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Background: Verbalcommunicationcomprises theretrievalofseman-
tic and syntactic information elicited by various kinds of words (i.e.,
parts of speech) in a sentence. Content words, such as nouns and
verbs, convey essential information about the overall meaning (se-
mantics) of a sentence, whereas functionwords, such as prepositions
and pronouns, carry lessmeaning and support the syntax of the sen-
tence. Methods: This study aimed to identify neural correlates of
the di ferential information retrieval processes for several parts of
speech (i.e., content and function words, nouns and verbs, and ob-
jectsandsubjects) viaelectroencephalographyperformedduringEn-
glish spoken-sentence comprehension in thirteen participants with
normal hearing. Recently, phoneme-related information has be-
come a potential acoustic feature to investigate human speech pro-
cessing. Therefore, in this study, we examined the importance of
various parts of speech over sentence processing using information
about the onset time of phonemes. Results: The distinction in the
strength of cortical responses in language-related brain regions pro-
vides the neurological evidence that content words, nouns, and ob-
jects are dominant compared to function words, verbs, and subjects
in spoken sentences, respectively. Conclusions: The findings of this
studymay provide insights into the di ferent contributions of certain
types of words over others to the overall process of sentence under-
standing.
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1. Introduction
Sentence processing is crucial for human verbal commu-

nication. A sentence is comprised of words that can each be
characterized as different parts of speech. “Parts of speech”
is an abstract term for the major classes of words in a lan-
guage. Words are grammatically categorized into two ma-
jor classes: content words and function words (open and
closed classes words, respectively). The content words class
includes nouns, verbs, adjectives, and adverbs, whereas pro-
nouns, noun adjuncts, verb adjuncts, and conjunctions are

classified as function words. While parts of speech classes
are grammatically distinguished, their effect on sentence pro-
cessing in the human brain is still unclear. Understanding
how the brain processes parts of speech may help facilitate
human communication, especially in individuals with lan-
guage disorders. Thus, this study aimed to provide neuro-
physiological evidence of the contribution of different classes
of parts of speech in sentence comprehension.

Function words primarily provide grammatical continu-
ity within a sentence. Although some function words cate-
gories can also hold meaning (e.g., pronouns and noun ad-
juncts), they normally act as connecting words [1]. Unlike
function words, content words have lexical meanings that
need to be processed and related to the sentence context,
thereby affecting sentence comprehension efficiency [2]. Ad-
ditionally, Cutler and Foss [3] found that the reaction time
to word-initial phoneme targets was shorter for high-stress
words than low-stress words and related to sentence process-
ing difficulty. Given that high-stress words are considered
easier to process than low-stress words, content words typi-
cally receive higher stress than function words [2, 3]. More-
over, the information content contained within a word is
relative to the amount of stress placed upon it [3]; thus, it
is reasonable to assume that content words play an impor-
tant role in sentence processing by conveying irreplaceable
critical meaning. Therefore, we hypothesized that content
words are more dominant than function words in extract-
ing the general meaning of the sentence. We aim to confirm
this hypothesis by examining electrophysiological activation
regarding each class of processing. In content words, nouns
and verbs convey different kinds of information as they refer
to different concepts [4]. Furthermore, objects and subjects
of a verb action provide another critical aspect of sentence
processing [5, 6], such that each class plays a distinct role in
sentence comprehension.
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Speech processing entails numerous steps that occur over
short time intervals (a few milliseconds) as the speech sig-
nal unfolds [7, 8]. As electroencephalography (EEG) mea-
sures brain activity with an excellent temporal resolution, it
has been widely used to investigate language and speech pro-
cessing [8, 9]. Specifically, event-related potentials (ERPs)
can reveal variable cognitive processes in time-locked tem-
poral patterns during speech processing. In particular, sen-
tence processing consists of many stages across multiple time
frames, grouped into three phases occurring between 100–
300 ms, 300–500 ms, and 500–1000 ms, respectively. These
phases correlate with a series of peaks and troughs identi-
fied chronologically in ERP, as N1 (a negativity peak at 100
ms after stimulus onset), early left-anterior negativity, left-
anterior negativity N400, and P600, reflecting brain activities
responsible for tackling different sentence processing levels
[10, 11]. It has been proposed that sentence processing be-
gins by identifying acoustic-phonological events and word
forms during the first phase (100–300 ms), reflected in the
activation of the superior temporal gyrus and inferior frontal
gyrus. The superior temporal gyrus is found to activate dur-
ing speech perception of phonemes and semantic processing
tasks at sentence-level processing, while the inferior frontal
gyrus has been known to support syntactic structure build-
ing and verbal working memory [11]. Moreover, previous
studies have shown that words with differentmeanings could
be dissociated from the brain activity occurring 100–200 ms
after the word onset in both auditory and visual paradigms
with word perception tasks [12, 13]. It has been suggested
that semantic processing may occur as early as within 200
ms after the stimulus word onset [12–14]. Considering this,
the difference in brain activity at the N1 latency could indi-
cate the difference in word-level processing, thereby affect-
ing sentence comprehension. Therefore, we assumed that
the distortion in scalp topography during the processing of
each word class of words in sentences at the N1 latency (100–
300ms) indicates the different importance levels of that word
class with respect to sentence comprehension.

