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During language processing,
comprehenders predict upcoming
linguistic input. These predictions
draw on many sources of information
including the preceding sentence
context.

We review a substantial body of evidence
which has explored the information used
and generated in the computation of
prediction, as well as the constraints.

Further progress in understanding pre-
diction in language comprehension will
likely require developing mechanistic
Prediction is often regarded as an integral aspect of incremental language compre-
hension, but little is known about the cognitive architectures and mechanisms that
support it. We review studies showing that listeners and readers use all manner of
contextual information to generate multifaceted predictions about upcoming
input. The nature of these predictionsmay vary between individuals owing to differ-
ences in language experience, among other factors. We then turn to unresolved
questions which may guide the search for the underlying mechanisms. (i) Is predic-
tion essential to language processing or an optional strategy? (ii) Are predictions
generated from within the language system or by domain-general processes? (iii)
What is the relationship between prediction and memory? (iv) Does prediction in
comprehension require simulation via the production system? We discuss
promising directions for making progress in answering these questions and for
developing a mechanistic understanding of prediction in language.
explanations. We discuss four research
questions which may help to guide the
development of these explanations.
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Why predict?
As you read these words, you are probably guessing which words might come subsequently (were
you surprised that the last sentence did not end with 'next'?). Similarly, in most everyday conversa-
tions, as you listen to another person, you are processing what they are saying and planning your
own response. Despite the typically rapid pace of speech – around 2–3 words per second – and
the many things you may want to consider before responding, you will start speaking within about
a quarter of a second after they finish, if not sooner [1,2]. How do you achieve this impressive
feat? This simple question belies the complexity of the cognitive processes involved and the fact
that, at its core, it is a question about the fundamental workings of the language system in the
human mind and brain. An increasingly popular hypothesis is that people are generally able to
keep up with language input by predicting what comes next – by activating the meaning and poten-
tially other aspects of words ahead of time. This hypothesis was somewhat controversial at the turn
of the past century, but research over the past two decades has demonstrated the psychological
reality of 'linguistic prediction' beyond any reasonable doubt. The limelight has therefore shifted
from initial existence proofs to the underlying cognitive architecture and mechanism.

Researchers attempting to simulate language learning and use have often found that the goal of
predicting the next word (or other linguistic unit) appears to endow models with many desirable
properties, including the ability to learn to generate human-like linguistic sequences implicitly
from language input and the ability to replicate neural and behavioral patterns of humans engaged
in language comprehension [3–6]. In addition, predictive processing has been a highly productive
explanatory framework across domains of cognitive science [7,8]. In the domain of vision, in
particular, the computational-level framework has been linked to evidence for a particular instan-
tiation of probabilistic prediction at the mechanistic level (used here to refer to algorithmic and/or
implementational levels in Marr's terms [9]) – predictive coding [10] (Box 1 and Figure 1). According
to themost typical version of predictive coding, prediction signals travel down to the lowest levels of
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx https://doi.org/10.1016/j.tics.2023.08.003 1
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.1016/j.tics.2023.08.003
http://creativecommons.org/licenses/by-nc/4.0/
CellPress logo
Administrator
高亮

Administrator
高亮

Administrator
高亮



Box 1. Predictive coding

The idea that human minds and brains predict and learn from error has a long history in cognitive science. Inspired by
information-theoretic approaches to efficient message/video transmission (e.g., [175]), Barlow [176] argued that
perception encodes sensory stimuli in a way that reduces redundancy and transmits those signals which are least
redundant, in other words those that are least predictable. These ideas were the direct precursors of the modern-
day predictive coding account.

The term 'predictive coding' is sometimes used interchangeably with 'prediction' or 'predictive processing' to refer to any
instance of perception or cognition where a response is reduced for input that is likely given 'top-down' information (e.g., the
statistics of the environment) than input that is unlikely. We reserve the term 'predictive coding' here for themore specific instan-
tiation of this framework proposed by Rao and Ballard [10] to account for the suppression of activity in some visual cortical
neurons (cf [177,178]) that has been taken up by many others across domains of perception, action, and cognition
([8,125,179,180]; comprehensively reviewed in [7]). The key features of this proposal (summarized in Figure 1) are listed below.

(i) Hierarchical organization: sensory inputs (e.g., sound) are represented at the lowest levels, whereas more abstract
information (e.g., word meanings) is represented at higher levels of the hierarchy (in simulations, these levels corre-
spond to layers of a neural network model, but conceptually these levels could map onto different brain regions
and/or different cortical layers within a region).

(ii) Top-down predictions are transmitted from higher levels to lower levels of the hierarchy: each level predicts the
responses in the level immediately below via feedback connections.

(iii) Bottom-up prediction errors travel from lower levels to higher levels of the hierarchy: each level transmits the discrep-
ancy between the predicted response and the estimated actual response to the level immediately above it via
feedforward connections.

(iv) Prediction errors are used to update the response at each level and generate the next prediction, thus allowing the mind
to process/infer the current input and continuously adapt to its environment.

(v) Predictions and errors are carried by distinct populations of functional units: the mapping to neuroanatomy is purely
speculative at this point, but some functional distinction will be necessary to allow both forward cascades of errors
and backward flow of predictions.

(vi) Bayesian inference and precision-weighting: the predictive coding algorithm approximates Bayesian inference. The
outcome of predictive computations corresponds to probability distributions over predictions, as opposed to singular
predictions, potentially in the form of probabilistic population codes [181]. Following Bayesian principles, the posterior
probabilities of the internal model, at each level, capture the uncertainty of both the bottom-up input and the top-
down predictions. When the sensory input is noisy or prior knowledge is sparse, they are said to have low precision
(defined as inverse variance) and are down-weighted in the update computation.

This proposal finds support in neuroanatomy [182], computational simulations which match response patterns of
recordings directly from animal cortical cells (e.g., [10,183]), and a plethora of findings that human neural response patterns
are consistent with predictive coding ([122,184,185]; comprehensively reviewed in [186]). Furthermore, recent
computational work shows that a recurrent neural network trained to optimize energy efficiency, within a predictive
environment, self-organizes into distinct subsets of neurons, one carrying errors and the other carrying predictions [187].
However, many of the empirical studies that are attributed to predictive coding (especially in higher-level cognitive domains)
are also consistent with other possible models of predictive processing. Some empirical results are inconsistent with the
predictive coding account in its current form [188].
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representation, whereas signals carrying prediction error resulting from the comparison of sensory
input and predictions travel upward along parallel pathways. Application of this framework to the
domain of language holds promise. However, prediction at the computational level need not be
implemented by a mechanism with an explicitly predictive objective. Models with different objective
functions (e.g., incremental word recognition, homeostasis) can also account for some aspects of
predictive behavior in humans [11,12].

