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Highlights
Accounting for human spatial memory
requires the postulation of a mental
language that can recursively compose
primitives of number, space, and repeti-
tion with variations.

The same language accounts for the
human perception of binary auditory
sequences.

Minimum description length, rather than
actual sequence length, predicts human
working memory for auditory and visual
sequences.
Natural language is often seen as the single factor that explains the cognitive
singularity of the human species. Instead, we propose that humans possessmul-
tiple internal languages of thought, akin to computer languages, which encode
and compress structures in various domains (mathematics, music, shape…).
These languages rely on cortical circuits distinct from classical language areas.
Each is characterized by: (i) the discretization of a domain using a small set of
symbols, and (ii) their recursive composition into mental programs that encode
nested repetitions with variations. In various tasks of elementary shape or
sequence perception, minimum description length in the proposed languages
captures human behavior and brain activity, whereas non-human primate data
are captured by simpler nonsymbolic models. Our research argues in favor of
discrete symbolic models of human thought.
When perceiving geometric shapes,
humans exhibit a strong geometric
[The universe] cannot be read until we have learnt the language and become familiar with regularity effect, which is absent in non-
human primates.
Multiple languages with similar computa-
tional principles but distinct, parallel brain
circuits coexist in the human brain.
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the characters in which it is written. It is written in mathematical language, and the letters
are triangles, circles and other geometrical figures, without which means it is humanly
impossible to comprehend a single word.
Galileo Galilei, Il Saggiatore (The assayer), 1623.

A universal human predilection for symbolic structures
The Lascaux cave, south of France, is famous for its spectacular depictions of aurochs, horses,
and deer, from over 18 000 years ago. A lesser-known fact, however, is that prehistoric humans
also left many nonfigurative signs (see Glossary) such as rectangles, series of dots, etc. (Figure 1).
Abstract geometrical patterns are omnipresent in human productions throughout the globe and pre-
date figurative art by hundreds of thousands of years. For instance, earlyHomo sapiens left a network
of parallel lines and equilateral lines in ocher at Blombos Cave, South Africa, ~70 000–100 000 years
ago [1], and Homo erectus drew parallel lines and zigzags on a shell in Java ~540 000 years ago [2].
Even after years of human contact, non-human primates, when given pencils, never produce such
structured geometrical shapes and drawings [3]. Thus, humans are different, even in domains such
as drawing and geometry that do not involve communicative language. We refer to this observation
using the term ‘human cognitive singularity’, the word singularity being used here in its standard
meaning (the condition of being singular) aswell as itsmathematical sense (a point of sudden change).
Hominization was certainly a singularity in biological evolution, so much so that it opened up a
new geological age (the Anthropocene). Even if evolution works by small continuous change
(and sometimes it does not [4]), it led to a drastic cognitive change in humans.

Many hypotheses have been proposed for human singularity, including a special competence for
analogy, theory of mind, teaching, cultural memory, or interindividual communication [5–9]. Here,
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Figure 1. Ubiquity of geometrical structures in human cultures. Examples of small- and large-scale geometric
drawings and constructions. (A) Geometrical shapes below the painting of a Megaloceros in Lascaux, France, ~18 000
years old. (B) Spiral stone engraving on Signal Hill in Saguaro National Park, Arizona, from 550 to 1550 years ago. (C)
Boscawen-Ûn’s Bronze Age elliptical cromlech in Cornwall.
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Glossary
Sign: according to Ferdinand de
Saussure’s classic definition, a sign is a
pairing, often arbitrary and conventional,
between a ‘signifier’ (the physical form of
the sign) and a ‘signified’ (the object or
concept that is being referred to). Con-
fusingly, the word sign is sometimes
used to refer solely to the signifier (e.g., a
road sign). Following Charles Sanders
Peirce, the forms of signs can be sorted
into three categories: icon, index, and
symbol.
Icon: a signifier that bears a physical
resemblance to its signified object or
concept, for instance, a schematic
drawing of a plane ✈ as a sign for an
airport.
Index: a signifier that bears an arbitrary
but regular relation of spatial or temporal
proximity to its referent and can there-
fore ‘point to it’, evoking it by associa-
tion. For instance, a bell that tells an
animal that food is coming. Animal
communication, whether spontaneous
or trained in the laboratory, relies on
indexical relations.
Symbol: a signifier that can enter into
syntactic relations with other symbols to
form a system or language. A symbol
does not exist in isolation but partici-
pates in a symbol system in which the
symbolic relationships parallel some of
the relationships between the corre-
sponding concepts. For instance, in the
expression ‘2 + 1 = 3’, a symbolic
manipulation predicts the result of
adding one item to a set of two. Symbols
can be external (e.g., the physical mark
‘2’ on this page) but also internal to the
brain (e.g., the neural assembly that
physically represents number 2 in your
brain and can combine with others to
form mental expressions such as ‘2 + 1
= 3’).
Language: unless otherwise stated, we
use the term ‘language’ in the technical
sense of formal language theory: a sys-
tem of rules that compose elementary
symbols to form arbitrarily complex
expressions.
Program: a sequence of symbols that
act as primitive instructions in a language
that a machine (including the brain) can
process and convert into a series of
operations. Here, we allow for mental
programs, that is, internal expressions
that contain a set of instructions and can
be unfolded into a series of mental pro-
cesses (e.g., for drawing a square).
Recursive language: a language that
allows instructions to be nested inside
we propose that the deceivingly simple ability to draw a zigzag points to a deep cognitive differ-
ence, which may have impacted all of the aforementioned competences. Why are humans the
only species to have developed not only spoken and written languages, but also the languages
of science, music, mathematics, visual patterns…? We argue that behind each of these domains
of competence lies a specifically human mode of mental representation: discrete symbols and
their composition in a recursive language allow our species to build arbitrarily complex mental
structures out of a very small set of initial primitives. Charles Sanders Peirce famously distin-
guished three types of signs: icon, index, and symbol (see [10–12]). We suggest that humans
owe their singularity to symbols.