However, the ERP technique involves an averaging pro-
cess over several repetitions, which leads to an overlapping
response to the stimuli exceeding several hundred millisec-
onds. Thus, conventional ERP techniques are limited to the
analysis of the neural response during a continuous natu-
ral speech [15] and are typically used for isolated sensory
events (e.g., isolated syllables [12, 13]). However, recent ad-
vances in EEG analysis help avoid the overlapping responses
to continuous natural speech (e.g., sentences) by comput-
ing the cross-correlation between the temporal envelope of
speech and corresponding EEG signals. A cross-correlation
function reflects the similarity between two signals assum-
ing that both signals have a linear relationship. Benefiting
from a simple calculation, by computing sliding dot prod-
uct and the assumption that the human brain act as a linear
system [16], the cross-correlation approach has been widely
used to investigate the phase-locked neural response to con-

tinuous speech stimuli [17, 18]. Horton et al. [18] investi-
gated the neural entrainment to the envelope of attended and
unattended speech using the cross-correlation between the
EEG and speech envelope. Their study shows the expected
range of cross-correlation values to determine if the neural
responses were truly entrained to the speech stimuli, thereby
confirming that they did not occur by chance; it is outside the
range of between –0.0035–0.0035 [18]. According to their
result, the measured EEG significantly correlated with both
attended and unattended speech envelopes at some latency
(e.g., 100 ms and 200 ms) after stimulus onset. Hence, cross-
correlation can be used to indicate the entrainment of neural
oscillation to speech.

The temporal envelope of speech has been widely used as
an acoustical information cue [18, 19]. However, Di Liberto,
O’Sullivan, and Lalor [20] showed that the phonemic model
outperformed the envelope model in predicting neural re-
sponses to speech stimuli. Furthermore, phoneme informa-
tion has been posited to reveal brain activation during speech
perception tasks [21–23]. We introduce a term, phoneme-
onset impulse train (PH), to indicate an impulse sequence of
the onset time of phonemes in a sentence. A similar concept
was used by Di Liberto et al. [24] to investigate the cortical
encoding of melodic information in a music-related study, in
which they used note-onset information. To the best of our
knowledge, no previous language study has utilized such a
feature to analyze speech stimuli. The combination of the PH
and temporal envelope of speech was also assessed to validate
the usefulness of PH information.

In this study, we used continuous speech sentences as
stimuli. However, we selectively omitted typical linguistic
components by using indexed PHs instead of particular in-
stances of parts of speech as stimuli. We utilized a cross-
correlation-based approach to parse early ERP components
into different isolated linguistic events within the context of
sentence processing. This approach ensures that listeners
process a meaningful sentence rather than sole speech tokens
and facilitates the examination of the importance of word
categories in sentence comprehension. Passive listening was
employed rather than active listening as this paradigm re-
duces participant fatigue during the experiment. Further-
more, Kong et al. [25] claimed that active and passive listen-
ing resulted in similar neural responses to the speech features
in quiet conditions with book chapters as stimuli. The differ-
ence in the contribution of various classes of words in sen-
tence comprehension was evaluated by comparing the neu-
ral response relative to each word category with that of the
whole sentence stimuli.