At the computational level of analysis, many proposals contend that humans predict upcoming
linguistic input based on internal models of the environment, and update those models based
on some comparison between the prediction and the received input ([13,14] inter alia). However,
accounts differ in terms of the specifics of these computations, and the landscape of mechanistic
proposals is muddled. In the current reviewwe first synthesize what is known about the predictive
computations of the human language comprehension system –what information is used as input
to the computational system and what makes up the output, as well as how variability can be
2 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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Figure 1. Schematic of predictive
coding following Rao and Ballard
[10]. M nodes indicate neural activity
encoding a model of the level below.
These models generate top-down (TD)
predictions (Pred., blue arrows) about
the level below. C nodes indicate
comparisons between the activity
predicted by the M of the level
above and the actual activity at the
current level. These comparisons result
in top-down (TD) errors (red arrows
pointing down) which adjust the
estimate of activity at a given level and,
crucially, bottom-up (BU) prediction
errors (red errors pointing up) which
serve to improve model predictions at
the next level up. Nodes at higher levels
receive inputs from multiple instances
of prediction errors at lower levels.
Figure created with BioRender.com.
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understood in terms of additional constraints impinging upon the system. We then turn to
questions about how these computations may be implemented at the process level, emphasize
recent developments and unresolved debates, and look ahead to how the field might move
toward a mechanistic understanding of linguistic prediction. Throughout, we focus on high-
level language comprehension, typically (but not exclusively) at the sentence level, and set
aside detailed discussion of lower-level auditory or visual feature prediction.

Prediction at the computational level
Decades of psycholinguistic research have shown that the processing of a word depends in part
on the words that preceded it – the sentential context. When a word (e.g., 'next') is highly
expected given the preceding context ('Which word will come ... ?'), it is identified more easily
[15], it is read more quickly [16], and it elicits a smaller (negative) electrophysiological response
in the 'N400' time-window [17] than when it is not expected given the context (e.g., 'The following
is an example of a word, ... '). Moreover, listeners direct their attention toward images that they
expect to be referred to next as they hear a sentence unfold [18,19].

Attempts to formalize the notion of 'predictability' or 'expectation' provide converging evidence
regarding the core role of prediction in language processing. The probability of a word in context
(i.e., given the precedingwords, syntactic structures, etc.) can be estimated using corpus counts,
language models, or cloze tasks; words that are lower in contextual probability are read more
slowly [20] and elicit more negative N400 responses [21,22]. However, whether processing diffi-
culty is a log-linear function of probability in context [23], as stipulated in surprisal theory [24], is
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 3
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still debated [25–28]. Similarly, encoding models predicting neural activity (fMRI recordings)
perform better when using representations that incorporate context (via a neural network) relative
to representations of linguistic input that do not (word embeddings from a distributional semantic
model) [29]. (Box 2 and Box 3 provide an overview of the methods used to investigate linguistic
prediction and how they reflect different aspects of language processing).

The interpretation of reading time and event-related potential (ERP) findings as evidence for
prediction was originally the topic of some debate: most behavioral and neural measures do
not provide a read-out of the prediction itself but instead provide a measure of how new input
is processed in light of what may have been predicted. As a result, it is difficult to distinguish be-
tween a case where a listener's processing of a word is facilitated because it had been
predicted before the bottom-up input was received and a case where the received input is inte-
grated with the preceding context and this integration is facilitated when the input matches the
context. However, other findings provide compelling evidence that integration cannot explain all
apparent prediction effects [30–33], although it may also play a role [34].

Moreover, multivariate approaches to analyzing neural data have begun to reveal the predictive
processes occurring in the moments before the crucial input is received. For instance,
Box 2. Investigating prediction in language by measuring human neural activity

Event-related potentials (ERPs)/electroencephalography (EEG)/magnetoencephalography (MEG)

Electrical activity at the scalp is recorded while participants read or listen to language. The EEG signal is time-locked to the
onset ('event-related') of particularly crucial stimuli to compare neural responses, for instance, to words that are predict-
able or unpredictable in a sentence [17]. Unpredictable words typically elicit a more negative potential that peaks
~400ms after it is presented – the N400 – relative to predictable words. Predictability also has downstream consequences
for later components of the EEG, and the specific aspects of prediction/processing that are reflected in each component
constitute an area of active investigation.

The high temporal precision of EEG allows neural responses to bemeasured as soon as words appear. On the other hand,
EEG has very low spatial resolution, and inferences about the neural sources of ERPs are therefore coarse-grained at best.
Determining the nature of what was predicted based on the ERP signal is challenging, and requires complex designs and/
or multivariate analysis approaches. MEG is often used in analogous ways (the signal that is measured derives from mag-
netic fields rather than from electrical currents) but its spatial precision is improved relative to EEG.

Time-frequency analyses

EEG/MEG can also be decomposed into frequency bands – any complex waveform can be seen as a mixture of waves of
differing frequencies. Bands of different frequency may encode/transmit different types of information, and these spectral
analyses have the potential to reveal multiple ongoing mechanisms at work during language comprehension that cannot
be detected by ERPs. For instance, theta band frequencies (4–7 Hz) have been proposed to carry prediction error signals
and have been linked to the engagement of cognitive control [134].

Electrocorticography (ECoG)/intracranial recordings

Recent technological and neurosurgical advances allow electrical activity to be recorded directly from human cortex.
Paradigms from EEG/MEG studies can be readily used with these methods, although this is an area of rapid development
(e.g., [5]). These methods promise to shed considerable light on existing findings owing to their vastly improved spatial and
temporal precision. However, they are not widely available to most language researchers.

fMRI

Neural activity in different brain areas can be indirectly measured via the local increase in blood oxygenation as participants
understand or produce language. In the language network, but not in the multiple-demand network, blood flow appears to
increase when the input is unpredictable [128]. The spatial resolution of fMRI allows inferences regarding the sources of
neural activity and, when combined with functional localization approaches [189], allows conclusions to be drawn regarding
the underlying cognitive processes (e.g., language-specific vs cognitive control). The sluggish nature of the fMRI signal has
prevented fMRI from being as widely used in investigations of linguistic prediction, relative to eye-tracking and EEG, but re-
cent advances in analytical techniques have somewhat mitigated these issues.
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Box 3. Investigating prediction in language by measuring human and machine behavior

Eye-tracking in the visual world paradigm (VWP)

The coordinates of a listener’s eye-gaze are recorded as they observe a visual scene or display while listening to a descrip-
tion of, or an instruction regarding, said scene. How often the participant’s gaze lands on a depicted object is roughly pro-
portional to how much the same or a related concept is active in the listener's mind. The listener’s gaze often lands on
images corresponding to the predicted continuation of the sentence (e.g., more looks to the cake after hearing 'the boy
will eat the ...' than 'the boy will move the ...' [18,19]).