Experimentally, using highly simplified perceptual paradigms, we found that even the simplest as-
pects of human perception, such as how we see a square, perceive a binary rhythm, or draw a
zig-zag, are different in humans, in a way that can only be explained by appealing to such discrete
and compositional mental representations. Of course, other animals perceive the difference be-
tween a square and a circle, but if our hypothesis is correct, they do so using only classical visual
recognition mechanisms, whereas humans also engage a logical, recursive mode of representa-
tion akin to a programing language.

The present proposal is closely related to a long tradition of theorizing that placed a key emphasis
on the central role of recursive tree structures in human language and cognition [13–16] (Box 1).
Tecumseh Fitch, in particular, stressed the specifically human propensity to construct tree struc-
tures out of any data, which he dubs ‘dendrophilia’ [14]: ‘Humans have a multi-domain capacity
and proclivity to infer tree structures from strings, to a degree that is difficult or impossible for most
non-human animal species’ [14]. Our results disagree with this statement on only one point: there
does not seem to be a single multi-domain faculty or core brain circuit for syntactic structures.
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Box 1. Symbols and languages: a hypothesis with a rich history in cognitive science

The hypothesis that human thought rests on a language of symbols and grammatical rules has a long history (e.g., Augustine,
Ockham, Descartes, Boole, Peirce…) [110]. In 1936, Alan Turing proposed that the operations in a mathematician’s mind
could be captured, in first approximation, by a Turing machine, a simple device that writes and reads symbols from a tape
according to conditional rules forming programs [111,112]. In 1951, Karl Lashley gave many arguments suggesting that
the human competence for sequence processing goes beyond simple associative chains and instead involves nested plans
[113]. In 1957, Noam Chomsky formulated his influential argument against the then-dominant Skinnerian view of language
[114]: sentences, with their potentially unlimited embeddings of phrases within phrases, were not mere associative chains
of words, but tree structures emerging from the recursive application of rules forming a generative grammar.

In parallel, a lesser known line of research developed equally precise proposals concerning the human representation of
sequential and visual rules. In 1967, George Miller [115] developed his project Grammarama, a ‘program of laboratory ex-
periments to investigate how people learn the grammatical rules underlying artificial languages’. Herbert Simon designed a
computer-like language that captured human intuitions of regularities in letter sequences [56,116] and postulated that
whenever humans hear or see a sequence, they infer and store in memory a short program capable of reproducing it.
Leeuwenberg proposed a highly detailed language capable of describing any regular sequential pattern [117] as well as
2D and 3D shapes [54]. Leeuwenberg argued that the human perceptual system constantly seeks the most compact in-
terpretation of stimuli in this internal language, the least ‘structural information load’. The resulting ‘structural information
theory’ compared favorably with previous structuralist or Gestalt approaches to perception (as reviewed by [118]) and re-
ceived further experimental support by Frank Restle (e.g., [55,119–121]) as well as extensions tomore complex composite
shapes [53,122–124].

The generative grammar approach had a broad influence on theories of the grammar of rhythm and music [57,58,91,92]i,
mathematics [23,125], concepts [93,126–130], or theory of mind [131,132]. It is integral to contemporary Bayesian theo-
ries of rational inductive inference, which view human learning as a search for the most probable internal representation of
incoming data in a probabilistic language of thought or context free grammar [127,129,130,133–136]. Recent simulations
suggest that a single Bayesian selection algorithm may learn many different languages and data structures [93,136].

