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Abstract
Discriminating between similar scenes proves to be a remarkably demanding task due to the limited
capacity of our visual cognitive processes. Here we examine how visual scene discrimination is
modulated by perceptual differences arising from neurodiversity. A large sample of autistic (n = 140) and
typical (n = 147) participants completed two visual scene discrimination experiments online. Each
experiment consisted of “match” (identical scenes) and “mismatch” (subtle differences between scenes)
conditions. In both experiments, we found strong evidence for an interaction between group and task
condition. Speci�cally, when compared to typical controls, autistic individuals were on average more
accurate at identifying subtle differences between scenes. Taken together, these results suggest
differential processing of contextual expectations in autism. These �ndings are consistent with both
classic cognitive theories and more recent Bayesian explanations of autistic perception. In addition, this
work highlights the strengths of neurodiversity in speci�c areas of cognition.

Introduction
What makes “spot the difference” puzzles so challenging? And why are some people better at these
puzzles than others? The deceptively simple task of identifying the differences between two similar
visual scenes highlights the complexity of human visual cognition. Both major and minor differences
between seemingly identical scenes can go undetected despite viewers actively engaging in visual
search; this is due to the limited capacity of our visual and cognitive processes (Wolfe, 2021).

Actively discriminating between two similar images engages a cascade of steps from low-level
processing of stimulus features to high-level object recognition. At the perceptual level, exposure to an
object may generate expectations of similar, contextually-related objects (Bar, 2004). For example,
consider a scenario in which a person is asked to visually inspect two seemingly identical images, image
A and image B, and decide whether they differ or not. After the initial visual processing, image A may
prime the visual system to expect something similar in image B’s place. These so-called contextual
expectations are both rapid and short-lived, only lasting for the duration of the task (Series & Seitz, 2013).
Expectation and attention may then interact to facilitate image recognition (Summer�eld & Egner, 2009).
However, what if image B differs only very slightly from image A? In this scenario, contextual
expectations may serve as a double-edged sword and may contribute to one overlooking the difference.
While performance on such tasks may boil down to inter-individual differences across various factors
such as motivation, working memory, �uid intelligence, and visual attention (Bergmann et al., 2019; Luria
& Vogel, 2011; Wolfe & Horowitz, 2017), it may also be modulated by perceptual differences due to
neurodiversity such as those seen in autism (Baron-Cohen, 2020; O’Riordan et al., 2001; Robertson et al.,
2013; Robertson & Baron-Cohen, 2017).

Autism spectrum conditions (henceforth autism) are a set of neurodevelopmental conditions
characterized by di�culties in communication and relationships, alongside unusually narrow interests,
repetitive, restricted patterns of behaviour, and sensory-perceptual differences (American Psychiatric
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Association, 2013). In this article, we use the preferred identity-�rst language to describe people on the
autism spectrum (Kenny et al., 2016). Autistic people have been described as not “seeing the wood for the
trees” due to their more “veridical” perception – �ndings well-validated in decades of experimental studies
(Baron-Cohen et al., 2009; Happé & Frith, 2006; Mottron et al., 2006; Shah & Frith, 1983). Atypical
perception in autism may be due to differences in low-level visual processing mechanisms (Robertson &
Baron-Cohen, 2017; Simmons et al., 2009), or discrepancies in Bayesian inference thus making autistic
individuals less in�uenced by prior experiences (Pellicano & Burr, 2012).

By capitalising on advancements in online behavioural research, we aimed to a) replicate the �nding of
detail-oriented autistic perception in a large sample of participants and b) investigate how autistic and
typical participants discriminate between two seemingly similar visual scenes. Finally, we evaluate our
�ndings in light of classic and recent theories of autistic perception.

Methods
Participants:

All participants were recruited online via an email noti�cation sent to individuals registered to two
University of Cambridge databases: 1) the Autism Research Centre database (accessible
at www.autismresearchcentre.com) was used to recruit autistic adults and 2) a second database
(accessible at www.cambridgepsychology.com) was used to recruit the non-autistic adult
controls. Participants were entered into a prize draw for the chance to win £50. After excluding
participants with missing/incomplete data, the dataset contained 140 autistic (82 females) and 147 non-
autistic (118 females) adults aged 18-60 years. There were no signi�cance group differences in age
(t(283)= -0.55, p= 0.579) for autism (Mean= 35.1, SD= 9.85) and controls (Mean= 35.8, SD= 9.85).

