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Training is known to improve our ability to make decisions when interacting in complex environments. However, individuals vary in
their ability to learn new tasks and acquire new skills in different settings. Here, we test whether this variability in learning ability
relates to individual brain oscillatory states. We use a visual flicker paradigm to entrain individuals at their own brain rhythm (i.e.
peak alpha frequency) as measured by resting-state electroencephalography (EEG). We demonstrate that this individual frequency-
matched brain entrainment results in faster learning in a visual identification task (i.e. detecting targets embedded in background
clutter) compared to entrainment that does not match an individual’s alpha frequency. Further, we show that learning is specific to the
phase relationship between the entraining flicker and the visual target stimulus. EEG during entrainment showed that individualized
alpha entrainment boosts alpha power, induces phase alignment in the pre-stimulus period, and results in shorter latency of early visual
evoked potentials, suggesting that brain entrainment facilitates early visual processing to support improved perceptual decisions. These
findings suggest that individualized brain entrainment may boost perceptual learning by altering gain control mechanisms in the visual
cortex, indicating a key role for individual neural oscillatory states in learning and brain plasticity.
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Interpreting the plethora of information that we encounter in
complex and dynamic environments places high demands on our
sensory systems. Training is known to improve our ability to make
perceptual judgements (e.g. detect targets in cluttered scenes),
a process known as perceptual learning (Goldstone 1998). Yet,
there is striking variability among individuals in their ability to
take into account previous experience when making perceptual
decisions (Saarinen and Levi 1995; Christian et al. 2015; Siegelman
et al. 2017). Recent work suggests that individual variability in
behavioral performance may relate to dynamic changes in brain
states; that is, fluctuations in cortical excitability across time
(Freyer et al. 2013; Sigala et al. 2014). Yet, our understanding
of the brain states that underlie variability in learning ability
across individuals and within the same individual across different
contexts remains limited.

Brain states are closely associated with oscillations (Sigala et al.
2014) that are known to reflect cyclical change in the excitabil-
ity of neural populations and gate the flow of neural activity
within and across brain regions (Fries 2015, 2005). Oscillations
within the alpha band (8–12 Hz) have been shown to relate
to performance in perceptual tasks, with both amplitude and
phase acting as gating mechanisms on perception (Hanslmayr
et al. 2005; Sokoliuk and VanRullen 2016; Hülsdünker et al. 2018).
In particular, decreased pre-stimulus alpha amplitude has been
associated with increased detectability of near-threshold stimuli
(Ergenoglu et al. 2004; Hanslmayr et al. 2007; Iemi et al. 2017).
Further, previous work suggests a key role of alpha phase in

perceptual judgements. In particular, briefly presented stimuli are
more likely to be detected when they are aligned at particular
phases of the alpha cycle (Busch et al. 2009; Mathewson et al. 2009;
Wyart and Sergent 2009). Further, the likelihood of phosphenes
after brain stimulation varies with alpha phase (Samaha et al.
2017), and alpha phase alignment at stimulus onset results in
changes to the latency of early components of visual evoked
responses (Mathewson et al. 2009; Hülsdünker et al. 2018).

Recently, rhythmic stimulation (e.g. repetitive sensory stimu-
lation at alpha rate) has been used as an interventional tool to
drive neural oscillatory activity at the stimulation frequency and
test the link between alpha oscillations and behavioral perfor-
mance (Mathewson et al. 2010; Spaak et al. 2014; Sokoliuk and
VanRullen 2016; Chota and VanRullen 2019). In particular, this
flicker-induced brain entrainment protocol has been shown to
result in increased alpha power and phase alignment (Notbohm
and Herrmann 2016). Entrainment protocols often target a fixed
frequency across all participants (e.g. alpha band mean of 10 Hz).
Yet, there is accumulating evidence that individual variability
in peak alpha frequency is functionally relevant for perceptual
processing. Although there is significant variation in peak alpha
frequency across individuals, an individual’s peak alpha frequency
has been suggested to relate to their personal rate of perceptual
information processing. In particular, peak alpha frequency has
been shown to be stable within individuals (Grandy et al. 2013;
Barzegaran et al. 2017) and relate to the individual’s temporal
window of integration for perceptual input (Samaha et al. 2015;
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Samaha and Postle 2015; Ronconi and Melcher 2017; Ronconi et al.
2018).