The VWP readily allows researchers to probe the nature of what is predicted by the listener in a given context, as opposed to
indicating the magnitude of their response to a violation of prediction (as in ERPs). However, the set of available options for
display requires careful consideration because it may bias what listeners look at, and the signal (consisting of fixations and
saccades) is the discrete downstream consequence of myriad cognitive processes which are not yet fully understood [190].

Reading time (eye-tracking and self-paced reading)

As people read a sentence, they are likely to slowdown onwords they findmore 'difficult', such as unpredictablewords [16]. This
slowdown can bemeasured by asking participants to read a sentence oneword or phrase at a time – incrementally revealing the
nextword/phrase bybutton-press. Thismethod iswidely accessible to researchers andhas the benefit of being directly related to
the real-life impacts of linguistic prediction (e.g., how the features of a text affect struggling readers). However, this self-paced
reading method has low temporal resolution. Using eye tracking to measure the time spent looking at a word (or words) affords
greater precision, but both approaches are primarily one‐dimensional – they index the duration of processing time – making it
challenging to disentangle underlying mechanisms unless they are combined with other measures/approaches.

Sentence completions

Participants are asked to complete a sentence (e.g., 'In English class, the student read a…'). This is commonly referred to as
a 'cloze task' [191]. When the next word is highly predictable, a majority of people will use that word (e.g., book) to complete
the sentence (by definition). When the context does not allow a strong prediction ('At recess, the student read a …'), the
distribution over possible completions will be closer to uniform (e.g., flyer, text, book, etc.).

Language models

Artificial neural networks and other language models (e.g., n-gram models which compute word probability from n − 1
preceding words based on corpus frequencies), as well as distributional semantic models (vector-based representations
of word meanings based on their co-occurrences with other words or contexts), can be used to select stimuli for
experiments and can be particularly useful when collecting norms from human participants is complicated or insufficiently
precise [27]. However, probability measures from participants and language models do not always align, and how this
alignment is related to model architecture remains poorly understood (Box 4 for further discussion).
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representational similarity analysis (RSA [35]) indicates that, before the crucial input, neural
patterns corresponding to predictions of the same words (in different contexts) are more similar
than the neural patterns corresponding to predictions of different words [36], and these neural
patterns could contain coarse-grained semantic information such as the animacy of the upcoming
word [37]. Similarly, neural patterns preceding a target word may be more similar to those evoked
by the target word itself when that word has high contextual predictability [38]. Furthermore, vec-
tor-space representations of words (GloVe embeddings) show that information about a
predicted word is encoded in the neural activity which closely precedes its onset [5]. In
mechanism-agnostic terms, we can conceive of prediction as the mental state of the
comprehender fashioning itself to resemble what is likely to come next, such that the more predict-
able the bottom-up input from the context, the less change of state takes place when the input is
received and processed.

The input: the context for prediction
The human language system appears to predict on the basis of a constellation of input properties
(reviewed in [14,39]). To make estimating contextual probabilities tractable, the context is often
operationalized as the preceding words in a sentence and their semantic and syntactic proper-
ties. Phonological, lexical, and syntactic sequence-based contextual probabilities appear to
modulate neural responses during naturalistic listening [40], as do those derived from models
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 5
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with hierarchical structure [41]. However, these sequence-based estimates may not fully capture
human predictability judgments [42]. For instance, the semantic similarity (e.g., derived from
distributional semantics models) of a word and its context seems to explain additional variance
in neural signals above and beyond contextual probabilities [43,44], although recent work
shows that this effect is minimized when predictability is estimated using large language models
with a more sophisticated representation of the preceding context [45].

In fact, comprehenders consider a broad scope of contextual information. For instance, the larger
narrative within which a sentence is embedded and world knowledge both affect what is pre-
dicted [46,47]. Pragmatic cues and inferences about the intentions of the speaker also contribute
to predictions. Listeners predict how speakers will correct themselves if they misspeak
(e.g., listeners look to a dog if they hear the speaker say '... his cat, uh I mean his …' [48]).
They also consider the idiosyncrasies of the speaker and adapt their predictions accordingly.
For instance, listeners take into account what the speaker is likely to talk about given their prefer-
ences and interests [49], how fluent the speaker is [50], whether they are a 'native' speaker [51],
and whether the speaker has a proclivity for surprising sentence completions [52]. In this regard,
people sometimes take into account statistical regularities in the context (e.g., if predictable
endings are less likely than unpredictable endings across trials in an experiment) when predicting
upcoming words, although they may not always do so [53–57].

The output: the content of prediction
What information is carried by predictions, and at what grain size? The evidence for semantic or
conceptual prediction is robust (reviewed in [58]). Instead of consisting of a single maximally
probable word, predicted information appears to be graded and, consequently, encompasses
many aspects of form and meaning [30,59]. Depending on how the neural responses are carved
up, the predictions of comprehenders can be shown to capture coarse-grain features such as
animacy [37], as well as finer-grained features that uniquely identify a lexical item, when the
context is constraining [36].

Recent work using naturalistic paradigms – where participants listen to audio recordings (e.g., of
stories, talks, etc.) without any explicit task or experimental manipulation – supports a role for
hierarchical prediction across multiple representational domains (semantics, syntax, phonology)
and timescales, where higher-level information constrains predictions at lower levels [60–63].
For instance, acoustic features of words appear to be more sharply encoded by the brain
when those words are semantically related to their context [64]. Moreover, when uncertainty
about an upcoming word is high, fast-timescale (4–10 Hz) responses in primary auditory cortex
are stronger than when the uncertainty before the word is low, suggesting that sensory sampling
is increased when uncertainty is higher [65]. Slower-timescale (0.5–4 Hz) responses, outside
primary auditory cortex, are increased when a word is more surprising in context, suggesting that
these responses reflect updating of the internal model at higher levels of representation (cf [66]).

