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Abstract
During language comprehension, the processing of each incoming word is facilitated in proportion to its predictability. 
Here, we asked whether anticipated upcoming linguistic information is actually pre-activated before new bottom-up input 
becomes available, and if so, whether this pre-activation is limited to the level of semantic features, or whether extends to 
representations of individual word-forms (orthography/phonology). We carried out Representational Similarity Analysis 
on EEG data while participants read highly constraining sentences. Prior to the onset of the expected target words, sentence 
pairs predicting semantically related words (financial “bank” – “loan”) and form-related words (financial “bank” – river 
“bank”) produced more similar neural patterns than pairs predicting unrelated words (“bank” – “lesson”). This provides 
direct neural evidence for item-specific semantic and form predictive pre-activation. Moreover, the semantic pre-activation 
effect preceded the form pre-activation effect, suggesting that top-down pre-activation is propagated from higher to lower 
levels of the linguistic hierarchy over time.
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Introduction

Prediction plays a vital role in language comprehension, 
as it allows us to process language more quickly and accu-
rately (Kuperberg & Jaeger, 2016). However, there is ongo-
ing debate regarding the nature of these predictions, and the 
levels of representation at which they are generated (Kuper-
berg & Jaeger, 2016). There is a growing consensus that we 
use prior contexts to pre-activate the meanings of upcoming 
words. For example, given the context “I went to deposit 
the check at the....”, we are likely to predict the semantic 
features of the expected word, “bank” (e.g., <financial> and 
<service>), which will facilitate the processing of “bank” 
if it is subsequently encountered (Federmeier & Kutas, 

1999; Kutas & Federmeier, 2011). A far more contentious 
issue is whether we additionally pre-activate the linguistic 
form of anticipated words. For example, do we additionally 
pre-activate the orthographic representation, /B-A-N-K/, 
before this information actually becomes available from the 
bottom-up input? Addressing this question is crucial, as it 
would offer valuable insights into the computational princi-
ples and mechanisms of predictive language processing, and 
the nature of predictive processing more generally.

One possibility is that we only predict at the semantic 
level. For example, during incremental language comprehen-
sion, the evolving representation of the prior context may 
interact or “resonate” with words stored in long-term seman-
tic memory (e.g. Gerrig & McKoon, 1998; Myers & O'Brien, 
1998; Van Berkum, 2009), or with higher-level representa-
tions of common events or states, which may passively spread 
activation to associated semantic features of upcoming words 
(Paczynski & Kuperberg, 2012; Sanford et al., 2011; for dis-
cussion, see Kuperberg et al., 2011; Lau et al., 2013).

An alternative theory, grounded in hierarchical generative 
frameworks (Kuperberg & Jaeger, 2016, Section 5), such as 
predictive coding (Mumford, 1992; Rao & Ballard, 1999), 
proposes that predictions are propagated down from higher 
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to lower levels of the representational hierarchy over time. 
On this account, the highest-level ongoing interpretation of 
the prior context actively propagates predictions downward 
to pre-activate upcoming lexico-semantic information (the 
semantic features associated with upcoming words), which, 
in turn, propagate predictions further down to pre-activate 
specific upcoming word-form representations at the level of 
orthography/phonology.

Thus far, existing studies have not been able to distinguish 
between these accounts. Some studies using event-related 
potentials (ERPs) have reported effects of predictability 
on early ERP components that are linked to the processing 
of word-forms (Brothers et al., 2015; Connolly & Phillips, 
1994; Federmeier et al., 2005; Groppe et al., 2010; Lau et al., 
2013), while others have reported an attenuation of the N400, 
a measure of lexico-semantic predictability, in response to 
unexpected words that are orthographically related to antici-
pated words (DeLong et al., 2019, 2021; Ito et al., 2016; 
Laszlo & Federmeier, 2009). ERP effects have also been 
reported on pre-target words that are incongruous with the 
form-level features of upcoming expected words, such as 
“an” versus “a” when the context strongly constrains for the 
expected word, “kite” (DeLong et al., 2005). However, sev-
eral of these results have proved difficult to replicate (e.g., 
Nieuwland et al., 2018), and others may not offer unequivo-
cal evidence of word-form pre-activation (for a review, see 
Nieuwland, 2019). Most importantly, because ERPs index 
neural activity that is time-locked to the onset of new input, 
they assess the effects of prediction on bottom-up processing, 
rather than directly isolating predictive activity itself.

To circumvent this issue, some researchers have exam-
ined oscillatory activity before the onset of predictable ver-
sus unpredictable words. There have been some reports of 
effects that localize to lower-level cortical regions, which 
have been interpreted as reflecting anticipatory activity at 
the level of orthography (Wang et al., 2018a) or even low-
level visual features (Dikker & Pylkkänen, 2013). Others, 
however, have argued that these effects reflect pre-stimulus 
differences in attention or arousal, rather than prediction per 
se (Terporten et al., 2019).

In the present study, we took a different approach. We 
employed Representational Similarity Analysis (RSA) to ask 
whether the brain generates distinct neural patterns that cor-
respond to the pre-activation of the meaning (e.g., <finan-
cial> and <service>) and the form (i.e., orthography and 
phonology; e.g., /B-A-N-K/ and /bæŋk/) of specific upcom-
ing words before this information became available from 
the bottom-up input. The basic assumption of RSA is that 
representationally similar items produce patterns of neural 
activity that are more similar to each other than represen-
tationally distinct items (Kriegeskorte et al., 2008). When 
used in conjunction with time-sensitive neurophysiologi-
cal methods, like EEG or MEG, RSA can also tell us when 

this representationally specific information becomes active 
(Cichy et al., 2014; Stokes, 2015).