Here, we ask whether entraining the brain at individualized
alpha frequencies boosts individual learning ability. We individu-
alized the rhythmic visual stimulation to entrain oscillatory brain
states (i.e. alpha oscillations) and test their role in individual
learning ability in a visual discrimination task. In particular, we
first measured alpha frequency oscillations using resting-state
electroencephalography (EEG) for each individual participant. We
then used a visual flicker paradigm to induce individualized
alpha entrainment (i.e. flicker rate was matched to individual
alpha peak frequency) during training on a visual discrimination
task (i.e. identifying radial vs. concentric Glass patterns embed-
ded in noise). We individualized manipulations of alpha entrain-
ment frequency versus phase to dissociate their effect on per-
ceptual learning ability. We hypothesized that entrainment at
an individualized—compared to non-individualized—alpha fre-
quency would boost learning ability. Further, we tested whether
learning depends on the oscillatory phase of stimulus presenta-
tion (peak vs. trough) and whether entrainment frequency and
phase interact to support improved performance due to training.
We predicted that individualized alpha entrainment targeting the
trough phase for stimulus delivery would boost learning, based
on previous work showing that the trough phase of alpha oscilla-
tions is associated with stronger disinhibition (Busch et al. 2009;
Mathewson et al. 2011, 2010; Fakche et al. 2022) that may facilitate
visual target detection from clutter. Our results demonstrate
that entrainment at an individualized alpha frequency results
in faster learning. This improvement was evident when visual
patterns were presented at the trough rather than the peak phase
of the flicker-induced entrainment, suggesting that alpha phase
gates visual processing. Further, using EEG during training, we
demonstrate that flicker-induced entrainment drives alpha brain
frequencies and alters early visual processing to boost learning
for perceptual decisions.

Materials and methods
Participants
Participants (n = 100) were 18–35 years old (mean age: 23.6,
SD = 4.3). Participants (n = 10) were excluded due to experimental
(e.g. using incorrect response keys, self-reported intolerance of
the visual flicker) or technical (n = 4) issues. Further, participants
with low-quality EEG data due to excessive eye movements
(n = 6) were excluded from further analyses. Data from a total
of 80 participants (n = 20 per experimental group) were included
in further analyses following these exclusions. All participants
had normal or corrected-to-normal vision, did not receive any
prescription medication, were naïve to the aim of the study,
gave written informed consent, and received payment for their
participation. The study was approved by the University of
Cambridge Ethics Committee.

Stimuli
Stimuli comprised Glass patterns (Glass 1969) that were designed
following parameters defined in previous studies (Pei et al. 2005;
Frangou et al. 2018). Glass patterns were defined by white dot
pairs (dipoles) displayed within a square aperture on a black
background at the center of the screen (Fig. 1A). Stimuli were
presented at visual angle of 7.9o × 7.9o (2.3 × 2.3 arc min2 per dot).
Dot density was set to 3%, and the Glass shift (i.e. the distance
between 2 dots in a dipole) was 16.2 arc min. For each dot dipole,
the spiral angle was defined as the angle between the dot dipole

orientation and the radius from the center of the dipole to the
center of the stimulus aperture. The signal-to-noise ratio (SNR)
was set to 24% ± 1% signal, that is, 24% of the dot dipoles were
aligned according to the specified spiral angle (signal dipoles) for
a given stimulus and the remaining dots were assigned a random
orientation.

We generated radial (0o spiral angle) and concentric (90o spiral
angle) Glass patterns by placing dipoles orthogonally (radial stim-
uli) or tangentially (concentric stimuli) to the circumference of a
circle centered on the fixation dot. A new pattern was generated
for each stimulus presented in a trial, resulting in stimuli that
were locally jittered in their position. A small jitter (±1%–3%) was
added to the SNR to control for low-level perceptual adaptation to
local dot position and ensure that learning related to global shape
rather than local stimulus features.

Procedure
Each participant completed 2 experimental sessions on consec-
utive days (with the exception of one participant). In Session
1, participants practiced the pattern identification task for 50
trials followed by a resting-state EEG measurement (5 min) during
which participants fixated on a central point on the screen (eyes
open resting state measurement, EORS). Participants were then
trained with flicker-induced entrainment (807 trials split in 4
blocks) on the pattern identification task with feedback. At the
end of the training session, a second EEG EORS measurement
was taken to test the reliability of the first peak alpha frequency
measurement, as recent reports have reported a systematic shift
in frequency over time (see Supplementary Material S1). On the
following day (Session 2), participants completed 4 blocks (807
trials) without entrainment, feedback, or EEG. All participants
were given the same instructions, task exposure, and presented
with the different experiment phases (e.g. measuring resting state,
practice tasks, main task) in the same order. They were encour-
aged to take short breaks between blocks to mitigate fatigue.