2. Material andmethods
2.1 Participants

Thirteen right-handed participants with normal hearing
between 18–24 years of age (mean: 21.5 years, standard de-
viation: 2.2, four males and nine females) participated in the
experiment. All participants were native speakers of Ameri-
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can English and had normal hearing thresholds (i.e., thresh-
olds≤20 dB HL at all tested frequencies from 250–8000 Hz).
None of the participants had neurological conditions or dis-
orders, and none of them were taking any medications. All
study procedures were approved by the Institutional Review
Board of the University of Iowa.

2.2 Stimuli

Ten sentences from the Revised Speech Perception in
Noise Test [26] (duration mean: 1.78 s, standard deviation:
0.19) spoken in English by an American male were used.
Most of the sentence stimuli were simple declarative sen-
tences in the active voice to minimize variability across par-
ticipants in listening effort. Moreover, the sentences were
made by the approximation of daily conversation and pho-
netic balance [26], making them suitable for speech compre-
hension investigation. A list of sentence stimuli is presented
in Table 1.

Table 1. List of sentence stimuli.
Sentences Duration (s)

1 Maple syrup is made from sap 1.85
2 Paul was interested in the sap 1.60
3 Bill heard Tom called about the coach 1.99
4 The team was trained by their coach 2.01
5 Our cat is good at catching mice 2.00
6 Bob should not consider the mice 1.87
7 Let’s invite the whole gang 1.67
8 You were considering the gang 1.45
9 She wants to speak about the ant 1.74
10 A termite looks like an ant 1.61

2.3 Experimental setup and procedures

The experiment was conducted in a soundproof booth.
Participants were seated facing a computer monitor with a
loudspeaker placed in front of them at a distance of 1m. They
were allowed to watch a silent movie played on the monitor
and were asked to minimize their movement. All the sen-
tences were presented 100 times through a loudspeaker at 65
dB SPL, resulting in 1000 trials in random order. Each trial
lasted for 3 s, from –0.5 s preceding stimulus presentation to
2.5 s following onset, leading to 3 s inter-stimulus interval
between trials. The passive listening task required no other
response from the participants.

2.4 EEG recording and processing

EEG signals were recorded using a 64-channel EEG sys-
tem (BioSemi Co., Netherlands) at a 2048 Hz sampling rate.
The raw EEG signals were down-sampled to 256 Hz and re-
referenced using the average reference. The EEG data were
then filtered using the 5th order Butterworth bandpass fil-
ter (0.5–57 Hz). The extended infomax independent compo-
nent analysis (ICA) algorithm, which has been proven to suc-
cessfully isolate eye blinks [27, 28], was implemented in the
EEGLAB toolbox and applied to separate independent noise

components mixed in EEG signals. The noise component in-
duced by eye movement was then rejected through visual in-
spection based on the topography, spectral content, and time-
series activity. The ICA components left were then projected
back into the channel space to develop the eye movement-
free EEG data. The EEG signals were epoched into a 3 s win-
dow, from 0.5 s before stimulus onset to 2.5 s after stimulus
onset. Epochs with a maximum amplitude exceeding 100 µV
were excluded from the analysis. Then, the epochs were con-
catenated and filtered using the 5th order Butterworth band-
pass (1–15 Hz) filter. The bandpass filter was chosen to min-
imize the filtering distortion effect on EEG signals as well as
to preserve the phoneme-related potential peaks in neural re-
sponses to continuous speech [25, 29].

2.5 Phoneme-onset impulse train

All the phonemes in the sentences were listed and ex-
tracted their onset time using Praat software (University of
Amsterdam, Netherlands) [30]. The sentences were then
manually categorized into noun, verb, object, subject, content
word, and function word. A PH is a unit impulse sequence of
the onset time of phoneme regardless of consonants or vow-
els. In other words, a PH is a signal vector of zeros at the
sampling rate of EEG signals, marked with a value of one at
all phoneme onsets with the length of 2500 ms. The PH was
computed as follows (Eqn. 1):