The proposal that symbols and grammars are unique to humans also has a long history [10,11]. Hauser, Chomsky, and
Fitch [13] famously proposed that the capacity to form recursive representations is absent in other animals and lies at
the core of the human language faculty. The proposal was later extended to suggest that a competence for the mental
representation and manipulation of nested tree structures, called dendrophilia [14], universal generative faculty [137], or
recursive mental programs [138,139], underlies the singularity of the human mind in all cognitive domains [15].
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each other. For instance, in the language
we propose for geometric and sequen-
tial patterns, the Repeat instruction can
repeat a specific symbol [Repeat4(A) =
AAAA] but also another Repeat instruc-
tion: Repeat2[Repeat2(A) Repeat2(B)] =
AABBAABB.
Data compression: the search for a
compact description for data that takes
up less space in human or computer
memory. There are multiple compres-
sion algorithms, such Lempel-Ziv-Welch
(LZW), which differ in the regularities they
can detect and, therefore, in the com-
pression rate they attain.
Minimum description length (MDL):
the size of the data once it is com-
pressed to the shortest possible
description in a given language or com-
pression scheme.
Kolmogorov complexity: a mathe-
matical concept, due to Solomonoff,
Kolmogorov, and Chaitin, roughly
equivalent to minimum description
length, but for universal Turing
machines. The Kolmogorov complexity
of a string is the length of the shortest
program that generates it. Kolmogorov
complexity is uncomputable (i.e., it is
impossible to write a program that
computes the Kolmogorov complexity
for any arbitrary string).
Instead, evidence supports the existence of multiple parallel brain circuits hosting languages with
partially distinct programing styles and domain-specific primitives (Figure 2). A syntactic core ex-
ists for spoken and written language [17–19], but the brain areas it mobilizes are distinct from
those supporting the languages of music, mathematics, or shape. As we shall see, those lan-
guages share several properties on an abstract level (composition and data compression by re-
cursive combination of discrete symbols), but also differ in others. For instance, the languages
that capture geometrical and binary sequences emphasize repetition and symmetry, whereas
many linguists have emphasized how natural languages avoid repetition and rely on antisymmetry
[20,21]. Thus, the evolutionary changes responsible for hominization may have allowed multiple
brain circuits to represent recursive structures.

Later, we first review three different domains in which we found evidence that humans deploy
mental programs in a language of thought: spatial sequences, auditory sequences of sounds,
and visual shapes. In each case, we provide behavioral evidence in favor of the language
approach, then describe the underlying neural substrate, and, when available, the evidence for
human singularity. In a final section, we synthesize what those languages share and how they
lead to a generic proposal about human singularity.

A geometric language for spatial sequences
All neuropsychologists are familiar with the Corsi block tapping task, which evaluates spatial
working memory. On each trial, the experimenter taps a certain number of blocks spread in
Trends in Cognitive Sciences, September 2022, Vol. 26, No. 9 753
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Figure 2. Main hypotheses of the present proposal. (A) Multiple mental languages, all based on symbols and recursive mental programs. Various domains of
human cognition rest upon several distinct internal languages, each capable of compressing different types of inputs. Those languages share the same design
principles, but differ in their primitives. Two broad styles may be distinguished: one based on the capacity to detect repetition with variation, thus appropriate for
encoding symmetrical patterns and mathematical structures; and another based on asymmetrical Merge, appropriate for encoding the structures of
communicative language at multiple levels (this part of the figure is inspired by a previous proposal by Peter Hagoort [19]). Distinct languages emerge once these
general instructions are combined with domain-specific primitives. (B) Multiple parallel cortical circuits. The proposed languages do not rely on a single localized
brain area for recursion, but on multiple parallel brain networks with primitives in temporal and parietal cortex and control structures in prefrontal cortex. For
simplicity, only a left hemisphere is shown, but the postulated brain circuits are generally bilateral. (C) Interactions within and between languages. The mental
expressions formed in one language become available as primitives for the same or for another language, thus allowing for the formation of complex recursive and
hierarchical thoughts (bottom right).
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front of the participant, who has to reproduce the sequence in the correct order. In this task,
working memory capacity typically does not exceed five or six locations, but this is true only
for unstructured sequences. Whenever a spatial regularity is present, working memory is
facilitated [22,23].

To systematically explore what factors determine the perceived regularity of a spatial
sequence, in one study [23] children and adults were presented with sequences that traced
the vertices of an octagon in various orders. All sequences therefore had the same length of
eight, which exceeds typical working memory capacity. Indeed, for unstructured sequences,
error rate exceeded 50%. However, as soon as the sequence comprised geometrical struc-
tures such as arcs, zig-zags, squares, or rectangles, performance was much better, not only
in reproducing the sequence from memory, but also in anticipating upcoming locations
[23,24]. Indeed, anticipations provided a rare case of zero-shot learning: the mere presentation
of the first three to five locations sufficed to anticipate the rest without ever seeing the pattern in
full. This was true, not only of educated adults, but also of preschoolers and Amazon
Mundurucu speakers with little or no formal education.
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What sort of regularities did they use? Three types: rotations (turning around the center of the
octagon), symmetries (around one of the four axes of the octagon), and repetitions (possibly
with variations). Those instructions could be concatenated or nested inside each other to
create ‘mental programs’ in a computer-like language. A zig-zag, for instance, involved four
repetitions of: (i) finding the next point on a side of the octagon, and (ii) applying a symmetry
operation (Figure 3). A square was encoded as four repetitions of turning by 90° around the
octagon and, therefore, a sequence of two squares was encoded as a twofold repetition of
this fourfold repetition. The proposed language of geometry could encode any spatial
sequence on the octagon as a recursively embedded series of such instructions (essentially,
repetitions of repetitions).