Entrainment was induced by flicker; that is, a high contrast
square stimulus flickered (15 cycles flashes) at the center of the
screen (at the same position as the Glass pattern stimuli) for a
duration of (for 10 Hz stimulation) 1,500 ms at the beginning
of each trial (Fig. 1B). Stimuli were generated using the Matlab
toolbox, Psychtoolbox (Brainard and Vision 1997). Each flicker
was designed as a visual “pulse,” with a high contrast white
square displayed briefly followed by a blank interval. This inter-
flash interval was set to 1 cycle of the selected alpha frequency
for each participant depending on the experimental group they
were allocated to. Although the 120 Hz refresh rate may limit
the presentation rate, validation analyses suggest that the neural
response targeted effectively the desired frequency (for validation
of entrainment values, Supplementary Figs. S1.1–1.3).

Following the entrainment sequence, there was a brief interval
before the stimulus onset. This interval was scaled according to
the frequency of the entrainment and was randomly selected
from 1 of 3 durations per trial: 1, 2, or 3 cycles (peak group), or 1.5,
2.5, or 3.5 cycles (trough groups). The test stimulus was then pre-
sented for 200 ms followed by a fixation point for 1.3 s. During this
response period, participants were asked to indicate their judg-
ment (radial vs. concentric pattern) by pressing 1 of 2 keyboard
keys (left and right arrow keys). Visual feedback (green tick for
correct response, red cross for incorrect response) was given at the
same central location following the participant response (100 ms).
A variable intertrial interval followed the feedback (mean 1.5 s
with a uniform jitter of ±250 ms).
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Fig. 1. Experimental design and stimuli. A) Example stimuli comprising radial and concentric Glass patterns (stimuli are presented with inverted contrast
for illustration purposes). Left: Prototype stimuli: 100% signal, spiral angle 0◦ for radial and 90◦ for concentric. Right: Stimuli used in the study: 25%
signal, spiral angle 0◦ for radial and 90◦ for concentric. B) Trial design. Visual flicker (15 alpha cycles) was used to induce alpha entrainment. Each
flash in the sequence was temporally separated by an interval equal to one cycle of each participant’s IAF. Following a blank interval at the end of the
entrainment sequence (1–3 or 1.5–3.5 alpha cycles), the target stimulus was presented (200 ms). Participants were asked to judge whether the target
stimulus was radial or concentric and indicated their decision with a button press. C) Experimental design. The entrainment frequency was either
matched to the individual participant’s alpha frequency or was offset (nonMatched) by ±1 Hz. The onset of the target stimulus was set either at the
peak or trough of the oscillation induced by the visual flicker by manipulating the interval after the entrainment sequence: for 10 Hz stimulation at the
peak, the interval was 100, 200, or 300 ms; for 10 Hz stimulation at the trough, the interval was 150, 250, or 350 ms. These values were scaled according
to the participant’s IAF. The solid line indicates the hypothesized trajectory of the entrained alpha oscillation during the visual flicker sequence. The
dashed line reflects the hypothesized continuation of the entrained alpha oscillation after the flicker sequence has ended, with stimuli shown at all
possible presentation times.

Experimental groups
Participants were pseudorandomly allocated to 1 of 4 experi-
mental groups defined by manipulations of the flicker-induced
entrainment frequency and phase. First, the frequency of the
entrainment flicker was either set to match the peak alpha
frequency of each individual participant (“match”) or at ±1 Hz
from the peak alpha frequency (“nonMatch”; +1 Hz: n = 11; −1 Hz:
n = 9). Second, the phase alignment of the target stimulus (i.e.
Glass pattern), with respect to the preceding flicker, was either
at the “peak (P)” (the target appeared at whole-cycle intervals
following the final flash) or “trough (T)” (target appears at

half-cycle intervals following the final flash). This was instan-
tiated by varying the number of cycles (1–3 for P, 1.5–3.5 for T)
in the pre-stimulus interval (Fig. 1C). To test whether frequency
effects were modulated by phase of stimulus delivery, we
compared the 2 frequency-matched groups that differed in phase.
However, for the nonMatch group, performance was assessed
at the Trough phase only, as individual frequency-matched
entrainment at the Trough phase was expected to show stronger
behavioral improvement than entrainment at the Peak phase
based on previous work (Busch et al. 2009; Mathewson et al.
2011, 2010; Fakche et al. 2022). These manipulations resulted

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac426/6814397 by C

apital M
edical U

niversity user on 03 D
ecem

ber 2022



4 | Cerebral Cortex, 2022

in 3 experimental groups: T-Match (TM), T-nonMatch (TnM), and
P-Match (PM). Finally, we tested an additional control group for
the T-match group (random entrainment group); that is, we set
the entrainment parameters to those of the T-match group based
on individualized alpha frequencies but randomized the inter-
flash intervals (keeping the total flicker duration the same across
trials and groups). To avoid experimenter bias, we ensured that
the researcher collecting the data did not have any information
about baseline task performance before group allocation.