PH(t) =

{
1, t : onset time of a phoneme
0, otherwise

PH was obtained for the whole-sentence and component-
exclusion cases (content words vs. function words exclu-
sions, nouns vs. verbs exclusions, and objects vs. subjects ex-
clusions). In component-exclusion cases, the phoneme-onset
time information related to the components was omitted
from the phoneme-onset train of the whole sentence. There
were no significant differences in the number of phonemes
over ten stimuli sentences between nouns exclusion and
verbs exclusion (p = 0.9414,W=28.5,Wilcoxon signed-rank
test), and between objects exclusion and subjects exclusion (p
= 1,W = 11,Wilcoxon signed-rank test). Fig. 1A,B illustrate
an example of the PH of the sentence, “Maple syrup is made
from sap” for a whole sentence and a nouns-exclusion case,
respectively. Additionally, the combination of the phoneme-
onset train and the temporal envelope of speech (PHENV)
was examined to validate the potential of phoneme-onset
time in speech perception. The PHENV was calculated by
overlaying the remaining impulse train on the temporal en-
velope, as observed in Fig. 1C.

2.6 EEG analysis

EEG signals were averaged over all epochs from each sen-
tence at each EEG electrode. The averaged EEG signals were
baseline corrected by subtracting the average amplitude be-
tween –200 and 0 ms relative to stimulus onset. EEG signals
in response to the sentence “Maple syrup is made from sap”,
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Fig. 1. An example of a PH. (A) for a whole sentence. (B) for a noun-exclusion case. (C) An example of a temporal envelope (coded in gray color) overlaying
a PHENV (coded in black color) for a whole sentence. (D) Single trials EEG signals and the corresponding ERP. (E) The corresponding ERP in (D). (F) An
example of cross-correlation coefficients between PH and ERP (coded in black color) and between PHENV and ERP (coded in gray color).

and the corresponding averaged EEG signals are shown in
Fig. 1D. A prominent example of the averaged EEG signals
(i.e., ERPs) in response to the continuous speech sentence of
“Maple syrup is made from sap” is shown in Fig. 1E.

The averaged EEG signals were then trimmed to the
range of 0 ms to 2500 ms to match the length of PHs.
Cross-correlations were computed between the PHs and av-
eraged EEG signals of each sentence and between the PHENV
and averaged EEG signals of each sentence. The cross-
correlations were trimmed as a function of lag and ranged
from –200–700 ms. The positive lag indicates that the EEG
signal lags the PH or PHENV from the onset of the PH
or PHENV, respectively. The cross-correlations were av-
eraged over all participants, denoted as the grand averaged
cross-correlation. The grand averaged cross-correlations
were baseline corrected by subtracting the mean and high
pass (1 Hz) filtered. Examples of the grand averaged cross-
correlation function corresponding to the PH and PHENV
are shown in Fig. 1F.

All EEG-related potentials are shown at the anterior
frontal site of AF3 electrode from subject 10 in response to
a sentence of ‘Maple syrup is made from sap’.

2.7 Statistical analyses

As the number of subjects in this study limits testing for
normality of distribution [31], a non-parametric statistical
test was employed. The differences in amplitude of grand av-
eraged cross-correlations between the whole-sentence case
and each component-exclusion case were evaluated using

Wilcoxon signed-rank test with a two-sided hypothesis test.
The exact probability distribution of W (i.e., the sum of the
ranks of positive difference) was adopted to compute the p-
value. The significance level was set at 0.05; this resulted
in the critical value of W = 17 according to the Wilcoxon
Signed-Ranks table with a two-sided test.

3. Results
Fig. 2 shows the grand average of cross-correlation coef-

ficients between PHs and ERPs and between PHENVs and
ERPs across all participants and sentences. As the grand av-
erage of cross-correlation coefficients shows a complex pat-
tern of peaks and troughs comparable to the ERPs compo-
nents in an auditory task (i.e., P1-N1-P2) [18], we focus on
analyzing the shape of the cross-correlation function. We
termed the first positive peak, first negative peak, and sec-
ond positive peak in the cross-correlation function as P1, N1,
and P2, respectively. The data are shown for the central
electrode site of Cz. Panels A, B, and C in Fig. 2 illustrate
data for content- vs. function words-exclusion cases, nouns-
vs. verbs-exclusion cases, and objects- vs. subjects-exclusion
cases in comparison with the whole sentence, respectively.
The exclusion cases are represented by black or red lines in
each panel, whereas the dark gray line shows the whole sen-
tence. As shown in Fig. 2, changes with different levels in N1
amplitude were observed among component-exclusion cases
compared to the whole sentence. In particular, with respect
to cross-correlation coefficients between PH and ERPs, N1
amplitude in the content words-exclusion case was signifi-
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Fig. 2. Example of cross-correlation functions between PH and ERPs and between PHENV and ERPs at the electrode Cz. (A) Effects of content
words vs. function words exclusion. (B) Effects of nouns vs. verbs exclusion. (C) Effects of objects vs. subjects exclusion. * indicates the statistical difference
between cross-correlation of a component-exclusion case with the whole-sentence case at the level of p < 0.05, W ≤ 17. The asterisk color corresponds to
the significant difference induced by the corresponding component-exclusion case.