Once this language was properly formalized, participants’ working memory and anticipations
could be accurately predicted. The key predictor was the complexity of the mental program
needed to represent the sequence [i.e., its minimum description length (MDL)] (Figure 3).
The idea is simple: in the absence of a language, a sequence of eight locations requires eight
working memory slots. The language of geometry, however, allows compression of the
sequence, using its regularities to render its memory representation more compact. Instead of
listing the eight locations of a zig-zag, it is more efficient to state: ‘repeat four times a symmetry
operation, while moving the starting point by +1 along the octagon’.

The concept of MDL, also called ‘the simplicity principle’, has been heralded as a fundamental
unifying principle for psychological science [25–27]. Indeed, MDL predicts human performance
in many other domains, from digit span to concept learning [26–32]. The concept originates in
algorithmic information theory [33,34], where a mathematical quantity called Kolmogorov
complexity is the length of the shortest program that can produce a certain output. While
Kolmogorov complexity, sensu stricto, applies only to universal Turing machines (where it is
defined up to a constant), MDL applies to a fixed language and can be computed for small
languages by simply enumerating their programs up to a given size [34]. In the present
case, the length of those programs predicted how hard it was to remember the corresponding
sequences.

We used brain imaging to garner direct evidence in support of the postulated language of thought
and identify the underlying neural circuits. In fMRI [24], to avoid difficulty confounds, participants
were merely presented with a spatial sequence and asked to follow it with their gaze. Importantly,
even this elementary behavior was influenced by MDL, thus confirming a human proclivity to
automatically encode linear sequences as recursive tree structures (Fitch’s dendrophilia). The
smaller the MDL, the more the eyes anticipated upcoming locations and landed there in advance
of their actual appearance [Figure 3C; a similar result was obtained in magnetoencephalography
(MEG)] [35]. Furthermore, MDL modulated the activity of a large set of bilateral dorsal occipito-
parietal, prefrontal, and caudate regions (Figure 3D). Importantly, activation did not just increase
with MDL, but decreased when sequences exceeded a critical level of MDL, indicating that no
compact program could be found (for a similar result with verbal descriptions, see [36]). Thus,
the activity of these regions reflected the structure of the postulated geometrical language code.

While fMRI signals pooled over the entire sequence, MEG provided direct evidence for the pro-
posed internal code during the sequence itself [35]. To avoid eye movements, we asked subjects
to fixate centrally while viewing a repeating spatial sequence, click when they thought that they
had memorized it (encoding), and then detect an occasional deviant location (intruder detection).
Behaviorally, both encoding time and intruder detection were again determined by MDL.
Crucially, MEG signals contained direct information about the postulated numerical and
Trends in Cognitive Sciences, September 2022, Vol. 26, No. 9 755
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Figure 3. A language for the human perception of visuospatial sequences. (A) Example of a spatial sequence, the zig-zag, here used to depict the arms of the ‘God of
storms’ engraved ~3300–1800 BCE by the culture of Mount Bego (south of France). Amalric et al. [23] propose that the human production and perception of such spatial
sequences requires a ‘language of geometry’ comprising nested repetitions of geometric operations (rotations and symmetries), with variations in starting point. (B) The
proposed language was tested by presenting sequences of eight consecutive spatial locations on an octagon in behavioral and brain-imaging tests [23,24,35]. Here, the
sequences are ordered by their predicted complexity [i.e. their minimum description length (MDL) in the proposed language]. (C) Behavioral evidence: the human error rate
in storing the sequence in memory [23], anticipating the following items [23,24], and detecting outliers [35] is monotonically related to MDL; here the graph indicates the
percentage of anticipatory eye movements [24]. (D) fMRI evidence: during eye tracking, fMRI activity is proportional to MDL, a vast bilateral occipito-parietal and dorsal
premotor-prefrontal network, distinct from classical left-hemispheric language areas. (E) Magnetoencephalography (MEG) evidence. MEG signals contain decodable evidence
about the structure of the proposed language, including the presence of primitives of arithmetic and geometry [35]. Furthermore, the predicted grouping structure (by groups of
two or by groups of four) of sequences is directly reflected in the power spectrum of the decoded brain activity. Asterisks indicate the significance of a t-test for a difference in
log power at the probed frequency relative to the average of the four neighboring frequencies: *P<0.05; **P<0.01; ***P<0.001.
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geometrical primitives. They allowed to decode, for instance, whether a given transition between
two locations was encoded as a rotation or a symmetry, even when the transition was physically
identical, and its preferred encoding was solely determined by sequence context. MEG signals
756 Trends in Cognitive Sciences, September 2022, Vol. 26, No. 9
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also allowed the ordinal position of items within a subsequence to be decoded. For instance,
when tracing the four successive corners of a square, MEG signals contained numerical codes
for the numbers one to four, suggesting that participants encoded the sequence using the mental
equivalent of a ‘for i = 1:4’ loop.