Although this work suggests that even low-level speech perception is facilitated by prediction,
these naturalistic studies often cannot temporally disentangle the consequences of prediction
from prediction itself. Whether top-down predictive signals reach sensory-perceptual (visual or
auditory) representations has been the focus of a long-standing debate in this literature. In one
well-studied paradigm, ERP evidence was used to argue that listeners not only predict the up-
coming content word/meaning in a sentence such as 'The boy went outside to fly … ' but they
also predict the form of the article that would need to precede it (i.e., they expect 'a' before
'kite', but 'an' before 'airplane' [67]). Crucially, recent replications and reanalyses suggest that
the effects of specific form predictions may be much subtler than was initially assumed [68–71]
6 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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and that careful consideration of the real-world probabilistic relationships between articles and
nouns may reveal a more nuanced picture of these prediction effects [72–74]. Similarly, listeners
can predict phonological features of an upcoming word when reading rhyming text [31].
However, these experiments do not address to what extent predictions reach lower levels of
perceptual representations in typical comprehension [75].

Constraints and variability in prediction
What are the constraints on linguistic prediction? According to predictive processing/Bayesian
brain accounts, language users continuously consider/update the full probability distribution
over all possible linguistic inputs. However, in its unconstrained form, this proposal is computa-
tionally intractable [76,77]. Resource-rational accounts propose that the mind and brain perform
rational inferences within the constraints imposed by the biological and informational limits of
human brains [78], but what these are, in particular with respect to language, remains to be de-
termined. Investigating variability between people in terms of their predictive processing abilities/
tendencies provides some initial clues about these limits [79]. In particular, three populations have
often been investigated in this context because prediction appears to be systematically different
in these individuals relative to the default comparison group of young adults: children, second-
language learners, and older adults.

Implicit in the predictive processing framework is the idea that humans have an internal model of
the world from which their predictions are derived. This model cannot be innate and must there-
fore be the result of learning. One common view, inspired by connectionist models, is that predic-
tion is not an end in itself, but is instead a means by which the internal model can continuously
adapt to more accurately reflect the world [3,80]. This view is supported by evidence that predic-
tion updates in young children (as measured by eye movements or ERPs in response to an
unexpected word) are larger when children have more vocabulary knowledge [81–83]. By the
same token, predictions become more accurate as children refine their model of the language
[84–86]. An alternative view suggests that the flow of causality is reversed: once children have
sufficient language experience, they begin to predict [87]. A closely related view proposes that
general cognitive maturation explains the delay in adult-like language prediction. The executive
resources and working-memory skills of children increase until their mid-20s [88,89]. On the
assumption that prediction involves such executive resources (discussed in further detail
below), the ability of children to predict upcoming linguistic material develops in tandem.

Similarly, adult language learners who have less (or a qualitatively different) experience with the
language in which they are tested (e.g., second-language learners, individuals with low literacy
skills) also appear to predict less than their same-age counterparts who have more experience
with the language [90–93]. As with the development of prediction in children, these differences
may be explained by the lower accuracy of the prediction-generating internal model of these
individuals [94]. Indeed, these differences go away when the second-language learners
are highly proficient in the language in which they are being tested [95,96]. Alternatively, the
population difference may be mediated by executive resources. In particular, comprehenders
who are less fluent in the language may use up their executive resources on basic aspects of
incremental comprehension (e.g., word recognition), leaving few resources available to generate
predictions [96,97]. In other words, differences in predictive processingmay result from differences
in other aspects of comprehension.

Finally, the difference in neural or behavioral responses between predictable and unpredictable
stimuli is typically reduced for older adults relative to their younger counterparts, suggesting
that the former are less successful in using context to predict ([98–101], cf [102,103]). As with
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 7
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other populations, one proposed explanation of this apparent decline in prediction is that it is
mediated by executive resources [104], which are known to decline from the 20s into older adult-
hood [89]. By contrast, age-related declines in prediction effects may be driven in large part by
experience [105,106]. As we age, the brain refines and optimizes its internal model of the
world, and this may lead to more efficient prediction and attenuated updating in the face of
novel sensory input [107]. Older adults have more experience with the language overall, as
evidenced by larger vocabularies [108], and the nature of their linguistic exposure may differ sub-
stantially from that of younger adults (e.g., different sources, more familiarity with outdated terms
or constructions). In sum, the content of the predictions of older adults may differ from the predic-
tions generated by younger adults owing to differences in their internal models of the language.
More broadly, uncovering how the computation of prediction is constrained by human resource
limits will require knowing what the relevant resources are, and to achieve that we will need to
understand the mechanisms which implement prediction.

Toward a mechanism for prediction in language
Although some aspects of the computations continue to be debated and refined, the evidence is
compelling that humans learn about the properties of the world and the language, and can use
this internal model to generate probabilistic predictions about upcoming linguistic inputs
(Figure 2). However, the landscape of possible mechanisms underlying these computations is
vast, and, in our opinion, exploring it is the next frontier for this field (Box 4 for a discussion of
one approach). In what follows we first briefly summarize a few mechanistic proposals which
have started to emerge, and we then discuss key unresolved questions which may help to
constrain the space of possible mechanisms and guide future research efforts (summarized in
Figure 3).

Some current proposals
Predictive coding
Predictive coding has become a dominant proposal for how prediction in various domains of
perception and cognition may occur at the level of algorithm and/or implementation (Box 1 for
a brief overview of predictive coding outside the domain of language). A predictive coding
account of language posits that linguistic predictions from higher levels (e.g., meaning/syntax)
are sent down to lower levels (e.g., word form/speech perception), and a measure of mismatch
between the input and prediction (i.e., errors) is sent back up the hierarchy. Predictive coding
may be a fruitful way to instantiate the computational-level proposal of a hierarchical generative
framework for language comprehension [14,109]. Another proposal [110] explicitly connects
the amplitudes of N400 ERP components to precision-weighted bottom-up predictive coding
error signals. Indeed, a recent attempt to implement predictive coding as a mechanistic account
of high-level language comprehension shows promising correspondences between the
timecourse of prediction errors and the timecourse of the N400 across multiple contexts [111].