Procedure:

This study was approved by the Psychology Research Ethics Committee in Cambridge (PREC. 2015.018).
Participants completed behavioural tasks probing working memory and visual perception via Cambridge
Brain Sciences (www.cambridgebrainsciences.com), a web-based platform for cognitive assessments.
Verbal and visuospatial working memory were assessed using the standardised Digit Span test, which
measures the ability to recall a sequence of digits, and the Monkey Ladder test, which measures the
ability to recall the location of digits (Inoue & Matsuzawa, 2007; Wechsler, 1981). All tasks were adapted
for online computerized testing and validated in large samples (Hampshire et al., 2012). 

For each visual perception experiment, participants were given 90 seconds to complete as many trials as
possible, with a timer and the score displayed on one side of the screen. The di�culty level of each trial
increased or decreased based on the participant’s performance on the previous trial. The following visual
scene discrimination experiments were conducted:

Experiment 1: Interlocking polygons

http://www.autismresearchcentre.com/
http://www.cambridgepsychology.com/
http://www.cambridgebrainsciences.com/
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The Interlocking Polygons task is based on pen-and-paper tasks used in clinical neuropsychological tests
(Folstein et al., 1975). In this task, a pair of interlocked polygons is displayed on one side of the screen.
Participants were instructed to indicate whether a polygon displayed on the other side of the screen is
identical (“match”) or not identical (“mismatch”) to one of the interlocking polygons (Fig 1A). Di�culty on
each trial corresponded to more subtle differences in the polygons. 

Experiment 2: Feature match

The Feature Match task is a visual search task based on the feature integration theory of visual
attention (Treisman & Gelade, 1980). Arrays of abstract shapes were displayed on either side of the
screen. Participants were instructed to indicate whether the arrays’ contents were identical (“match”) or
differed by a single shape (“mismatch”) (Fig 1B). Di�culty on each trial corresponded to an increase in
the number of shapes in the array. 

Data analysis:

Data were analysed in R version 4.0.3 (R Core Team, 2020) and RStudio (RStudio Team, 2020) with the
help of the “tidyverse” package (Wickham et al., 2019).  For Bayesian statistics, we used the “Bayes
Factor” R package and report Bayes factors (BF) which quantify the strength of evidence for the
alternative hypothesis (BF10) over the null (BF01) (Morey et al., 2021; Rouder et al., 2012). The magnitude
of this strength increases with deviation from 1, with BF10 >3  considered as moderate evidence and  BF10

>10 as strong evidence for the alternative hypothesis, while BF10 < 3 is insu�cient evidence for or against
the alternative hypothesis (Keysers et al., 2020; Lee & Wagenmakers, 2014; Ly et al., 2016). For t-tests, we
report t-statistics, p-values, 95% con�dence interval (CI) values, and effect sizes in addition to the Bayes
factors.

To help address the heterogeneity within our online sample, we �rst excluded participants whose working
memory scores were less than 2 standard deviations from the overall mean. We then conducted
exploratory t-tests to measure the extent to which the Autism and Control groups differed in working
memory abilities. 

For both visual perception experiments, overall and condition-speci�c accuracy rates were computed for
each group. To investigate differences in task performance due to task condition and group, a Bayesian
2x2 factorial Analysis of Variance (ANOVA) was computed on accuracy rates with group (Autism vs
Control) and task condition (Match vs Mismatch) as factors. Each individual participant was included as
a random factor. As a sanity check, we also conducted independent two-sample t-tests on the total
number of trials attempted by each group to ensure that accuracy rate group differences could not be
attributed to differences in this measure. 

Results
Working memory:
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After excluding participants whose working memory performance was below the cut-off, 276
participants remained: 129 Autism (75 female, 54 male) and 147 Control (118 female, 29 male). The
exploratory t-test on verbal working memory as assessed by the Digit Span test showed evidence in
favour of group differences (BF10=27, t(273) = 3.40, p<0.001, d= 0.40, 95% CI [0.14, 0.56]) between the
Autism (Mean= 5.44, SD=0.82) and Control (Mean= 5.84, SD=0.91) groups. Meanwhile, between-group
results for the visuospatial working memory test yielded a BF10 smaller than 1 (BF10=0.69), with evidence
leaning towards a lack of group differences (t(273)=1.87, p=0.06, d=0.22, 95% CI [-0.006, 0.27]) between
the Autism (Mean= 5.07, SD= 0.57) and Control (Mean= 5.21, SD= 0.62) groups.  The distribution of
working memory scores can be seen in Supplementary Figures 1 & 2.