Finally, in agreement with dendrophilia, MEG confirmed that, once it is mentally compressed in
human working memory, a spatial sequence is no longer a flat linear structure, but consists of
nested groupings. The theory predicts how the size of those groupings varies with the sequence:
two squares consist of two groups of four, while a zig-zag consists of four groups of two, and an
irregular sequence has no groupings at all. MEG supported this prediction: for each sequence,
the spectrum of the decoded ordinal information showed peaks at frequencies corresponding
to the predicted groupings (Figure 3E). This grouping signature, similar to the language domain
[18,37,38], indicates that humans parse spatial sequences into nested constituent structures
or phrases.

In summary, explaining human memory for spatial sequences requires a language of geometry.
Crucially, fMRI showed that this language does not rely on classical language areas of the
human brain, such as the inferior frontal gyrus (Broca’s area) or the superior temporal sulcus.
Such areas, identified using a subject-specific localizer, were inactive or even deactivated
during geometric language processing [24]. The activation induced by geometric sequences
came close to Broca’s area in the dorsal part of bilateral Brodmann area 44d, but this site
was not activated by sentences. Instead, the active areas overlapped significantly with those
for mental arithmetic [39] and higher mathematics [40]. Those results fit with prior evidence
that the language of mathematics can be anatomically and functionally dissociated from
communicative spoken or written language; in normal subjects [40–42] and in brain-lesioned
patients: agrammatic aphasics may still do algebra [43,44]. As stated by Galileo in the introduc-
tory quote, mathematics is a language whose symbols are numerical and geometrical rather
than verbal.

A proto-musical language for binary auditory sequences
We next wondered if the notion of nested repetition could be generalized to the domain of audi-
tory sequences. We restricted ourselves to binary sequences using only two sounds (call them A
and B). In this case, the language becomes very simple: it merely specifies whether to stay with
the same item, as in the minimal sequence AA, or to switch to the other, as in AB (where the
items A and B could be sounds, locations, etc.). Nested repetitions of those primitives generate
long yet compressible sequences such AABBABABAABBABAB (‘the repetition of a sequence
formed by two pairs and four alternations’). Figure 4 shows a variety of such sequences, all of
length 16, ranked according to predicted complexity (MDL).

Once transposed in this manner, the formal structure of our language of geometry predicted
working memory for binary sound sequences [45]. We tested participants’ memory by
habituating them to a given auditory sequence, then asking them to detect occasional
deviants. As with geometry, response time and error rate in this intruder task were linearly
predicted by MDL. This was true whether the deviants were transpositions (A instead of
B) or much easier super-deviants (an unexpected sound C): the larger the MDL, the heavier
the mental load and hence the lower the capacity to react to an unexpected sound. Explicit
model comparison showed that MDL in the proposed language provided a better fit than
several other competing measures such as transition probability, chunk complexity, entropy,
subsymmetries, Lempel-Ziv compression, change complexity, or algorithmic complexity (see
[45] for definitions).
Trends in Cognitive Sciences, September 2022, Vol. 26, No. 9 757
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Figure 4. A language for the human perception of binary sequences. (A) Amid-complexity sequencemade of two sounds (A,B), which can be structured as a repetition of
a concatenation of: (i) a repetition of repetitions (two pairs), and (ii) a repetition of four alternations. (B) We presented sequences of length 16, yet varying in their predicted complexity
[i.e., minimum description length (MDL) in the proposed language]. (C) Behavioral evidence: the speed and accuracy with which human adults detect a deviant sound within such
sequences ismonotonically related toMDL [45]. (D) Functional fMRI evidence: while participants passively listen to a given sequence, brain activity increasesmonotonically withMDL
in a bilateral premotor-temporal-cerebellar network. Furthermore, the reaction of this network to deviants is inversely proportional to MDL.
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We then used fMRI and MEG to test the proposed language encoding at the brain level (S.
Planton, F. Al Roumi et al., unpublished). Assuming, within the predictive coding framework,
that the brain uses the proposed language as an internal model to predict the upcoming items,
we are led to two simple predictions:
758 Trends in Cognitive Sciences, September 2022, Vol. 26, No. 9
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(i) Brain signals related to model encoding should increase with sequence complexity (MDL).
(ii) Brain signals related to prediction error (evoked by deviant sounds) should decrease with

MDL, as these sounds are predicted increasingly less well as complexity increases.