In a recent MEG study (Wang et al., 2018b), we used 
RSA to show that, during sentence comprehension, the pat-
terns of neural activity produced before the appearance of 
upcoming words were more similar when pairs of contexts 
predicted the same words (e.g., “baby” – “baby”) than when 
they predicted different words (e.g., “baby” – “rose”). This 
provided evidence that item-specific information associated 
with upcoming words was pre-activated before the bottom-
up input actually appeared. However, it was unclear whether 
comprehenders only pre-activated the semantic features of 
upcoming words (e.g., <little>, <cute>, <crying>), or 
whether predictions were additionally generated at the level 
of word-form (e.g., /B-A-B-Y/, /ˈbeɪbi/).

To address this question directly, we implemented a novel 
experimental design that aimed to dissociate the pre-activa-
tion of meaning and form. We developed triplets of highly 
constraining sentence contexts that gave rise to two types 
of related sentence pairs. First, semantically-related pairs 
constrained for upcoming words that shared meaning but 
not form (e.g., “I went to deposit the check at the… [bank]” 
and “His college was very expensive, so he had to take out a 
student… [loan] ”). Second, form-related pairs constrained 
for homographs that shared form but not meaning (e.g., “I 
went to deposit the check at the… [bank]” and “The muddy 
sides of the river are called the river… [bank]”).1 Across 
triplets, unrelated sentence pairs constrained for words that 
shared neither meaning nor form, and therefore served as a 
control condition (e.g., “I went to deposit the check at the… 
[bank]” and “After waking up, the student went to his first… 
[class]”).

We measured EEG as participants silently read these 
sentences for comprehension. At each time point from the 
onset of the pre-target word until the onset of the predicted 
target word, we computed the similarity between the spa-
tiotemporal patterns of neural activity produced by each 
type of sentence pair. If readers pre-activate the semantics 
of upcoming words, then the neural patterns produced by 
the semantically related pairs should be significantly more 
similar than the patterns produced by the unrelated pairs. 

1 In line with all accounts of predictive language comprehension, and 
all theories of post-onset homograph processing, we assume that in 
highly constraining contexts, the appropriate meaning of the homo-
graph is pre-activated. For example, the dominant financial-related 
meaning of the word “bank” should be pre-activated following a 
dominant-constraining context, while the subordinate river-related 
meaning of the word “bank” should be pre-activated following the 
subordinate-constraining context. In the psycholinguistic literature, 
there has been some debate about whether, after a homograph is 
encountered from bottom-up input, we additionally access its contex-
tually-inappropriate meaning. Addressing this question is outside the 
scope of the present study.
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If readers additionally pre-activate the form of upcoming 
words, then the patterns produced by the form-related pairs 
should be significantly more similar than those produced 
by the unrelated pairs. Finally, if top-down predictions are 
propagated from higher to lower levels of the representa-
tion over time, then the semantic pre-activation effect should 
precede the form pre-activation effect.

Methods

Design and development of stimuli

Experimental design

We constructed 84 triplets of highly constraining sentences 
that each predicted a specific upcoming word (Fig. 1A). The 
contexts within each triplet were distinct from one another, 
and they had no content words in common. Each triplet was 
comprised of three types of sentence contexts: (1) dominant-
constraining contexts that predicted the dominant meaning 
of a homograph (e.g., the financial meaning of “bank”), (2) 
non-homograph-constraining contexts that predicted a word 

that was semantically related to the dominant meaning of the 
homograph (e.g., “loan”), and (3) subordinate-constraining 
contexts that predicted the same homograph’s subordinate 
meaning (e.g., the river meaning of “bank”). This yielded 
two types of sentence pairs within each triplet: semantically-
related pairs (n = 84), in which the predicted words were 
associated in meaning but not in form (e.g., financial “bank” 
– “loan”), and form-related pairs (n = 84), in which the 
predicted homographs overlapped in form but not in mean-
ing (e.g., river “bank” – financial “bank”). Across differ-
ent triplets, there were 31,374 unrelated sentence pairs, in 
which the predicted words were always distinct in both form 
and meaning (“loan” – “lesson”; “bank” – “class”, etc.). 
This large number of unrelated pairs served as a control 
condition.