Experiment 1: Interlocking Polygons

The Bayesian ANOVA on accuracy rates with group and task condition as factors yielded strong positive
evidence in favour of an interaction effect of group and task condition (BF10 =28) (Fig 2). We found no
clear evidence for or against the main effect of group (BF10 = 0.10) or task condition (BF10 = 0.22). The
mean number of trials completed by both groups in each condition are reported in Table 1. The
independent samples t-test on the total number of trials attempted by each group yielded BF10=1.44,
suggesting no evidence in favour of group differences (t(540)=2.36, p=0.018, d=0.20, 95% CI [0.19, 2.1])
between the Autism (Mean= 26.65, SD= 3.63) and Control (Mean= 25.51, SD= 3.60) groups.

Experiment 2: Feature Match 

Mean accuracy rates were high across the Autism (Mean=91.6, SD=6.35) and Control (Mean=93,
SD=5.56) groups, both overall and when split according to condition (Table 1, Fig 3A, Fig 3C). The
Bayesian ANOVA on accuracy rates with group and task condition as factors showed strong evidence in
favour of an interaction effect of group and task condition (BF10=42) (Fig 3B). There was no clear
evidence for or against the main effect of group (BF10=0.31) or task condition (BF10=0.16). The average
number of trials completed by each group in each condition are reported in Table 1.The independent
samples t-test on the total number of trials attempted by each group yielded BF10 <1 (BF10=0.09)
suggesting no evidence of group differences (t(539)=0.22, p=0.82, d=0.02, 95% CI [-0.53, 0.67]) between
the Autism (Mean= 25.5, SD= 3.63) and Control (Mean= 25.4, SD= 3.60) groups. 

Table 1:  Summary statistics from Experiment 1: Interlocking Polygons and Experiment 2:
Feature Match
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Task Group Task
Condition

Number of Trials
Attempted

Mean (SD)

Accuracy
Rate

Mean (SD)

 

1.

Interlocking
Polygons

Autism Match 12.7 (2.9) 71.1 (20.2)

Mismatch 12.7 (2.4) 79.7 (20.5)

Control Match 13.2 (3.2) 76.2 (21.6)

Mismatch 12.4 (2.1) 73.1 (20)

2.

Feature Match

Autism Match 12.8 (2.1) 89.8 (10.3)

Mismatch 12.7 (2.4) 93.4 (9.8)

Control Match 13 (2.4) 93.4 (9.1)

Mismatch 12.5 (2.1) 92.6 (9.4)

Discussion
Using a large sample of autistic and typical participants, we conducted two visual perception experiments
to test scene discrimination ability. In Experiment 1: Interlocking Polygons, participants indicated whether
a target polygon was present in the comparison scene of interlocking polygons. In Experiment 2: Feature
Match, participants indicated whether two arrays of shapes differed by a single item. In both experiments,
we found strong evidence for an interaction between group (Autism vs Control) and task condition
(Match vs Mismatch). Speci�cally, when compared to typical controls, autistic individuals were on
average more accurate at identifying a “mismatch” between two similar scenes in both - Interlocking
Polygons and Feature Match - experiments. In addition, in the Interlocking Polygons experiment, autistic
individuals were on average comparatively impaired in the “match” condition.