Error-based learning
Although error signals in predictive coding are part of the information flow between levels of the
hierarchy that constitutes inference or comprehension, traditional connectionist/neural network ap-
proaches to language have often incorporated a prediction error primarily as the driver of learning
[3,13,112]. In these architectures, the model attempts to predict the next element in a sequence
and, upon receiving the next input, computes the error between its prediction and the input. This
error is then propagated back to update the model weights, with the goal of minimizing future
(average) prediction error. The error signals themselves, or other values derived from the networks,
can be tied to behavioral or neural indices of prediction. For instance, one account [6] relates the
magnitudes of prediction errors from semantic and sequencing layers of a neural network to the
8 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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Figure 2. Prediction in language comprehension at the computational level. Schematic summary of inputs to,
outputs of, and constraints on the computation of prediction during language comprehension. An asterisk (*) indicates
areas of ongoing debate/investigation. Figure created with BioRender.com.
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amplitudes of the N400 and P600 ERP components, respectively. However, these models have
primarily been tested on small toy datasets, and the relative merits of different variants (e.g., in
terms of fit to data as well as neurobiological plausibility) have not yet been systematically evaluated.

Alternatives
There are numerous other possible model architectures. Many of these may not incorporate
explicit prediction (or prediction error) but may still be able to account for the empirical data
patterns reviewed in the previous section. For instance, neural networks trained to simulate
incremental word recognition can display behaviors consistent with predictive processing,
notably reductions in signal strength when an input is predictable [12,113]. Further, networks
of connected reservoirs which receive input from the environment and simply strive to maintain
Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx 9
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Box 4. What can we learn about prediction from neural language models and brain data?

A potentially promising direction for understanding prediction at the process level is the use of large artificial neural net-
works as mechanistic models rather than simply as statistical tools for computing surprisal values (or other metrics). Some
researchers argue that, in the absence of relevant animal models, languagemodels are the closest approximation tomodel
systems for human language (discussed in [4]). In particular, approaches that compare specific architectures and probe
the causal role of their components may help to adjudicate between classes of mechanistic proposals. Many such inves-
tigations find that models engaged in (hierarchical multiscale) prediction provide the best fit to brain data [4,60,62,192].

However, predictionmay not uniquely account for the fit of languagemodels to brain activity. Metrics such as the generality
of representations (i.e., how well they transfer to a different task) [193] are also correlated with the ability to predict brain
activity. Moreover, caution is warranted in interpreting these statistical relationships between neural language models
and brain data. The ability of an artificial neural network to predict neural and behavioral data cannot be, on its own, taken
as evidence that the model is mechanistically equivalent to human cognition ('correlation does not imply cognition' [194]; cf
[195]). Deeper probing of model behavior and representations, their relationship to neural data ([196] for one approach),
and the use of theory-driven benchmarks will be important for making stronger claims of equivalence.

In addition, smaller-scale models, operating exclusively over toy languages and that are constructed based on specific
theoretical and neurobiological considerations, may also play an important role. What they lack in broad coverage and
accuracy (e.g., of surprisal estimates) they make up for in interpretability. With small neural network models, researchers
can exhaustively probe the internal representations and dynamics, thus providing complementary constraints for mecha-
nistic proposals, and investigate questions that large languagemodels – optimized for typical natural language processing
tasks – do not address, such as the relationships between different brain networks (e.g., cognitive control and language).
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homeostasis display predictive processing-like behaviors: their spiking activity patterns in
response to partial inputs are most similar to those of the most likely continuation given the
training data [11]. More comprehensive testing will be necessary to determine whether these
mechanisms succeed in accounting for the full scope of predictive processing effects that have
been documented and described at the computational level.

Key unresolved questions
Is prediction essential or optional?
Many current frameworks in the cognitive science of language view the prediction of upcoming
linguistic content as part-and-parcel of the functioning of the human language system (e.g.,
[13,14,23,39,114]). However, on other accounts, prediction is a beneficial but optional skill
[115], one that may emerge as the result of literacy [116].

According to accounts that view prediction as an essential computation, an entirely passive com-
prehension mode is unlikely for adults reading or listening to typical sentences. This view draws
on support from the myriad findings (in the section on Prediction at the computational level) of
spontaneous predictive behavior during language comprehension in naturalistic settings, as
well as from evidence of neural signals of prediction generation before the bottom-up input is received
(e.g., [5,36,38]). In addition, a constraining sentence context elicits a more negative slow-wave re-
sponse ('semantic readiness potential') preceding the crucial word, and this potential appears to
have different spatial topographies for sentences describing hand-related versus face-related actions
[117], suggesting that it encodes some aspect of the semantic content of the context and/or predic-
tion. Similarly, the N400 amplitude in response to adverbs (e.g., 'often') is greater when the adverb
increases the predictability of the target word that follows it [118], consistent with the view that the
N400 indexes the updating of a probabilistic meaning representation [105].

By contrast, proponents of the view of prediction as an 'optional strategy' point to studies showing
variability across populations (in the section on Constraints and variability in prediction) and the ap-
parent absence of prediction effects under 'adverse' conditions. For instance, in a visual-world par-
adigm (VWP), when the time-window for prediction is short and minimal preview time is provided,
predictive fixations to a target noun that is gender-congruent with the article are reduced relative to
10 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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Figure 3. Unresolved questions that will inform mechanistic accounts of prediction during language
comprehension. (A) Essential versus optional. Blue bars schematically represent the probabilities of upcoming words
(w1 = word 1, w2 = word 2, etc.). Only four words are shown, but the probabilities are distributed over all possible
continuations and encompass meaning, form, etc. On an account of prediction as an essential component of language
comprehension, predictions have higher entropy when the context is uninformative and/or their cognitive resources are
taxed (e.g., unnaturally fast presentation, dual task). On an account of prediction as an optional strategy, no probabilities
are computed under those circumstances. (B) Language-specific versus domain-general. Blue circles represent language
network processes. Red circles represent multiple-demand network processes. Some aspects of linguistic prediction are
likely implemented in local circuits (blue circles and arrows reflect a predictive coding-like architecture in which predictions
travel up and errors travel down the hierarchy). Domain-general cognitive control may play a role under specific circum-
stances (e.g., when there are errors in the input or when flexible switching between contexts is required), and the locus o
its influence is unknown (as indicated by dashed arrows connected to either errors or predictions). (C) Prediction and mem-
ory. The three stages of the cycle represent (clockwise) (i) the generation of probabilistic predictions in response to language
input (blue bars represent probabilities), (ii) the change in memory representations that results from the prediction that was
generated and its relationship to the received input (e.g., a highly predicted input that is disconfirmed by the received inpu
is still 'boosted' in memory), and (iii) the lossy memory for the context used to predict a subsequent input, which is
determined by the state of an individual's memory for language. (D) Prediction as production. Comprehension and the
prediction processes that support it receive sensory/perceptual inputs and extract meaning. Production consists o
transforming the intended meaning of a speaker into motor actions. Although they tap into the same meaning representations
the low-level input/output representations of production (i.e., motor movements of speech articulation, writing, signing) and
comprehension (vision, audition, touch) are distinct. Whether prediction during comprehension involves forward-simulating pro
duction, and how far down the production pipeline this simulation might go, is an open question. Abbreviations: EF, executive
function; MD, multiple-demand system. Figure created with BioRender.com.
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slower listening conditions [119] (note that there is an important distinction to be made between
scenarios where humans refrain from predicting when input is rapid and scenarios where re-
searchers fail to detect predictions on faster timescales: current measurement tools, even those
with fast temporal resolution, often cannot distinguish between these scenarios). Similarly, read-
ing-time differences between predictable and unpredictable sentence completions approach
zero when the proportion of sentences with unpredictable endings in the experiment is high [120].