To construct these stimuli, we carried out a series of 
cloze norming tests (Taylor, 1953). Native English speak-
ers, recruited through Amazon Mechanical Turk, read the 
sentence contexts without the target words (e.g., “I went to 
deposit the check at the…”) and completed each sentence by 
writing down the first word that came to mind. Items were 
counterbalanced across lists to ensure that each participant 
observed only one item from each triplet. After three rounds 

Fig. 1  Schematic illustration of our representational similarity 
analysis stream. 1. Participants read triplets of highly constraining 
sentences (pseudorandomly presented). 2. For each trial, and at the 
center of each sampling interval (t ± ∆t) within our time window of 
interest (from -700 to 0 ms relative to the target onset), we extracted 
a vector of EEG data that represented the spatiotemporal pattern of 
activity produced across all EEG channels. 3. We calculated Pear-
son’s r between each pair of spatiotemporal vectors to quantify the 
neural similarity between the patterns of EEG activity produced by 
predicted upcoming words in (a) semantically related pairs where 
the predicted words shared semantic but not form features, (b) form-

related homograph pairs where the predicted words shared form but 
not semantic features, and (c) unrelated pairs where the predicted 
words shared neither form nor semantic features. 4. To isolate item-
specific semantic and form similarity effects, we averaged the r val-
ues separately for the semantically related and form-related pairs, 
and statistically compared them with the patterns produced by the 
unrelated pairs. 5. We subtracted the average neural similarity values 
of the unrelated pairs from those of semantically related and form-
related pairs (∆r) at each sampling point to construct time series of 
the semantic and word-form pre-activation effects
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of cloze norming, responses for each item were obtained 
from an average of 39 participants (range: 33–48). Based on 
these norms, we selected the final set of 84 sentence triplets 
in which at least 67% of participants provided the expected 
target word across all three sentences (mean lexical con-
straint = 88%, SD = 8%).

In the EEG experiment, participants saw all three types 
of sentence contexts within each triplet (dominant-con-
straining, non-homograph-constraining, and subordinate-
constraining), pseudorandomized and separated by at least 
30 trials (mean separation = 69 trials). To avoid repeating 
the same homograph twice within an experimental session, 
half of the dominant-constraining contexts and half of the 
subordinate-constraining contexts ended with the expected 
homographs, and the other half ended with another plausible 
but unexpected completion that was never provided in the 
cloze norming study (0% cloze). This excluded the possibil-
ity that, instead of directly reflecting representational activ-
ity related to form pre-activation itself, any form similarity 
effect reflected participants’ recognition of a match between 
the form of the word that they had just predicted and a hom-
ograph that they had seen earlier in the experiment. The 
pairing of contexts with the expected and unexpected end-
ings was counterbalanced across two experimental lists, 
ensuring that each participant saw an equal number of dom-
inant-constraining and subordinate-constraining contexts 
that ended with expected and unexpected words. Because 
the non-homograph-constraining contexts always ended with 
the expected word (88% cloze), two thirds of all sentences in 
the experimental session ended with expected words.

Characterization of stimuli

Semantic similarity between pairs of predicted target 
words

Our design rested on the assumption that the predicted 
words in the semantically related pairs were more semanti-
cally related to each other than in the unrelated pairs. To 
confirm that this was the case, we quantified the semantic 
similarity between the pairs of predicted word using Word-
Net from the Natural Language Toolkit (NLTK) (Loper & 
Bird, 2002). WordNet is an English lexical database that 
organizes words based on their semantic relations in a hier-
archical network, such as their super-subordinate relations 
(e.g., “meal” – “breakfast”) and part-whole relations (e.g., 
“sand”– “beach”). Unlike other tools for measuring semantic 
relatedness, WordNet assigns different “senses” associated 
with a particular word to different Synsets. For example, 
“bank” has ten synsets, such as (a) Synset(‘bank.n.01’): slop-
ing land (especially the slope beside a body of water) and (b) 
Synset(‘depository_financial_institution.n.01’): a financial 

institution that accepts deposits and channels the money into 
lending activities.

We manually identified the sense of each predicted tar-
get word in each sentence context within each triplet. Then, 
based on the identified senses, we calculated pairwise 
semantic similarity values using a path-based approach 
described by Wu & Palmer (ranging from 0 to 1, indicating 
low to high semantic similarity) (Wu & Palmer, 1994). To 
check that there were statistically significant differences in 
the semantic similarity between the predicted words in the 
semantically related and the unrelated sentence pairs, we 
used a permutation approach. Specifically, we computed the 
mean similarity values for the semantically related and unre-
lated pairs separately and took their difference value as our 
test statistic. We then randomly re-assigned the similarity 
values across these two types of sentence pairs, re-calculated 
the mean difference of the permuted values, and took the 
mean difference value for each randomization (1,000 times) 
to build a null distribution. We considered the observed 
test statistic significant if it fell within the highest or lowest 
2.5% of the null distribution. This analysis confirmed that 
the predicted words in the semantically related pairs were 
indeed more semantically similar (mean WordNet semantic 
similarity = 0.58, SD = 0.29) than the predicted words in the 
unrelated pairs (mean WordNet semantic similarity = 0.25, 
SD = 0.16, p < 0.001).

We used the same methods to determine whether the 
semantic similarity of the predicted words differed between 
the form-related and unrelated sentence pairs. We found a 
small but significant difference (form-related vs. unrelated: 
mean = 0.30 vs. 0.25, SD = 0.18 vs. 0.16, p = 0.011). As 
discussed in the Results, to ensure that this difference did not 
confound the form neural similarity effect, we carried out an 
RSA using a subset of unrelated pairs (56 in total) in which 
the semantic similarity of the predicted target words as well 
as other properties of the pre-target words were matched 
with the form-related pairs.