Both predictions were confirmed in fMRI and MEG. MRI located the effects on a network of bilat-
eral areas, including auditory cortex (bilateral superior temporal gyri), premotor (bordering on dor-
sal BA 44), and anterior intraparietal regions (Figure 4D). The latter two regions overlapped with
the regions previously found to be involved in the language of geometry and also intersected
with a subject-specific localizer for basic arithmetic, thus suggesting their putative contribution
to the repetition function, but this time coupled with superior temporal areas involved in sound
representation. Again, there was only a minimal amount of overlap with subject-specific brain
areas sensitive to natural language, in left BA 44 and left posterior superior temporal cortex.
Those findings with elementary tone sequences therefore concur with the broader finding that
music and language call upon largely distinct, dissociable brain circuits [46,47].

A proto-mathematical language for geometrical shapes
The two previous domains involved sequences (visuospatial or auditory) and thus resembled
spoken language in this respect. We next wondered if a symbolic language of thought would
also be needed to account for static geometric shapes. Two tests of this idea were developed.

First, we created a static intruder test, inspired by [48], in which participants had to detect a de-
viant shape among five repetitions of the same base shape [49]. For instance, the base shape
could be a rectangle (with variations in size and orientation), and the deviant the same rectangle
with the bottom right corner displaced (Figure 5A). Eleven quadrilateral shapes were tested.
Although great carewas taken to apply quantitatively identical amounts of deviancy, a large geometric
regularity effect emerged: intruder detection was much easier when the base shape possessed
geometric regularities (parallel sides, equal sides, right angles, or equal angles) than for irregular
quadrilaterals. The effect was driven by shape complexity, which could be estimated by a simple
count of these symbolic properties (Figure 5B). Thus, squares, rectangles, trapezoids, or parallelo-
grams, which possess compressible regularities, are much easier to encode than random quadrilat-
erals devoid of those properties. A series of experiments demonstrated that this geometric regularity
effect was highly replicable [49], for instance, in a classical serial search task, or even when the corner
locations were presented in a sequence, thus bridging with our previous sequence work [23,24,35].
Importantly, the effect was replicated in preschoolers and in adults with little or no formal education
(the Himba from Namibia), suggesting its independence from education. Undergoing fMRI studies
suggest that the effect may originate from right anterior intraparietal cortex.

Second, we attempted to generalize this work to shapes beyond quadrilaterals [50]. We
searched for an improved language of geometry that could account for the shapes attested in
cultures throughout the world, including zig-zags, but also circles, spirals, arrays, friezes, etc.
(Figure 1). We found that a minimal generalization of our original language [23] sufficed. Its prim-
itives are again lines and numbers, concatenation, repetition and their recursive embedding, but
also a capacity for continuous integration of curves. The latter is merely a generalization of the
central concept of repetition with variation, but now extended to continuous tracing operations
and capable of expressing, for instance, ‘keep tracing a curve while turning by a fixed amount’
(circle), or ‘keep tracing while turning and accelerating continuously’ (spiral). The simplest pro-
grams in this language generate a variety of plausible, human-like geometrical symbols.

According to our proposal, perceiving and drawing are tightly linked: when humans perceive a
geometric shape and understand its structure, it means that they infer a short program capable
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of generating it. We showed that such ‘program induction’ is feasible using the DreamCoder al-
gorithm, a recent advance in computer science that allowsmore efficient search of the vast space
of programs [51], and then performed two experiments to test it [50]. In the first experiment, we
again showed that, in a match-to-sample working memory task, the difficulty of encoding and re-
membering a shape is determined by its MDL in our language. In a second experiment, we tested
a more general prediction of our framework: shape complexity, if determined by MDL, should
obey universal additive laws for concatenation, repetition, or embedding, valid in any proposition
for a language of thought. For instance, any program for ‘a circle of squares’ should have a com-
plexity predicted by the sum of the MDLs for circle, square, and embedding (this example nicely
illustrates how compact programs can generate rich displays). Experimentally, we showed that
human encoding and choice times respect these laws [50].

Non-human primates fail to grasp those languages
The present work is inspired by prior proposals of computer-like languages for shapes
[52,53], visual and sequential patterns [54–56], and rhythmic musical sequences [57,58]. Its
originality, however, lies in bringing this hypothesis down to simple tests that can be passed
by children or adults without formal education and, most interestingly, by non-human
primates. In this manner, we can evaluate the hypothesis that compositional languages are
a prerogative of humans [13–15]. The shape intruder test, for instance, can be run identically
in human and non-human primates: a monkey can easily learn to use a touch screen and
touch the shape, among six, that differs from the others. With Joël Fagot, we trained 20
baboons to perform this task with a variety of nongeometric shapes (flowers, Gabor or
color patches, etc.), and then transferred them to quadrilaterals. Would they, too, show a
geometric regularity effect?