One challenge in disentangling these two perspectives is that an apparent lack of difference
(in eye movements, ERPs, etc.) between a predictable and an unpredictable sentence continua-
tion is difficult to interpret. In particular, experimental manipulations of predictability vary in terms
of their effect sizes. In some cases a real effect of predictability may be so small as to require very
large amounts of data to reliably detect it (discussed in [69,70]). Setting aside methodological
concerns, this could mean that (i) the listener predicted nothing and simply passively waited
for the next input for both types of sentences, (ii) the listener had a 'strong' prediction (e.g., a
probability distribution with low entropy, where one continuation has much higher probability
than all others) for the predictable sentence, but it did not match what the experimenter selected
as predictable, or (iii) the listener had a 'weak' prediction (e.g., a probability distribution with higher
entropy). The prediction for unpredictable sentences, in the latter two scenarios, might corre-
spond to a (close to) uniform distribution over continuations, in line with a view that prediction is
essential if not necessarily specific. By analogy to a neural network or statistical model which
improves its predictions as it receives more input, learners with little experience – or experience
with data from a different generative process – may engage in prediction, but those predictions
may deviate from what the experimenter assumes (as in scenarios ii and iii). The resulting eye-
tracking and electroencephalography (EEG) patterns (assuming typical current approaches)
would be indistinguishable from scenarios of absence (or diminished frequency) of prediction. It
is worth noting that multivariate approaches provide one potential avenue for characterizing the
distribution over predictions [37] and disentangling at least scenarios (ii) and (iii).

In terms of mechanism, the 'essential computation' view benefits from parsimony. On this view,
continuously predicting and updating the internal model is the ubiquitous and obligatory dynamic
of the language system, and any metabolic cost of prediction is subsumed within the cost of
engaging in language comprehension and learning from experience. By contrast, 'optional' pre-
diction accounts must – in addition to proposing a mechanism for prediction that is peripheral to
the language comprehension/learning system – posit a mechanism by which the cost or utility of
the prediction is tracked and evaluated. Executive function has often been proposed to fulfill that
role (discussed in the following section and in Box 5).

Does linguistic prediction rely on language-specific or domain-general processes?
The term 'domain-general' is used to mean many different things in cognitive science – at least
two of its uses are intersecting and relevant to understanding linguistic prediction at a mechanistic
level. In one sense, prediction can be thought of as 'domain-general' because it is a 'canonical
computation' of human cortex [121] that takes place in visual processing [122], sensorimotor
learning [123], music [124], and social cognition [125], among many other domains. In another
sense, however, it may be 'domain-specific' if it is implemented in local circuits rather than
being directed by a shared prediction hub [126]. These need not be fully mutually exclusive.
Unpredictable linguistic stimuli are known to evoke their largest responses in the language
network – a set of frontal and temporal brain regions which respondmost strongly and selectively
during language comprehension [127,128]. Thus, the computation of linguistic prediction likely
takes place, at least in large part, within the local circuits of this language network. Whether addi-
tional networks (or hubs) are recruited for linguistic prediction is an open question.
12 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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Box 5. Domain-general processes in language

A long-standing question in the cognitive science of language concerns the extent to which aspects of language process-
ing involve domain-general processes. The exact meaning of 'domain-general' is often ambiguous. Plausibly, despite its
functional specialization for language, the language network shares computational properties, such as prediction, learning
from error, and inference, with most other regions of association cortex (e.g., [122,197]). However, it is unclear to what ex-
tent these computations occur within local circuits [182] or whether they are mediated by a hub [198] that is responsible for
cognitive control across domains [199].

Independently, aspects of cognitive control have long been proposed to be involved in language processing [200]. These
two threads are difficult to disentangle: some accounts view canonical computations and cognitive control as two sides of
the same coin [135] or cognitive control as emerging from canonical computations at the highest level of a multi-level
cortical hierarchy [201,202].

Cognitive control and associated terms such as executive function, working memory, and attention broadly refer to the
ability to flexibly process information in a task-relevant way (e.g., [129,203,204]). The relevant computations appear to
recruit a network of frontal, cingulate, and parietal brain areas (e.g., [130,205]) which are engaged regardless of the
substrate of information processing (although some functional biases, such as toward visual vs auditory modalities, may
exist within the network [206,207]). Although some correlational studies have suggested that cognitive control is involved
in language processing based on the observation that individuals who perform well on cognitive control tasks are more
likely to perform well on measures of language processing (e.g., [208,209]; cf [210]), these conclusions are often compli-
cated by the challenge of measuring language abilities in a valid and reliable way [106,131]. On the other hand, during
naturalistic language comprehension (i.e., without an explicit task), the frontoparietal cognitive control network appears
to be minimally engaged [211,212]. Although 'passive' comprehension may not require cognitive control – and therefore
the core functions of language processing may be independent of executive functions – many aspects of everyday
language use are far from 'passive'. For instance, producing language requires the selection of a particular form to convey
a meaning (amongmultiple options) that will be most appropriate for the communicative goal at hand [213], and real-world
conversations often require compensation for 'noise' in the input and maintenance of multiple contexts on different time-
scales (e.g., interpreting language according to the goals of different speakers, or combining local/sentence context with
larger discourse context). Further exploration of language use in varied ecological contexts (e.g., in noise, with multiple
speakers, etc.) and integration of models of cognitive control with language (e.g., [214]) may spur more specific mechanistic
predictions about when and how language comprehension invokes cognitive control.