Semantic similarity between pairs of pre‑target words

We also examined the semantic similarity between the 
pre-target words within each pair. Because these pre-target 
words varied in their syntactic category, instead of using 
WordNet, which only provides semantic similarity values 
for words within the same syntactic category (Loper & Bird, 
2002), we used Word2Vec (Mikolov et al., 2013). We com-
puted the cosine distance between the 300-dimensional vec-
tors that corresponded to each pair of pre-target words using 
the Gensim natural language processing library in Python. A 
permutation-based test showed that the pre-target words in 
the semantically related pairs were slightly more semanti-
cally similar than those in the unrelated pairs (semantically 
related vs. unrelated: Mean Word2Vec semantic similarity 
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= 0.16 vs. 0.11, SD = 0.26 vs. 0.17, p = 0.006). As discussed 
in the Results, to ensure that this difference did not confound 
our neural similarity effect, we compared the neural similar-
ity values produced by the semantically related and a subset 
of unrelated pairs (again in a total of 56 pairs) in which the 
semantic similarity of the pre-target words as well as other 
properties of the pre-target words were matched.

We found no significant differences in the semantic simi-
larity of the pre-target words between the form-related and 
unrelated pairs (mean = 0.13 vs. 0.11, SD = 0.22 vs. 0.17), 
p = 0.17.

Similarity structure of other properties of the pre‑target 
word

To ensure that any observed neural similarity effects were 
not driven by other differences in the similarity structure 
of the pre-target words, we also examined several of their 
other properties: (1) their lexical probabilities, based on their 
preceding contexts, which we operationalized using the large 
language model, GPT-3 (Brown et al., 2020) 2; (2) length, 
i.e., number of letters; (3) orthographic Levenshtein distance 
(OLD20, Balota et al., 2007); (4) concreteness (Brysbaert 
et al., 2014); (5) log frequency, based on the SUBTLEX 
database (Brysbaert & New, 2009); and (6) syntactic class, 
i.e., whether it was a content or a function word. For each of 
these variables, we calculated the pairwise absolute differ-
ence values and compared these difference values between 
the semantically related and unrelated pairs, as well as 
between the form-related and -unrelated pairs. Our permu-
tation tests revealed no statistically significant differences 
(all ps > 0.09).

Similarity structure of more general properties of the prior 
sentence contexts

Finally, we extracted two additional measures for all sen-
tences: (1) context length, i.e., the number of words prior to 
the target word (this ranged from 4 to 21 words); (2) con-
textual constraint, i.e., the probability of the most expected 
target word, as estimated using our cloze norms (this ranged 
from 67% to 100%). For each of these measures, we calcu-
lated the absolute difference values for every pair of con-
texts. Permutation-based statistical tests once again showed 
no difference between either the semantically related and 

unrelated pairs, or between the form-related and unrelated 
pairs (all ps > 0.07).

Participants

A power analysis showed that a sample size of 34 is required 
to achieve 80% power for detecting a medium-sized similar-
ity effect (d = 0.5: (Wang et al., 2018a, b, 2020); α = 0.05 for 
two-tailed paired t-tests). In total, 36 participants took part 
in the EEG experiment. The data of three participants were 
subsequently excluded due to termination of the experiment 
by one participant and excessive artifacts in two participants, 
leaving a final dataset of 33 participants (mean age: 20 years, 
range: 20–28 years; 20 males). All participants were native 
speakers of English and had no exposure to other languages 
before the age of 5 years. They were all right-handed with 
normal or corrected-to-normal vision. They were not tak-
ing psychoactive medication, and had never been diagnosed 
with a psychiatric or neurological disorder. Each participant 
gave informed consent following procedures approved by 
the Tufts University Social, Behavioral, and Educational 
Research Institutional Review Board.

Procedure

The sentences were presented on a computer monitor, posi-
tioned approximately 1 m away from the participant, using 
PsychoPy 2.0 software. Stimuli were presented in white 
Arial font on a black background, with three characters 
covering approximately 1° of visual angle. The trial started 
with a fixation (“++++”) for 1,200 ms, followed by a 400-
ms blank. Then, each sentence was presented word by word, 
with each word being presented for 300 ms, followed by a 
400-ms blank screen. The final word was presented together 
with a period, followed by a 1,200-ms blank. After one-
sixth of the trials, at random, participants read a True/False 
statement based on the sentence that they had just read and 
judged whether these statements were correct/incorrect by 
pressing one of two buttons with their left hand. This helped 
ensure that they read the sentences for comprehension. In all 
other trials, the word “NEXT” appeared, and participants 
pressed another button to proceed to the next trial.

All 252 sentences were presented over nine blocks, with 
each block containing 28 sentences and lasting about six 
minutes. The experiment lasted about 1.5 h, including EEG 
preparation, instructions and a short practice session consist-
ing of five sentences.

EEG data acquisition and preprocessing

The EEG dataset was acquired using a Biosemi ActiveTwo 
system from 64 active electrodes arranged according to the 
standard 10-20 system montage. Signals were digitized at 