Table 2. Group of electrodes at left hemisphere and central site showing significant reduction in N1 amplitude when
comparing each component-exclusion case withwhole-sentence case using PH (Wilcoxon signed-rank test, p< 0.05,W≤ 17).

Content word
exclusion

Function word
exclusion

Noun exclusion Verb exclusion Object exclusion Subject exclusion

Number of electrodes 4 0 12 0 7 6
Left frontal / / FC1, Fpz, AFz, FCz, Fz / FC1, Fz, FCz FC1, Fpz, AFz
Central-parietal C3, C5, FCz, Cz / C1, C3, Cpz, Cz, P1, P3, Pz / C1, CP1, Cz, P9 C3, Cz, Cpz

Table 3. Group of electrodes at the left hemisphere and central site showing significant reduction in N1 amplitude when
comparing each component-exclusion case withwhole-sentence case using PHENV

(Wilcoxon signed-rank test, p< 0.05,W≤ 17).
Content word
exclusion

Function word
exclusion

Noun exclusion Verb exclusion Object exclusion Subject exclusion

Number of electrodes 5 1 8 0 19 4
Left frontal / / Fpz, AFz, Fz / AF3, F1, F3, F5, FC3, FC1, AFz, Fz, FCz Fpz, AFz
Central-parietal C3, C5, Cz, P7 P9 C3, C5, CPz, Cz, P7 / C1, C3, CPz, Cz, CP3, CP1, P9, PO3 P7
Temporal T7 / / / / T7
Occipital / / / / O1, Oz /

cantly reduced at the Cz channel (p = 0.046,W= 17), whereas
that in the functionwords-exclusion case revealed a subtle re-
duction (see Fig. 2A). N1 amplitude in the nouns-exclusion
case decreased significantly at the Cz channel (p = 0.033,W =
15), while N1 amplitude in the verbs-exclusion case showed
a non-significant reduction (as seen in Fig. 2B). Additionally,
Fig. 2C showed a significant reduction in the object-exclusion
case (p= 0.003,W=3) but showed no significant reduction in

the case of subjects exclusion. Consistent findings were ob-
served in the grand average of cross-correlation coefficients
between PHENV and ERP (see Fig. 2, PHENV panel). Ta-
ble 2 summarizes the electrode sites located in the left hemi-
sphere and the central site that showed significant differences
in N1 amplitude (p < 0.05, W≤ 17) between each exclusion
case and thewhole-sentence casewhen using PH. The object-
exclusion case significantly reducedN1 activity at the greatest
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number of electrode sites (i.e., 19 electrodes out of 37). How-
ever, no electrode site showed such a significant difference in
the verb-exclusion case. The comparable details for that type
of information using PHENV are shown in Table 3.

The cross-correlation scalp distribution of P1, N1, and
P2 amplitudes using PH and PHENV are shown as topogra-
phies in panels A and C of Figs. 3,4,5. The time labels in
these figures correspond to the latencies of P1, N1, and P2
peaks as 152, 199, and 285 ms for the PH, and 156, 199, and
293 ms for the PHENV case in the cross-correlation func-
tions. Wilcoxon signed-rank tests were performed with re-
spect to each electrode to test the effect of component ex-
clusion (i.e., function words vs. content words exclusions,
verbs vs. nouns exclusions, and subjects vs. objects exclu-
sions). Figs. 3B,4B,5B illustrate brain regions that showed
significant differences at P1, N1, and P2 amplitudes be-
tween the whole sentence and each exclusion case when us-
ing PH. The red color indicates that the whole-sentence case
showed greater peak amplitude (p < 0.05, W≤ 17). In con-
trast, the blue color indicates that a component-exclusion
case elicited greater P1, N1, or P2 peak amplitude, respec-
tively. The corresponding results using PHENV are shown
in Figs. 3D,4D,5D, respectively.