A growing body of research examines autistic perception in the framework of Bayesian inference.
According to Bayesian theories of perception in autism, autistic individuals may rely less on their prior
expectations relative to sensory evidence, (Brock, 2012; Lawson et al., 2014, 2014; Pellicano & Burr, 2012;
Van de Cruys et al., 2017). For example, autistic individuals show less susceptibility to certain visual
illusions, which can be attributed to reduced top-down in�uences on perception (Chouinard et al., 2018;
Happé, 1996; Manning et al., 2017). In our experiments, contextual expectations would bene�t typical
participants in the “match” trials but would con�ict with sensory evidence in the “mismatch” conditions.
Less reliance on contextual priors may explain why autistic participants showed superior performance in
the “mismatch” trials in both experiments, but at the same time fared worse in the “match” trials of the
Interlocking Polygons experiment.
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A prominent cognitive theory of autism attributes the detail-oriented perceptual-processing style to “weak
central coherence” or a weakened tendency to aggregate information into global percepts (Happé & Frith,
2006). This may explain why autistic people tend to show superior performance in gestalt segmentation
during the block design test (Shah & Frith, 1993). In addition, autistic individuals have been found to
consistently outperform typical participants in identifying hidden �gures in complex scenes and in classic
visual search paradigms (Jolliffe & Baron-Cohen, 1997; Plaisted, O’Riordan, & Baron‐Cohen, 1998). A
second prominent theory posits that due to their “enhanced perceptual function”, autistic people are by
default locally-oriented and hence tend to outperform typical participants in static, low-level visual
discrimination tasks (Mottron et al., 2006). In line with this, autistic people have been found to show
enhanced discrimination of novel, highly similar stimuli (Plaisted, O’Riordan, & Baron-Cohen, 1998), and
greater perceptual load capacity during processing of distractors (Remington et al., 2009). Our �ndings of
an autism advantage in scene discrimination during “mismatch” trials are broadly consistent with these
theories.

Notably, our results suggest that the superior task performance by autistic participants in the “mismatch”
conditions is independent of working memory differences. Autistic participants outperformed typical
participants on our visual scene discrimination tasks despite scoring comparatively lower on verbal
working memory abilities (Supplementary Fig. 1) and showing no signi�cant group differences on
visuospatial working memory (Supplementary Fig. 2). As reward plays a role in visuospatial experiments
by rapidly enhancing visual perception, there may also be a motivational component associated with task
performance (Cheng et al., 2021). Autistic individuals are hypothesised to have a heightened drive to
“systemise” or to identify if-and-then patterns or rules (Baron-Cohen et al., 2003, 2009). An increased drive
to “systemise” - coupled with the comfort of completing the experiments online while in a familiar
environment - may have also contributed to the superior performance of our autistic participants.

While a strength of this online study is the su�ciently large sample size, our study also has its
limitations: the less-controlled nature of our online experiments, the sampling bias of participants with
access to computers and internet, and the unbalanced sex ratio within our study sample. A greater
percentage of female participants re�ects what is the norm with online research (Smith, 2009). However,
due to possible sex differences in autism and visual cognition, we acknowledge this as an important
caveat. To account for the unbalanced sex ratio, we computed exploratory summary statistics for a
female-only subset of participants and found the direction of results to be unchanged to those of our
main results (Supplementary Figs. 3 & 4). These results suggest that our �ndings are independent of sex.

In conclusion, when compared to typical people, autistic individuals are, on average, more accurate at
identifying subtle differences between two similar scenes. On the other hand, autistic individuals may be
worse at making perceptual judgements about two identical images. Taken together, our �ndings are
consistent with classic and current theories of autistic perception.

Declarations
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Figure 1

Overview of Cambridge Brain Sciences visual perception experiments. A) Experiment 1 : Interlocking
Polygons. B) Experiment 2: Feature Match. Participants were instructed to indicate whether a scene
displayed on the other side of the screen is identical (“match”) or not identical (“mismatch”) to the other
scene. Participants were given 90 seconds to complete as many trials as possible, with a timer and the
score displayed on one side of the screen.
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Figure 2

Results from Experiment 1: Interlocking Polygons. 2A. Mean accuracy rates for autism (in orange) and
control (purple), split by condition. Dots indicate individual participant means. Error bars show the
standard error of the mean. 2B. Interaction effect between group (Autism- orange, Control- purple) and
condition (x axis) on accuracy rates (y axis). Error bars show the standard error of the mean. 
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Figure 3

Results from Experiment 2: Feature Match. 3A. Mean accuracy rates for autism (in orange) and control
(purple), split by condition. Dots indicate individual participant means. Error bars show the standard error
of the mean. 3B. Interaction effect between group (Autism- orange, Control- purple) and condition (x axis)
on accuracy rates (y axis). Error bars show the standard error of the mean. 
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