EEG data acquisition
We measured EEG data for the 3 entrainment groups: T-Match,
T-nonMatch, and P-Match groups. EEG data were acquired from
63 channels (BrainCap, Brain Products with 2 BrainAmp MR plus
amplifiers), consisting of 61 scalp electrodes, arranged according
to the extended 10–20 system (ground at AFz, reference electrode
placed at FCz) and 2 bipolar channels for electrooculographic
measures. One pair was placed horizontally, and another ver-
tically around the left eye. We measured 3 EEG recordings in
Session 1: resting-state EEG before training (EORS1), continuous
EEG recording during training, and resting-state EEG after training
(EORS2). For each resting-state EEG recording, we collected data
(5 min) using the same BrainVision Recorder software as for the
task EEG recording. For continuous EEG recording during training,
we placed markers to indicate the onset of each flash in the flick-
ering sequence and the target stimulus (Glass pattern) onset. Data
were acquired with no additional online filter at a 1 kHz sampling
rate. Caps were fitted with Ag/AgCl multitrode electrodes and
filled with conductive gel. Impedances were kept at or below the
recommended 5 kohm level.

Behavioral data analysis
We calculated learning rate on performance across trials for each
session. We fit a logarithmic function (y = a + b∗log(x)), where y is
the block accuracy) on mean accuracy values for each of 8 blocks
(n = ∼100 trials per block). To compare performance between the
2 sessions, we used the data from the final 2 blocks of the first
session and the first 2 blocks of the second session. We estimated
the slope (b) of the fits per session and compared this across
intervention groups using a linear mixed effects model, where
frequency (match/nonMatch) and phase (peak/trough) were used
as predictors of learning rate. T-statistics for each predictor (or
interaction) are reported, as a test for significance of the model
coefficients. This approach is used to compare the 3 experimental
groups accounting for the unbalanced design (i.e. for the non-
Match group, performance was assessed at the Trough phase but
not the Peak phase). The Control group was compared to the
T-Match group using a one-tailed independent group t-test, using
an alpha level of 0.025 to account for multiple comparisons. In
particular, we tested the hypothesis that learning is enhanced
in the T-Match group in comparison with the Control group, as
derived from the comparison of the 3 experimental groups.

EEG resting-state analysis
We analyzed the resting-state EEG data with a pipeline that was
adapted to allow timely estimates of individual alpha frequencies
that were used to drive the entrainment protocol. Data were
bandpass filtered (1–40 Hz) and re-referenced to the average ref-
erence. The continuous data were then divided into 10 s windows
(10,000 samples). For each electrode in the occipital group (Oz, O1,
O2, PO7, and PO8), a fast Fourier transform was applied to each
window, using Matlab’s fft function.

The spectra were averaged across windows without smoothing
to produce a single spectrum per participant. The individual alpha
frequency (IAF) was defined as the peak between 8 and 12 Hz.

To compare the pre-training versus post-training peak alpha
frequency, the same pipeline was applied to all resting-state data.
To assess the stability of EORS, we compared the 2 measurements
(EORS1 vs. EORS2) within and across groups (see Supplementary
Material S1).

EEG preprocessing
EEG data were preprocessed using routines from EEGLAB
(Delorme and Makeig 2004) and custom-written Matlab code.
As most of the analyses focused on narrow band filtered
data, to avoid discontinuities (and therefore filter artifacts),
we preprocessed continuous data and epoched the data at a
later stage in the analysis pipeline. The BrainVision Files were
imported into EEG, and independent component analysis (ICA)
was applied on the continuous data. ICA components reflecting
eye blinks and lateral eye movements were identified and
rejected (mean n = 3 components removed per participant), using
topographic distribution and frequency spectra. Following ICA-
based component rejection, data were transformed into Current
Source Density estimates, as implemented by Cohen (2014). Data
were then filtered, as specified per analysis type (i.e. in 1 Hz steps
for alpha, or at the beta harmonic, or the beta band excluding the
harmonic), epochs were extracted, and epochs with large residual
artifacts were removed, based on visual inspection (mean trials
removed = 100, corresponding to 12.5%). Epochs were centered
on stimulus onset, from −3 s to +3 s. For the evoked potential
analysis, a second round of ICA was applied to the epoched data to
remove any residual broadband artifacts (mean n = 7 components
removed per participant). All data were referenced to the average
reference prior to any further analysis.