Fig. 3 illustrates the results when comparing the cross-
correlation of the content words- and function words-
exclusion cases with that of the whole sentence. Significantly
reduced activity was observed in left-temporal and central
sites in the content words-exclusion case (p< 0.05, W≤ 17;
Fig. 3B–D, top mid-panel). This result may reflect a weaker
event-related response in regions supporting speech percep-
tion located in the left temporal (i.e., left superior tempo-
ral gyrus) and central sites. However, the function words-
exclusion case did not exhibit such a difference at theN1 peak.

Compared with the whole sentence, the nouns-exclusion
case elicited significantly reduced N1 amplitudes in the left
temporal and central sites (top mid-panel in Fig. 4B–D; p <
0.05, W ≤ 17). In contrast, the verbs-exclusion case did not
exhibit such a difference at the N1 peak.

Fig. 5 shows the results when comparing the cross-
correlation of the objects- and subjects-exclusion cases with
the whole sentence. While the objects-exclusion case ex-
hibited considerably reduced N1 amplitude at broad fronto-
central and temporal sites, the subjects-exclusion case did not
show such reduction. Results observed when using PH and
PHENV are comparable.

4. Discussion
In this study, we examined the cortical tracking of the on-

set time of phonemes in spoken sentences in different cases:
when phoneme information from the whole sentence was
used and when omission of critical parts of the sentence
was used (i.e., component exclusions). In the component-
exclusion cases, three pairs of reciprocal components were
investigated: content words vs. function words exclusions,
nouns vs. verbs exclusions, and objects vs. subjects exclu-

sions. Our findings reveal that the cross-correlation between
the phoneme information and neural responses to various
component-exclusion cases and the whole sentence vary sig-
nificantly. The results show a significant decrease in phase-
locking of the N1-evoked amplitude in the cross-correlation
coefficients of content words-, nouns-, and objects-exclusion
cases compared with that of the whole-sentence case. Such
significant differences were observed at language-related
brain regions (i.e., left temporal gyrus, left inferior frontal
gyrus, and central regions), consistent with the typical audi-
tory N1 scalp peak [11]. Such significant differences were not
observed when comparing the cross-correlation of function
words-, verbs-, or subjects-exclusion cases with that of the
whole-sentence case. The findings indicate the dominance
of content words over function words in sentence compre-
hension and are supported by previous studies [1, 2]. One
possible reason for the dominance of nouns over verbs is that
nouns are conceptually simpler than verbs [4], which may al-
low them to be processedmore easily than relatively complex
concepts referred to by verbs during passive listening. Fur-
thermore, most of the sentences used as stimuli were in active
voice, which may favor the importance of objects to subjects.

Given thatN1 reflects discrimination of auditory informa-
tion [10, 11], the main result of this study indicates that the
importance of linguistic components may be encoded early
as the N1 latency. This assumption is partly in line with a
previous study by Moseley et al. [13], which found that the
brain retrieved the semantic information provided by words
and contexts relatively early, at 100–200ms after word onset.
Additionally, the left hemisphere has been considered dom-
inant for processing acoustic information [10, 11]. Our re-
sults are consistent with the finding of a left-hemisphere bias
of activities observed from topographies in Figs. 3A,4A,5A.