2 Previous studies have shown that GPT-derived probability values 
correlate with human-based cloze estimates (e.g. Szewczyk & Feder-
meier, 2022). Indeed, in the present study, GPT-derived estimates 
of the lexical probabilities of the predicted target words correlated 
strongly with the cloze estimates of lexical probability that we had 
obtained from human participants (r = 0.92, p < 0.001).
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512 Hz, with a passband of DC – 104 Hz. The EEG dataset 
was preprocessed using Fieldtrip, an open-source Matlab 
toolbox (Oostenveld et al., 2011). The raw EEG signals were 
referenced offline to the average of the left and right mastoid 
electrodes. Visually identified channels with excessive noise 
were excluded (removed) from further analysis (on average, 
five out of the 64 channels across participants).3 A fourth-
order Butterworth bandpass filter of 0.1–30 Hz was applied 
to the data to remove slow drift and high-frequency noise 
(Luck, 2014).4 Next, we segmented the data into epochs, 
which spanned a time window from -1,500 ms to 1,500 ms, 
relative to the onset of the target word. Trials that exhibited 
high variance across channels were excluded from further 
analysis. We then carried out an Independent Component 
Analysis (ICA; Bell & Sejnowski, 1997), and identified and 
removed any components that showed temporal and spatial 
characteristics of eye movements (on average, one compo-
nent per participant was removed). After these steps, the data 
were visually inspected and any remaining artifacts were 
removed. As noted earlier, we excluded the data of two par-
ticipants who had a trial rejection rate of over 30%. For the 
remaining 33 participants, 13% of trials (on average) were 
rejected, with no significant differences in rejection rates 
across the three types of contexts within the sentence triplets 
(i.e., dominating-constraining, subordinate-constraining, 
non-homograph-constraining:  F(2,96) < 1).

After artifact rejection, there remained, on average, 56 
full triplets of trials across all participants. Because we were 
interested in brain activity reflecting the pre-activation of 
upcoming target words, we did not apply any baseline cor-
rection. Instead, we mean-centered activity within each trial 
by subtracting the average activity of the full epoch from the 
activity at each sampling point. This approach effectively 
eliminated any potential shift caused by slow drift.

Representational similarity analysis (RSA)

We carried out a representational similarity analysis 
(RSA) on the single-trial EEG data (Fig. 1B), using MAT-
LAB 2020a (MathWorks) together with custom-written 
scripts. When combining EEG/MEG with RSA, one can 
potentially examine similarities amongst spatial patterns, 

temporal patterns, or a combination of both, depending on 
the research question. For example, in a previous MEG study 
(Wang et al., 2018b), we examined spatial and temporal 
patterns separately because we were interested in detecting 
item-specific spatial patterns at the head surface (stemming 
from distributed underlying sources), and in source local-
izing the specific neuroanatomical regions that produced 
item-specific temporal patterns. In another MEG and EEG 
study (Wang et al., 2020), we only examined spatial patterns 
because we were interested in detecting the pre-activation 
of animacy-related semantic features at the head surface 
(again assumed to stem from distributed underlying cortical 
sources). In the present EEG study, our primary goal was to 
determine whether there was any evidence for a dissocia-
tion in the pre-activation of meaning versus form. There-
fore, following previous RSA studies (e.g., Choi et al., 2021; 
He et al., 2021; Lyu et al., 2019), we combined spatial and 
temporal information to maximize our chances of detecting 
pre-activation effects.

In each participant, on each trial, we extracted vectors 
of EEG data that represented the spatiotemporal patterns 
of activity produced across all EEG channels at consecu-
tive sampling intervals. We chose a sampling interval of 31 
ms because this corresponded to a full cycle of oscillatory 
activity at approximately 30 Hz – the low-pass filter that we 
applied during pre-processing.5 Given the 512-Hz sampling 
rate, each 31-ms sampling interval contained 16 data points. 
Thus, each sampling interval captured sufficient temporal 
information while maintaining reasonable temporal preci-
sion. Within our time window of interest, i.e., -700 to 0 ms 
relative to the onset of the target words, at each successive 
sampling interval, using a step size of one sampling point, 
we computed a Pearson’s r value for every pair of trials and 
averaged these values across all semantically-related pairs 
(financial “bank” – “loan”) and across all unrelated pairs. 
We replaced the values of any sampling interval that lay 
outside the time window of interest with zeros (see Michel-
mann et al., 2016).

As discussed in our previous work (Wang & Kuperberg, 
2023; Wang et al., 2020), Pearson’s r neural similarity meas-
ure can capture both item-specific and non-item-specific 
activity (i.e., evoked responses). The large number of unre-
lated pairs across triplets (31,374 pairs) provided a highly 
reliable measure of non-item-specific neural similarity 
(Wang et al., 2018b). Therefore, to isolate the effect of item-
specific semantic similarity, at each sampling point from 
the onset of the pre-target word (t = -700ms) until target 
word onset (t = 0), we carried out paired t-tests comparing 

3 We chose to exclude rather than interpolate bad channels to avoid 
any potential distortion of spatiotemporal patterns over the entire set 
of channels, which would occur if the true electrical activity at a bad 
channel was not highly correlated with activity at its neighboring 
channels.
4 High-pass filters can sometimes produce spurious multivari-
ate effects (van Driel et  al., 2021) and/or distort the timing of such 
effects (Acunzo et al., 2012). However, when we carried out the RSA 
without applying any high-pass filter, we found qualitatively similar 
effects.

5 Following a reviewer’s suggestion, we repeated the RSA using 
different sampling interval sizes (i.e., 0 ms, 20 ms, and 40 ms). We 
found qualitatively similar effects for all interval sizes.
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the neural similarity values produced by the semantically 
related and the unrelated pairs. We took the same approach 
to isolate the effect of item-specific form similarity.