Trends in Cognitive Sciences
OPEN ACCESS
Another sense of 'domain-general' refers to the engagement of cognitive processes, such as
executive function and working memory (Box 5), which are often associated with increased
mental effort regardless of the computational substrate [129] and can be functionally localized
to a frontoparietal network in the brain (known as the multiple-demand network [130]). Whether
linguistic prediction engages amodal executive function and/or working memory is an area of
active research that has the potential to substantially constrain the hypothesis space of neural
architectures for language (reviewed in [106]). If linguistic prediction recruits amodal executive
function, then an architecture in which prediction is implemented wholly in local language circuits
becomes unlikely, but a variety of hybrid architectures could be compatible.

The observations of reduced prediction in some populations (e.g., children, older adults, and
second-language learners) have been used to argue for the role of executive function (EF)/working
memory (WM) in prediction, based on the assumption that young children and older adults have
reduced EF/WM [88,89] and that the EF resources of second-language learners are already
taxed. Attempts to relate individual differences in EF/WM to linguistic prediction have yielded
mixed results [131–133]. Alternatively, executive resources may come online to deal with the con-
sequences of prediction rather than during generation. EEG studies have reported increases in
power in theta band frequencies associated with unexpected words in a high-constraint context
[134]. Activity in the theta band has been linked to both cognitive control and prediction error
[135]. In sentence reading, power in the theta band may reflect the process of updating represen-
tations (cf [65]). Given the low spatial resolution of EEG, it is unknown whether these oscillatory
effects reflect local computations within the language network or whether other systems
are recruited.
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Similarly, it appears that attention – sometimes considered to fall within the umbrella of
executive resources, although it can be dissociated from inhibitory control or working memory
[136] – appears to be needed to engage fully in predictive processing because listeners who
are simultaneously distracted by a visual monitoring task show less facilitation from context in
accessing the semantics of a word (i.e., smaller N400 effects [137]). Spectral analyses of EEG
data have reported decreases in power in alpha/beta band frequencies before the target word
when the context is constraining [134,138,139]. Activity in the alpha/beta band has been linked
to increased attention across a variety of domains [140], suggesting that attention could be
particularly important for the generation of predictions or that constraining sentences are more
attention-grabbing.

By contrast, during naturalistic story listening, the relationship between neural activity and word-
by-word surprisal is robust within the language system, but not within the multiple-demand
system [128]. In addition, behavioral measures of comprehension difficulty (reading time slow-
downs) elicit robust blood oxygen-level dependent (BOLD) responses within the language system,
but not within the multiple-demand system [128,141,142]. These converging findings indicate that
frontoparietal executive resources are not recruited during typical language comprehension, at
least to a degree that is detectable by fMRI.

This does not rule out the possibility that executive resources might be recruited in cases where
the input is anomalous or is perceived to be an error. For instance, words that are predictable in
context but appear to contain an easily corrected error (e.g., 'He went to deposit his check at
the pank') elicit a P600 ERP component [143,144] which is thought to be part of a larger family
of P300 components that are involved in probabilistic error monitoring across domains and
modalities [145]. Alternatively, cognitive control may be necessary for tracking changes in
context on a longer timescale ([146,147]; cf [103]). The language network of the brain does
not appear to be sensitive to linguistic context beyond (approximately) the sentence level
[148], but humans flexibly adapt their predictions to the speaker or larger discourse environment,
even in the absence of long-term exposure [47,49]. For instance, knowing where someone lives
can immediately change our prediction of what theymight say in a sentence such as 'In themorning,
I hear a lot of … [cars, birds, etc.]', even if this is the first thing we have ever heard them say. This
flexibility may rely on interactions between the language network and the domain-general multiple-
demand network or further domain-specific networks such as the theory of mind network which
is selectively engaged when humans reason about the mental states of others [149,150].

What is the relationship between prediction and memory?
What we predict is shaped by what we remember [151]. In the moment of processing,
comprehenders derive predictions based on a representation of the context that is limited by the
lossiness of human memory [152,153]. Over the course of development, children learn internal
models that allow them to adequately use memory to predict the language they experience in
their environment. However, the learning does not stop there (discussed in the section on
Constraints and variability in prediction). Our mnemonic representations and predictions are
continuously molded by what we read, watch, and discuss in everyday life. This is most evident
when we consider how the predictions of 'experts' in a specialized domain differ from those of
non-experts [154,155].

How does this learning take place? According to error-based learning accounts, every prediction
instance is followed by a comparison between the prediction and the received input, and the
discrepancy between the two is propagated through the network leading to an updated internal
model. The updated model, in turn, determines both how a future context will be remembered
14 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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and the prediction that a given context will generate. This class of accounts (in its simplest form)
predicts that each instance of prediction also constitutes a learning event: when the prediction is
far from the input, the updating is substantial, and when the prediction is close, it is minimal. Other
adaptation mechanisms are also possible (e.g., homeostasis maintenance, reinforcement
learning), and these should entail alternative testable hypotheses about the consequences of
linguistic prediction.

One hypothesized neural signature of this update as it is being propagated through cortex is the
late frontal positivity which is observed when the comprehender receives an input that is plausible
but distinct from what they likely predicted (because the context points strongly to a different
completion) [156–158]. This component has been linked to inhibitory control processes [159],
and is potentially consistent with a role for cognitive control in prediction error signaling [135].

In addition to the immediate consequences indexed by these late frontal positivities, prediction
also has longer-term consequences for the listener's representation of the language in memory.
Words that are highly predictable in context (e.g., 'Alfonso has started biking to work instead of
driving his car') elicit smaller repetition effects (measured as a reduction in N400 amplitude)
when they are read again later (in a different sentence) relative to those which were originally
less predictable from the context ('Jason tried to make space for others by moving his car')
([160]; cf [161]). A learning mechanism that relies on prediction error is consistent with these re-
sults because a larger prediction error (when 'car' is unpredictable) leads to a larger change to
network connections – memory – and future estimates [105]. Further, words that would have
constituted predictable sentence completions but were never presented (participants
instead saw an unexpected ending) elicit smaller 'pseudo-repetition' effects when they are later
presented [162] and more false alarm responses in a subsequent memory test than unrelated
words [163], suggesting that there are lingering effects of generating the prediction on the individ-
ual’s internal model that are not (fully) eliminated by the update process. Whether such memory
effects fall out of future mechanistic accounts may provide a useful target for comparison.