To validate the usefulness of PH, we used PHENV, the
combination of PH and the temporal envelope of speech. The
temporal envelope has been widely investigated in speech
comprehension as it reflects the acoustic changes in a sen-
tence [17, 18, 25]. Thus, the PHENV captures the onset time
of phonemes and acoustic information of the speech. Then,
we computed the cross-correlation between the PHENV and
the neural response corresponding to each sentence stimulus.
The grand average of the cross-correlation coefficient shows
a significant difference in the central region (Cz electrode)
for content words-, nouns-, and objects-exclusion cases com-
pared with the whole-sentence case. These results are in
line with those obtained when using the PH. However, the
subjects-exclusion case showed a significant difference in the
central, while such a difference was not observed when us-
ing the PH (Fig. 2C). As expected, in each comparison case
(i.e., function words vs. content words exclusions, verbs vs.
nouns exclusions, and subjects vs. objects exclusions), brain
activation patterns were somewhat akin to thementioned re-
sults. These findings indicate that the phoneme-onset time is
a practical aspect to consider while investigating speech com-
prehension.
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Fig. 3. The scalp map of cross-correlation coefficients and dominance for the whole sentence, content words exclusion, and function words
exclusion at P1-N1-P2 peak time. (A) Scalp map of cross-correlation coefficient between the PH of the whole sentence, content words exclusion, and
function words exclusion and ERPs at the time lags of 152, 199, and 285 ms. (B) Dominance map showing the whole-sentence vs. content words-exclusion
and vs. function words-exclusion cases (Wilcoxon signed-rank test, p< 0.05,W≤ 17). (C) Scalp map of cross-correlation coefficient between the PHENV of
the whole sentence, content words exclusion, and function words exclusion and ERPs at the time lags of 156, 199, and 293 ms. (D) Dominance map showing
the whole-sentence vs. content words-exclusion and vs. function words-exclusion cases (Wilcoxon signed-rank test, p < 0.05, W≤ 17).
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Fig. 4. The scalpmap of cross-correlation coefficients and dominance for thewhole sentence, nouns exclusion, and verbs exclusion at P1-N1-P2
peak time. (A) Scalp map of the cross-correlation coefficient between the PH of the whole sentence, nouns exclusion, and verbs exclusion and ERPs at the
time lags of 152, 199, and 285 ms. (B) Dominance map showing whole-sentence vs. nouns-exclusion vs. verbs-exclusion cases (Wilcoxon signed-rank test,
p < 0.05, W ≤ 17). (C) Scalp map of the cross-correlation coefficient between the PHENV of the whole sentence, nouns exclusion, and verbs exclusion
and ERPs at the time lags of 156, 199, and 293 ms. (D) Dominance map showing whole-sentence vs. nouns-exclusion vs. verbs-exclusion cases (Wilcoxon
signed-rank test, p < 0.05, W≤ 17).
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Fig. 5. The scalp map of cross-correlation coefficients and dominance for the whole sentence, objects-exclusion, and subjects-exclusion at P1-
N1-P2 peak time. (A) Scalp map of the cross-correlation coefficient between the PH of the whole sentence, objects exclusion, and subjects exclusion and ERPs
at the time lags of 152, 199, and 285 ms. (B) Dominance map showing the whole-sentence vs. objects-exclusion vs. subjects-exclusion (Wilcoxon signed-rank
test, p< 0.05,W≤ 17). (C) Scalp map of the cross-correlation coefficient between the PHENV of the whole sentence, objects exclusion, and subjects exclusion
and ERPs at the time lags of 156, 199, and 293 ms. (D) Dominance map showing the whole-sentence vs. objects-exclusion vs. subjects-exclusion (Wilcoxon
signed-rank test, p < 0.05, W≤ 17).
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There are several limitations in the current study as fol-
lows. First, all sentences were simple declarative sentences
in the active voice. Function words in sentence stimuli act
as linking words without holding much meaning, leading to
the trivial role of functionwords in sentence comprehension.
Second, our hypothesis was validated based on the brain acti-
vations on sensor-space, which can include not only the local
active source but also the concurrent electrical sources in the
brain [32, 33]. Third, the analysis mainly focused on the early
ERP component (N1), which does not reflect other complex
processes, such as the integration of semantics and the pro-
cess of reanalysis. Future studies should employ various types
of sentences as stimuli and recruit additional linguistic com-
ponents of sentence comprehension (e.g., stress and intona-
tion [2, 3]). Analysis of late components in speech-evoked
potentials during sentence comprehension and techniques to
estimate cortical source activity should also be considered.

5. Conclusions
In summary, the phoneme-based ERP analyses reveal the

differential importance of linguistic components for sentence
comprehension. Such information is encoded early in sen-
tence processing, even while listening to sentences passively.
Our findings suggest that content words, nouns, and objects
are dominant components in sentence comprehension com-
pared to function words, verbs, and subjects, respectively.
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