To account for multiple comparisons, we used cluster-
based permutation tests (Maris & Oostenveld, 2007). 
Adjacent data points that showed effects at p ≤ 0.05 were 
considered temporal clusters, and within each cluster, we 
summed the individual t-statistics and took the summed 
t-value as the cluster-level test statistic. We then built a 
permutation distribution by randomly shuffling the con-
ditional labels of the neural similarity values at all time 
points in all participants 10,000 times. We calculated 
cluster-level statistics on each permutation and selected 
the largest cluster-level statistic to construct a null distri-
bution. We compared the observed cluster-level test sta-
tistic against this null distribution, and took any temporal 
clusters falling within the highest or lowest 2.5% of the 
distribution to be significant.

To visualize the item-specific semantic and form pre-acti-
vation effects, we subtracted the average neural similarity 
values produced by unrelated pairs from those produced by 
the semantically related pairs and form-related pairs. The 
time series of neural similarity values produced by all three 
types of sentence pairs are shown in the Online Supplemen-
tary Materials (OSM).

Finally, we compared the timing of the form and semantic 
pre-activation effects. For this analysis, we took a bootstrap-
ping approach because of its flexibility and robustness, even 
when the distribution of the underlying data is unknown 
(e.g., Manly, 1997). First, we identified the peak latency for 
each effect, based on its smoothed grand-average time course 
(for smoothing, we used a moving average of 20 sampling 
points). We then calculated the difference between the two 
identified peak latencies and compared this value against 
a sampling distribution, which we built by resampling the 
neural similarity effect of all participants with replacement 
5,000 times, and taking the difference in the identified peak 
latencies between -700 and 0 ms for each iteration. We con-
sidered the observed peak latency difference to be significant 
if it fell within the highest or lowest 2.5% of the sampling 
distribution.

Results

Semantic pre‑activation effect

When we compared the neural similarity values produced 
by pairs that predicted semantically-related words with those 
produced by pairs that predicted unrelated words, we found 
a significant effect between -391 and -309 ms before the 
onset of the predicted target word, i.e., between 309 and 391 

ms following the onset of the pre-target word (cluster-based 
permutation test: p = 0.003); see Fig. 2.

As noted in the Methods, pairs of pre-target words were 
also slightly more semantically similar in the semantically 
related sentence pairs than in the unrelated sentence pairs. 
Therefore, to ensure that the observed effect was driven by 
the semantic similarity between the predicted upcoming 
words, rather than the pre-target words, we selected a sub-
set of unrelated pairs in which the pre-target words were 
matched on semantic similarity as well as other properties 
of the pre-target words with the semantically related pairs. 
This analysis again revealed a significant effect (between 
-412 and -320 ms prior to the onset of the target word, i.e., 
between 288 and 380 ms following the onset of the pre-tar-
get word, p = 0.001). This suggests that the neural similarity 
effect indexed the pre-activation of semantic features of the 
upcoming target word rather than the semantic features of 
the pre-target word.

Finally, to ensure that the observed effect was not driven 
by the general differences in the semantic similarity of the 
prior context, we carried out a cluster-based permutation 
test from -1,400 to -700 ms before the onset of the pre-tar-
get word. We found no significant difference between the 
semantically related and unrelated pairs (p = 0.169).

Form pre‑activation effect

When we compared the neural similarity values produced 
by pairs that predicted form-related words with those pro-
duced by pairs that predicted unrelated words, we found a 

Fig. 2  The time course of the semantic pre-activation effect. Shown is 
the mean difference in neural similarity values between the semanti-
cally related and unrelated pairs (∆r). Standard errors are indicated 
with shading. Between -391 and -309 ms before the onset of the pre-
dicted target word, i.e., between 309 and 391 ms after the onset of the 
pre-target word, indicated with the pink horizontal bar, the semanti-
cally related pairs produced significantly greater neural similarity 
values than the unrelated pairs. The predicted target word was pre-
sented at 0ms, and the pre-target word was presented at -700 ms, with 
a duration of 300 ms
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significant effect between -53 ms and -8 ms before the onset 
of the target word, i.e., between 647 and 692 ms following 
the onset of the pre-target word (cluster-based permutation 
test: p = 0.025); see Fig. 3.

As noted in the Methods, pairs of the predicted target words 
were very slightly more semantically similar to each other in 
the form-related sentence pairs than in the unrelated sentence 
pairs. However, when we repeated the analysis using a subset 
of unrelated pairs in which the predicted target words were 
matched in semantic similarity with the form-related pairs, we 
again found a significant effect (between -47 and -8 ms prior 
to the onset of the target word, i.e., between 653 and 692 ms 
following the onset of the pre-target word), p = 0.025.

Timing of the semantic pre‑activation effect 
versus the form pre‑activation effect

The analysis above suggested that the semantic pre-activa-
tion effect preceded the form pre-activation effect, with the 
semantic pre-activation effect peaking at -367 ms, and the 
form pre-activation effect peaking at -25 ms, each relative to 
the target word onset. To determine whether this difference in 
peak latency was statistically significant, we used a bootstrap-
ping sampling approach. This confirmed that the peak latency 
was significantly earlier for the semantic pre-activation than 
the form pre-activation effect  (t(32) = 7.29, p < 0.001).6

Discussion

A fundamental question in language comprehension is 
whether the brain generates predictions of both the mean-
ing and the form of upcoming words during language com-
prehension. In the present study, we addressed this question 
by combining EEG with RSA. We found that, relative to 
unrelated pairs, pairs of contexts that predicted words with 
related meanings but distinct linguistic forms (e.g., financial 
“bank” – “loan”) produced more similar neural patterns from 
300 to 400 ms before the onset of the predicted target. Con-
versely, pairs of contexts that predicted words with the same 
form but different meanings (i.e., homographs, e.g., financial 
“bank” – river “bank”) produced more similar neural pat-
terns immediately before target word onset.