EEG analyses
EEG analyses focused on 5 occipital/posterior electrodes (Oz, O1,
O2, PO7, and PO8), as these posterior electrodes are situated
bilaterally across the visual cortex and cover posterior regions
with high alpha amplitude.

Validation of alpha entrainment response
The alpha entrainment response frequency was calculated using
a fast Fourier transform (Matlab’s fft), using epoched data from
−2,500 ms to stimulus onset. We used this fixed time window
to capture the full entrainment period for all participants. The
measured individual alpha peak was taken as the peak between 8
and 12 Hz. To test for the accuracy of the measured entrainment
response, we then correlated the measured alpha peak with the
resting state value (Supplementary Fig. S1-3).

Between-group differences in alpha pre-stimulus phase
To validate the between-group phase manipulation, the complex
component of the Hilbert transform was used to measure the
instantaneous phase of alpha at target onset (converted to radians
with Matlab’s angle.m). Trials were split according to pre-target
interval length (1, 1.5, 2, 2.5 or 3, 3.5 cycles), and the circular
average phase (circ_mean.m from circstats toolbox) was compared
for the timepoint at target onset. Phase clustering within a par-
ticipant was quantified with Rayleigh’s test for nonuniformity.
To assess between-group differences in phase angle, groups were
compared with a Watson–Williams test for circular data and the
resulting outputs were false discovery rate (FDR)-corrected for
multiple comparisons.
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EEG alpha envelope analyses
For the analysis of alpha band amplitude envelope (applied for
the entrainment period, pre-stimulus and post-stimulus periods),
we used narrowband alpha data that were filtered in a series
of 1 Hz steps, from 8 to 12 Hz. All filters were implemented
using EEGLab’s eegfiltnew, which uses a Hamming windowed sinc
FIR filter. Supplementary Table S1 shows the order and transition
bandwidth for each type of filtered data used for analysis. To
estimate power change during entrainment, the narrowband data
were assigned to “target” or “non-target” bins. The target bin was
the bin that contained the entrained frequency for each partic-
ipant. For example, a participant with an entrained frequency
of 9.3 Hz would have a target bin of 9:10 Hz, and the other 3
bins would be labeled as nontarget. For the T-nonMatch group,
the nontarget label was subdivided further, to separate out the
band containing the participant’s individual measured resting-
state frequency.

To calculate the amplitude envelope, the filtered epochs were
transformed via the Hilbert transform (using Matlab hilbert), and
the absolute value of the real component was taken for each
time point in the epoch. To account for differences in absolute
amplitude between participants, each epoch was normalized (z-
score) relative to a time window in the pre-entrainment period
(−2.8 to −2.7 s before stimulus onset). This method was chosen
to emphasize the within-trial effects. We focused on 2 time win-
dows, corresponding to the entrainment and post-target response
periods, respectively. The first time window (−1000:−500 ms) was
selected to capture a period, during the flicker-induced entrain-
ment, that excluded responses to flicker onset or offset (slowest
frequency (125 ms) ∗ longest cycle duration (3.5 cycles) before
target onset). The second time window (400:600 ms) was centered
at the trough of the post-target onset decrease in alpha amplitude
that is characteristic of the alpha response to a visual stimulus.
This window was defined to capture the minimum alpha across
participants. The mean latency of alpha amplitude within this
window was 522 ms (standard deviation = 68.3 ms) The primary
analysis included electrodes across the posterior scalp, to match
those used to measure resting state alpha frequency (Oz, O1, O2,
PO7, PO8).

To estimate change in the alpha envelope during training, we
binned EEG signals across trials into the same 8 blocks (∼100 trials
per block) as for the behavioral data and tested for main effects
of frequency (match/mismatch) and phase (peak/trough) using a
linear mixed effects model.