The results were clear-cut: baboons were insensitive to geometric regularity, both immediately
upon transfer and after extensive training (Figure 5A). Unlike humans, they processed squares
and rectangles no differently from other irregular quadrilaterals and the symbolic model did not
capture any variance in their responses. Instead, their behavior was well-predicted by classical
convolutional network models of the ventral visual pathway (Figure 5B,C), which conversely,
were largely inoperative in educated humans. Interestingly, a mixture of the two models provided
the best account of the performance of preschoolers and uneducated adults. Thus, two strate-
gies are available to solve the geometric intruder task: a perceptual strategy, available to all pri-
mates, in which geometric shapes are processed within the ventral visual system as any
picture or facewould; and a symbolic strategy, seemingly available only to humans, whereby geo-
metric shapes are compressed according to the discrete, symbolic ‘repetitions of repetitions’
(symmetries).

For the languages of visuospatial and binary auditory sequences, non-human primate testing is
underway. The current results suggest that macaque monkeys fail to grasp even the simplest
sequential patterns. Unlike preschoolers, monkeys were unable to memorize visuospatial
sequences of eight locations on the octagon, so the test had to be restricted to sequences of
four locations or less, which monkeys eventually managed, after thousands of training trials, to
repeat forward or backward [59]. Even then, a direct comparison of adult monkeys with human
preschoolers and adults showed striking behavioral differences [60]. All humans, regardless of
age, were strongly sensitive to the overall sequence pattern; for instance, the simplest sequence,
which humans foundmuch easier to remember, was when the four locations were consecutive in
a circle. Monkeys were totally insensitive to such patterns: they did not care about the transitions
between locations and their performance varied with idiosyncratic changes in the starting point
[60]. Single-cell recordings in monkey prefrontal cortex [61] confirm that monkey working
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Outstanding questions
How are the proposed mental
programs implemented in neuronal
networks? To what extent do they rely
on subcortical circuitry of the basal
ganglia or cerebellum, in addition to
the observed cortical areas? How do
those circuits implement the basic
operations of symbol assignment and
recursive composition?

How can existing artificial neuronal
networks be augmented to better
mimic the discrete symbolic structures
characteristic of human thought and
the speed and ease of their acquisition
from minimal data?

How early are the proposed
languages of thought available during
development? Infants are known to
possess primitive concepts of number
and geometry, but do they also
possess, perhaps from birth, the
recursive combinatorial faculty that
allows them to combine these concepts
and form compositive mathematical
structures?

How do the known brain changes that
accompanied hominization (brain size,
prefrontal expansion, hemispheric
asymmetries, long-distance connec-
tivity, single-cell parameters, etc.) re-
late to the emergence of human
abilities for symbols and languages?

What are the evolutionary precursors
of human compositional ability? Do
non-human primates possess, within
a specific domain, a rudimentary com-
binatorial ability, for instance, in their
ability to understand how objects or
body parts attach to each other? Dis-
covering such a domain would greatly
facilitate the investigation of its neuro-
physiological mechanisms.
memory is simply organized according to slots for each ordinal position, without any consider-
ation of their relative geometric configuration.

Similarly, the 16-sound auditory sequences illustrated in Figure 4 probably lie beyond the limits of
monkey workingmemory. Habituating monkeys and humans to a much simpler sequence of four
sounds, such as AAAB, already revealed a sharp difference [62]. While both species could detect
deviant sequences where the number was wrong (e.g., AAAAAB) or the last item was different
(e.g., AAAA), only humans integrated those two properties into a unified representation of the en-
tire sequence. This human-specific integration relied on bilateral human inferior frontal gyri and su-
perior temporal sulci. Those findings andmany others are consistent with the hypothesis that only
humans grasp recursive languages [13–16,63]. There are a few dissenting data in macaques
[64,65], however, so more extensive experiments, including in chimpanzees, will be needed to
reach a firmer conclusion. It will also be important to test species other than non-human primates,
such as vocal-learning birds, since it has been suggested that their behavior, brain circuits (at an
abstract architectural level), and even genome resembles that of humans [66–70]. However,
again, the bulk of the evidence suggests that their apparent success in learning complex sequen-
tial structures is not based on a genuine capacity for learning recursive languages [71,72].

Concluding remarks
We may now summarize the main aspects of our proposal.

(i) Symbols, mental programs, and languages. We propose that humans are characterized
by a specific ability to attach discrete symbols to mental representations and to combine
those symbols into nested recursive structures called mental programs, the compositional
rules of which define a language of thought. Humans develop multiple such languages of
thought in various domains (linguistic, musical, mathematical…).

(ii) Conceptual productivity through compositionality. Symbolic composition allows
humans to create new concepts by recursive composition of existing ones (e.g., square =
four-sided figure with equal sides and equal angles).

(iii) Mental compression. Understanding a sequence, a pattern, or a shape consists of
compressing it into a compact mental object by inducing a short mental program capable
of reproducing it.