Although contexts that predict semantically related 
words are naturally more similar to one another than those 
that predict unrelated words, we detected a semantic pre-
activation effect even when the semantic similarity of the 
pre-target words was matched between the related and 
unrelated pairs, and the effect only became significant 
after pre-target onset. We also ensured that the similarity 
of both types of related pairs was matched to that of the 
unrelated pairs with respect to context length and contex-
tual constraint, as well as multiple other properties of the 
pre-target words (word length, orthographic neighborhood, 
concreteness, word frequency, syntactic category, and lexi-
cal predictability). We therefore take these neural similar-
ity effects as evidence that the meaning and form of the 
expected words were predictively pre-activated before new 
bottom-up input became available.

Pre‑activation of meaning

Our finding of a semantic pre-activation effect provides 
direct support for the theory that comprehenders use 
prior contexts to pre-activate the semantic features asso-
ciated with expected upcoming words. Previous support 
for this theory has been somewhat indirect, coming from 
studies reporting facilitated processing of unexpected 
words that share semantic features with expected words 
(e.g., Federmeier & Kutas, 1999). In the present study, 
our use of RSA allowed us to directly capture neural 

Fig. 3  The time course of the form pre-activation effect. Shown is the 
mean difference in neural similarity values between the form-related 
and unrelated pairs (∆r). Standard errors are indicated with shading. 
Between -53 ms and -8 ms before the onset of the predicted target 
word, i.e., between 647 and 692 ms after the onset of the pre-target 
word (indicated with the red horizontal bar), the form-related pairs 
produced significantly greater neural similarity values than the unre-
lated pairs. The predicted target word was presented at 0 ms, and the 
pre-target word was presented at -700 ms, with a duration of 300 ms

6 Following a reviewer’s request, we carried out two additional post 
hoc tests. First, we statistically compared the peak latency difference 
between the semantic and form similarity effects using a Jackknife 
resampling approach. This also showed a significant effect. Second, 
we directly compared the neural similarity values produced by the 

semantically related and form-related pairs within the two time win-
dows that revealed significant differences in the analysis above, i.e., 
in comparison with the unrelated control condition. Between -391 
and -309 ms, the semantically related pairs produced greater neural 
similarity values than the form-related pairs although this effect was 
marginal  (t(32) = 1.99, p = 0.055). Between -53 and -8 ms, the form-
related pairs produced significantly greater neural similarity values 
than the semantically related pairs  (t(32) = 2.53, p = 0.017).

Footnote 6 (continued)
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representations of these pre-activated semantic features 
before the arrival of new bottom-up input. For example, 
the semantic features associated with the pre-activated 
word “bank” and “loan” (e.g., < financial >, <service>) 
overlapped with each other. In the brain, semantic fea-
tures are thought to be represented in a distributed fash-
ion across multiple cortical regions (Huth et al., 2016), 
which project to the scalp surface as unique spatiotem-
poral patterns. Therefore, the spatiotemporal patterns 
produced by predicted words that shared semantic fea-
tures were more similar than those produced by predicted 
words in unrelated pairs that shared no semantic fea-
tures. This finding also extends our previous RSA work 
showing that comprehenders also pre-activate distributed 
semantic features in contexts that, instead of constraining 
for single words, constrain for broader semantic catego-
ries such as animacy (e.g., <animate> following “The 
lifeguard cautioned the ...”) (Wang et al., 2020).

Pre‑activation of word‑form

Of even greater theoretical significance is our finding of an 
increase in similarity between the neural patterns produced 
by predicted words that overlapped only in their linguistic 
form. As outlined in the Introduction, several studies have 
claimed to find evidence of form-level prediction. Again, 
however, this previous evidence primarily comes from ERP 
studies that examined the effects of prior predictions on pro-
cessing new bottom-up input. Moreover, the interpretation 
of these ERP effects is challenging, particularly as some 
findings have not been replicated (Nieuwland, 2019; Nieu-
wland et al., 2018).

In the present study, our use of RSA methods, in com-
bination with our novel homograph design, allowed us to 
circumvent many of these interpretational issues, and to 
directly dissociate the pre-activation of linguistic form 
from meaning. For example, in the contexts, “I went to 
deposit the check at the ...[bank]” and “The muddy sides 
of the river are called the river ...[bank]”, the predicted 
concepts (<financial-bank> and <river-bank>) do not 
share common semantic features. However, both con-
cepts are associated with the same word-form, “BANK”. 
In the brain, form features are thought to be encoded in 
a distributed fashion along the posterior ventral visual 
pathway (Dehaene et al., 2005). Therefore, when pro-
jected to the scalp surface, the pre-activation of these 
same word-forms produced spatiotemporal patterns that 
were more similar to one another than the patterns pro-
duced by predicted words in the unrelated pairs that did 
not share word-form features. As such, our findings pro-
vide direct neural evidence that, at least in highly con-
straining sentences, the brain is able to generate predic-
tions not only at the level of semantic features, but also 

