEEG study. In practice, there is only one common
ype of within-trials MEEG study: the within-trials activation-
ersus-baseline study, in which every trial consists of a baseline
the interval preceding the stimulus) and an activation con-
ition (the interval following the stimulus). The permutation
est for a within-trials study involves the same calculations
s for a within-subjects study; instead of applying these
alculations to subject-specific averages (in the different experi-
ental conditions), they are now applied to trial-specific data

in the baseline and the activation condition). Note that this
equires the baseline and the activation period to be equally
ong, since otherwise there is not a one-to-one correspon-
ence between the samples in the baseline and the activation
eriod.

. Conclusions

We have shown how nonparametric statistical tests can be

sed to evaluate different effect types that are studied in the
EEG-literature (i.e., single-sensor and multi-sensor evoked

esponses and time–frequency representations). We have also
resented a theory for these nonparametric statistical tests,
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hich demonstrates their validity in a rigorous way. This theory
pplies to both single-subject and multiple-subject studies. The
ull hypothesis of a nonparametric statistical test involves that
he probability distributions of the MEEG-data in the different
xperimental conditions are equal. In the theoretical justifica-
ion, this null hypothesis is linked to exchangeability, which
lays the role of an intermediate concept that allows us to demon-
trate the validity of the permutation test.

The main advantage of nonparametric testing is the freedom
o use any test statistic one considers appropriate. This freedom
llows us to solve the MCP in a simple way, and it also allows
s to incorporate prior knowledge about the type of effect that
an be expected. The latter may result in a drastic increase of the
ensitivity of the statistical test, as is illustrated using the data
f our example study.

Despite their advantages, cluster-based nonparametric tests
re not a panacea. First, the results of the cluster-based nonpara-
etric tests depend on the threshold that is used for selecting

he samples that will subsequently be clustered. It is not clear
ow to choose this threshold to obtain maximum sensitivity for
he unknown effect that is present in the data: for a weak and
idespread effect, the threshold should be low, and for a strong

nd localized effect, the threshold should be high. Clearly, if
he threshold is chosen on the basis of the data, the FA rate
ill not be controlled (unless Bonferroni-correction is used to

ontrol for the multiple thresholds). Second, the sensitivity of a
luster-based nonparametric test will always be less than that
f the so-called uncorrected p-value approach, in which the
ull hypothesis is rejected if at least one sample-specific t-value
xceeds the threshold. Clearly, the uncorrected p-value approach
oes not control the FA rate, and the cluster-based nonpara-
etric test is therefore superior in this respect. In that sense,

he cluster-based nonparametric tests trade in some sensitivity
or FA rate control, just as other approaches that deal with the

CP.

ppendix A. Supplementary Data

Supplementary data associated with this article can be found,
n the online version, at doi:10.1016/j.jneumeth.2007.03.024.
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