What is the role of the production system in prediction during comprehension?
Early accounts of prediction during language comprehension proposed that these predictions
are implemented in the same circuits that are used for language production [13,39,164]. This
proposal is consistent with how prediction and production are implemented within a neural
network model (e.g., [6]) and with evidence that production fluency is correlated with ERP effect
magnitude at the level of the individual [165]. When participants are engaged in an articulatory
suppression task (repeating the syllable /ta/ out loud) during comprehension, their N400 effects
to articles preceding a predictable versus unpredictable noun were reduced [166], suggesting
a causal role for the production system. Moreover, reading (silently) a highly predictable word
during comprehension appears to confer a larger mnemonic benefit than an unpredictable
word, akin to producing that word out loud rather than reading silently [167]. In addition, reading
a predictive context out loud rather than silently appears to facilitate prediction [168]. The state of
a word in memory appears to be affected both by its activation via a preceding context and by its
activation via generation, suggesting shared or, minimally, tightly integrated representations for
prediction during comprehension and for production.

However, a recent version of the prediction-by-production perspective proposes that prediction
takes place via the production system only under particular conditions when the costs of produc-
tion are low [115]. This account distinguishes the obligatory derivation of a speaker's intention via
comprehension and covert imitation from the optional processes that generate predictions by
running the intention through the production system. In this regard, addressing the role of the
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Outstanding questions
How do socio-contextual inferences
impact predictions? For instance, a
speaker's dialect can trigger a host of
inferences about the language use
and goals of a speaker, but how we
flexibly adapt our predictions to the
speaker context is unknown.

Do people predict more strongly when
predictions are repeatedly confirmed
than when they are disconfirmed?
Indeed, people may engage more in
prediction when individuals repeatedly
produce predictable utterances
rather than unpredictable utterances.
However, several studies have
suggested limits on whether people
engage in 'rational adaptation' of their
predictions.

Is the N400 ERP a reflection of predic-
tion or updating? Neural network simu-
lations show that N400 amplitude can
be successfully modeled as a process
of updating a probabilistic representa-
tion of meaning. However, experi-
ments have thus far not supported a
direct link between N400 amplitude
and updating.

Is prediction sufficient for understanding?
The purpose of human communication is
plausibly to exchange thoughts between
minds, potentially in the service of
performing actions that are adaptive,
and this requires understanding
the meaning of what is being
communicated. The relationship
between prediction and understanding
is not yet clear. For example, artificial
neural networks can predict linguistic
sequences with high accuracy, but it is
unclear whether this endows them
with the ability to understand.
production systemmay inform, and be informed by, the question of whether prediction is essential
or optional (discussed in the section on Is prediction essential or optional?).

This issue also bears on another important question in language research: what is the relationship
between language comprehension and language production? The low-level input/output repre-
sentations of production (i.e., motor movements of speech articulation, writing, signing) and
comprehension (vision, audition, touch) are distinct. Neuropsychological work has long sug-
gested that the divide between production and comprehension occurs relatively upstream:
patients with aphasia often have largely preserved comprehension in the presence of production
deficits or, more rarely, the reverse [169]. However, the two systems must share some represen-
tations because they both tap into the same rich world and linguistic knowledge. Early (and
lifelong) language acquisition involves learning to produce linguistic sequences that follow the
patterns of what one has heard from other speakers [170]. In addition, production, if it is to
have the desired effect of communicating intended information, must entail considering how
the listener will interpret what is said [171,172]. Indeed, neuroimaging evidence from healthy
individuals suggests that there is substantial overlap in the brain regions engaged during high-
level language production and comprehension [173,174]. Given the current spatial resolution of
fMRI, these findings do not rule out the possibility that circuits for comprehension and production
are separate but are connected and tightly interdigitated within the language network. Emerging
techniques such as laminar fMRI and intracranial recordings promise to shed light on this
key question.

Most mechanistic proposals focus on either comprehension or production (cf [13]). As the degree
of interconnectedness of these systems is more thoroughly understood, mechanistic models
optimized for both the goals of comprehension and production (e.g., saying the right words in
the right sequence such that the listener will infer the intended meaning, while minimizing effort)
may yield novel insights and constraints that have been missing from accounts of the role of pre-
diction in comprehension alone.

Concluding remarks
In daily conversations, when reading the news, or engaging in most common forms of language
comprehension, humans appear to concurrently predict. They use all cues available to them –

preceding words, world knowledge, experience with the speaker, etc. – to put themselves in
the right state for the input that will come next, and their predictions can encompass both the
meaning and the form. Predictive processing of this type is thought to facilitate rapid exchanges
of information, reduce (potentially costly) uncertainty, and enable lifelong learning. Despite
compelling empirical evidence and a well-supported computational description, we do not yet
know how the computations are constrained by the underlying mechanisms.

In the current review we have outlined key issues that, in our view, can help to guide the develop-
ment of a mechanistic account of linguistic prediction. These include (i) determining whether pre-
diction is essential and constitutive for language processing, as opposed to an optional strategy,
(ii) delineating the role of non-linguistic mechanisms in linguistic prediction, (iii) explaining the
bidirectional effects of memory on prediction, and of prediction on memory, and (iv) identifying
the extent of interconnectedness between language production and language comprehension.
Progress on these issues will circumscribe the space of (artificial and cortical) architectures and
learning mechanisms that are considered.

Understanding linguistic prediction is a goal that lives at the heart of the cognitive sciences. Its
pursuit draws on evidence and methods from psychology, linguistics, neuroscience, philosophy,
16 Trends in Cognitive Sciences, Month 2023, Vol. xx, No. xx
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and artificial intelligence. It has been, and continues to be, at the center of theoretical debates
about the nature and development of human and machine intelligence. The quest to understand
linguistic prediction at the mechanistic level promises to unify the different strands of research
which have thus far operated in partial isolation, sometimes at different levels of analysis, and
opens up a new set of questions at their intersection (see Outstanding questions for examples),
suggesting that it will continue to have an equally profound influence on the field in the future.
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