at level of specific word-forms (see Kuperberg & Jaeger, 
2016, Section 5).7

The pre‑activation of meaning preceded 
the pre‑activation of form

Our findings also shed important light on when the mean-
ing and form of pre-activated words became available. The 
pre-activation of semantic features was detected ~300 ms 
after the onset of the pre-target word. This is consistent with 
previous RSA studies (Hubbard & Federmeier, 2021; Wang 
et al., 2018b, 2020), suggesting that the brain uses prior con-
texts to generate semantic predictions as soon as it is able to 
do so. Also consistent with our previous RSA studies using 
different presentation rates (1,000 ms per word: Wang et al., 
2018b; 550ms per word: Wang et al., 2020), the effect was 
transient – lasting for only 100 ms and disappearing 400 ms 
before the onset of the target word.

In contrast, the form pre-activation effect was detected 
later – ~600 ms following the onset of the pre-target word, 
i.e., ~100 ms prior to the target word. This later detection 
of word-form pre-activation is consistent with hierarchical 
predictive accounts of language comprehension, including 
predictive coding, which posit that pre-activated information 
is propagated down the linguistic hierarchy over time – from 
higher-levels representing semantic features to lower levels 
that represent form features (e.g., see Kuperberg & Jaeger, 
2016, Section 5).

Notably, the time lag between the semantic and word-
form pre-activation effects was relatively long – 300 ms. 
This mirrors the temporal separation between conceptual 

7 A reviewer raised the possibility that the form pre-activation effect 
actually reflected an indirect semantic pre-activation effect. On this 
account, the pre-activation of a homograph’s contextually appropri-
ate meaning (e.g., <financial-bank>) indirectly led to the additional 
pre-activation of its contextually inappropriate meaning (e.g., <river-
bank>), and so the form pre-activation effect that we detected actu-
ally reflected overlap of these indirectly pre-activated semantic fea-
tures. Note that this account would still be consistent with the claim 
that comprehenders pre-activate upcoming word-form forms. This is 
because the only way that the alternative meaning of the homograph 
could have been pre-activated is if its form was also pre-activated. 
Nonetheless, we explored this possibility by carrying out a post hoc 
analysis that contrasted the neural similarity values produced by 
indirectly related pairs (e.g., river “bank” – “loan”) with those pro-
duced by the unrelated pairs, each averaged across the -53 to -8 ms 
time window time window where we detected the form pre-activation 
effect. This analysis did not reveal a significant effect. Of course, this 
does not exclude the possibility that the alternative meaning of the 
predicted homographs was pre-activated in another time window. 
However, a comprehensive investigation of how different meanings 
associated with homographs are pre-activated goes beyond the scope 
of the present study. To investigate this, one would need to construct 
an additional set of highly constraining sentence contexts that predict 
words that are semantically related to the subordinate meanings of the 
predicted homographs.
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retrieval and word-form encoding during language produc-
tion (Indefrey & Levelt, 2004). As such, these latency results 
are consistent with the proposal that strong top-down pre-
dictions generated during language comprehension may be 
implemented by the same circuitry that supports language 
production (Federmeier, 2007; Martin et al., 2018; Pickering 
& Garrod, 2013).

On the other hand, it is important to consider an alter-
native account of why the form pre-activation effect was 
detected so late: It is possible that participants actually 
pre-activated word-form information earlier, but that this 
pre-activation was difficult to detect using our signal-
averaging methods. Word-form features are thought to be 
encoded over a shorter time scale than semantic features 
(Kiebel et al., 2008). Therefore, any jitter in the timing of a 
highly-transient word-form pre-activation effect across trials 
would have made it difficult to detect the initial generation 
of form-level predictions. However, immediately before the 
presentation of the upcoming word, when this pre-activated 
information became relevant for bottom-up form-level analy-
sis, its latent representation might have been “reignited,” and 
brought into an active state across all trials (Sprague et al., 
2016; Stokes, 2015), making the word-form pre-activation 
effect easier to detect.

To investigate this possibility, future studies could carry 
out the same experiment using a faster presentation rate 
(e.g., 500 ms per word). If the form-level pre-activation 
effect disappears at this faster rate, then this would imply 
that there was not enough time for pre-activation to reach 
form features before the arrival of new bottom-up input, and 
that the interval between the pre-activation of meaning and 
form is fixed (i.e., 300 ms). This would provide support for 
a prediction-by-production account in which the generation 
of form-level predictions is limited to slow presentation rates 
(see Ito et al., 2016). If, on the other hand, a form pre-activa-
tion effect can still be detected just before the presentation of 
the target word, then this would suggest that such predictions 
are generated earlier and brought online just before they are 
needed, regardless of presentation rate. This would, in turn, 
imply that, in predictive contexts, form-level predictions are 
generated rapidly and routinely during real-time natural lan-
guage comprehension (DeLong et al., 2021).

Conclusion

To summarize, by combining EEG with RSA, we provide 
direct neural evidence for the pre-activation of both the 
meaning and form of expected words in predictive language 
contexts. Moreover, our finding that the pre-activation of 
meaning preceded the pre-activation of form is consistent 
with hierarchical predictive accounts of language compre-
hension, which posit that information flows from higher to 

lower levels of linguistic representations before new input 
becomes available.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 023- 02385-0.
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