(iv) Complexity asMDL. The psychological complexity of a concept is determined by the size of
its mental program, its MDL in the appropriate language of thought [26–32].

(v) Multiple languages. In the human brain, distinct parallel circuits represent symbols and their
recursive combinations in different domains. Within the domain of natural language, it was
previously suggested that the inferior frontal region contains distinct parallel circuits for the
compositional structures of phonology, morphosyntax, and semantics [19]; here we saw
that even more dorsal areas of prefrontal and premotor cortex appear to be engaged in the
languages of mathematics [40], visuospatial, and auditory sequences [24] (see also [47]).
Other parallel circuits may exist for other recursive domains, for instance, theory of mind or
planning [73].

(vi) Mathematical regularity as repetitionwith variation. The human perception of regularity
rests primarily on a sensitivity to repetition, at multiple nested levels, possibly with variations
(e.g., the parallel lines of a zig-zag or a square; the two pairs of an AABB sequence; etc.).
Repetitionwith variation is essentially synonymouswith themathematical concept of symmetry
(in mathematics, an object possesses a symmetry if it is invariant under some transformation,
i.e., it repeats at an abstract level, over and above some lower-level variation). Indeed, the entire
edifice of mathematics may be seen as a search for such regularities across number and
space. The anterior intraparietal sulcus and prefrontal area 44d may constitute a core circuit
762 Trends in Cognitive Sciences, September 2022, Vol. 26, No. 9
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for recognition of repetition with variation, while connecting to other parietal or superior tempo-
ral areas, depending on the domain (e.g., visuospatial versus auditory-sequential).

(vii) Human singularity. Symbolic composition seems to be specifically human: non-human pri-
mates may learn to attach indexes to specific concepts, including quantities [11,74], but
those signs do not seem to enter into compositional systems or grammars [16,63].

We readily acknowledge that these hypotheses require further empirical support and raise many
questions (see Outstanding questions). For instance, do humans differ from other non-human pri-
mates since infancy, or is there a critical age at which compositional abilities emerge? Infants
appear to possess early abilities for perceiving geometrical relationships [75], attaching symbols
to concepts [76], and performing logical disjunctive inference [77,78], but whether they possess
recursive programs has not yet been tested. The present paradigms may prove useful in this
respect.

Also, how did the human faculty for languages evolve? Under the present framework, we expect
evolutionary changes, not to a single area such as the left inferior frontal gyrus (Broca’s area) [79],
but rather to multiple, broad, and bilateral parallel circuits. Indeed, the differential expansion of as-
sociation cortex [80–82] and long-range connectivity [83–86] in humans compared with all other
primates suggest evolutionary changes in broad regions of inferior and middle prefrontal cortex
together with higher-order associative parietal and temporal areas and their interconnections.
Different circuits, however, do not necessarily imply different computations; on the contrary, we
argue here that those circuits share a common trait of symbolic compositionality. An interesting pos-
sibility is that a similar mutation jointly granted compositionality to many, possibly all, human cortical
circuits, for instance, through a change in laminar cortical organization, cell types, or dendritic tree
computations [87–90]. Thus, multiple circuits would share a capacity for symbolic recursion while
differing in their style and primitives (e.g., number, set and symmetry for math; merge and
antisymmetry for language; pitch and rhythm for music; etc.) [19,58,91,92]i (Figure 2).

Finally, a key outstanding question concerns how such a novel functionality is implemented in
neural networks. Symbolic systems based on grammars go a long way towards explaining
human inferences [51,52,93,94], but are hard to implement in neural hardware. We recognize
that there are serious difficulties here, as well as empirical findings such as continuous
prototypicality effects that seem best suited to a continuous neural network approach (for discus-
sion, see e.g., [140]). A middle ground must be found. Indeed, the implementation of symbolic
processing in artificial neural networks is a very active area of research, with massive progress
in natural language comprehension and production [95–97], processing of complex mathemati-
cal expressions (e.g., [98–100]), and program inference using differentiable neural computing or
‘neural Turing machines’ [101]. In-depth analyses suggest that these networks contain com-
pressed representations of the nested syntactic structures postulated by linguists [102,103].
However, their performance is often brittle and they often fail on basic tests of linguistic recursion
[104–106], arithmetic [107], or geometry [49]. The present results support the currently unpopular
view that discrete symbols and languages will play an essential role in any future model of the
human mind. In support of this idea, internal communication through discrete symbols was
recently found useful to improve state-of-the-art artificial neural networks [108]. Symbols may
possess several advantages over continuous representations, such as robustness to noise, sim-
plification, reduced bandpass, explicit communicability, etc. We suggest that, while many mod-
ular brain circuits may have kept their ancient evolutionary structure in the course of
hominization, the human global neuronal workspace [109] became exponentially richer in
humans due to symbolic composition and, therefore, correspondingly, a distinctly human neural
code, supporting symbol processing, remains to be found.
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