Further, we tested the high beta band (24–30 Hz) as a control
frequency, using the same phase and envelope amplitude analy-
ses. This narrow beta band (24–30 Hz) was chosen as it excludes
the first harmonic of alpha. To match the frequency resolution for
the phase analysis and to test the specificity of phase alignment,
we selected the first harmonic of the entrained alpha frequency
which falls within the beta band (e.g. for 10 Hz entrainment, the
first harmonic was 20 Hz).

Event-related potential analysis
We calculated the stimulus-locked evoked response for occip-
ital (O1, O2, Oz) and lateral occipital (PO7, PO8) sensors, in
broadband filtered data (1:40 Hz). Data were baseline corrected
(−2,800:−2,700 ms prior to target onset) and averaged across
the session. For statistical comparison, a 10 ms window around
the peak/trough of 3 visual evoked components was used to
calculate the component amplitude for each participant. The
centers of these windows were aligned to the maximal/minimal

values within 3 windows: P1: 70–120 ms (lateral occipital
electrodes), N1: 90:200 ms (occipital electrodes), and P2 (lateral
occipital electrodes; 250:400 ms). The electrodes sites were
selected according to the scalp topography for each component.
This procedure allowed us to capture individual differences in
component latency and test for between-group differences in
latency. Latency was estimated by first averaging data within
blocks and across electrode groups, then finding the maximum
(positive components) or minimum (negative components) value
within the search windows (see above). These per-trial estimates
were then averaged across trials to give a mean latency for each
block of trials or across the whole session.

Results
To test the role of individualized alpha entrainment in perceptual
learning, we used a visual flicker paradigm that has been shown
to result in an increase in alpha power within posterior brain
regions (Spaak et al. 2014; Sokoliuk and VanRullen 2016). For
each participant, we measured their alpha frequency during a
resting-state EEG recording prior to training on the task. We then
trained participants on a signal-in-noise task; that is participants
were asked to discriminate radial versus concentric Glass patterns
embedded in noise. Before stimulus onset, a high contrast square
appeared at the center of the screen and flickered for 15 cycles at
a rate within the alpha frequency range (8–12 Hz). The target stim-
ulus then appeared at a latency that was scaled by the alpha rate
(i.e. at the peak or trough of the flicker-induced oscillation). We
manipulated phase of alpha entrainment in 2 frequency-matched
groups: (1) Peak-Match (PM): entrainment rate was matched to
the individual peak alpha frequency (IAF) and the target stimulus
appeared at whole-cycle latencies after entrainment offset and (2)
Trough-Match (TM): entrainment rate was set to IAF, but the target
appeared at the opposite phase to the Peak-Match group. Data
were modeled using a linear mixed effects approach, to account
for the unbalanced design. Phase and frequency match were used
as independent predictors of learning rate for the 3 experimen-
tal groups. A control group, which used the same entrainment
parameters as for the Trough-Match group but with an arhythmic
visual flicker train, was compared to the best performing group
directly.

Individualized entrainment boosts learning in a
phase-dependent manner
We found that individualized alpha entrainment with stimuli
presented at the trough of the alpha phase accelerated learning
(Fig. 2); that is, individuals in the T-Match group showed the
fastest learning rates than individuals at the PM and TnM
groups (significant main effects of frequency match: [t(57) = 2.77,
P = 0.008; 95% confidence intervals: −5.35/−0.93, estimate = −3.14]
and phase: [t(57) = 2.05, P = 0.045; 95% confidence intervals:
0.11/4.54, estimate = 2.33]). Post hoc tests (least squares differ-
ence) showed that learning rate was significantly higher for the
TM group compared to the PM (P = 0.045) and TnM (P = 0.008)
groups. In contrast, learning rate did not differ significantly
between the PM and TnM groups (P = 0.47). These results suggest
that individualized alpha entrainment enhances learning, but
only when stimuli are presented at the trough rather than the
peak of the induced oscillations.

Further, to test whether the T-Match intervention improved
learning compared to no-entrainment, we assessed learning in a
Control group who received arrhythmic flicker stimulation that
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Fig. 2. Behavioral performance. A) Performance (% correct) across blocks
in Session 1. Open circles indicate mean accuracy (percentage of correct
responses) per block of trials (∼100 trials per point), for each of the 3
intervention groups (T-Match, T-misMatch, and P-Match). Accuracy data
across blocks were fitted with a logarithmic function (solid lines) to
estimate learning rate. B) Mean learning rate (i.e. slope of logarithmic fit)
across participants per group. Bars show mean learning rate per group,
as estimated from fitting the individual accuracy data. Error bars show
±1 SEM.

was matched in all other parameters to the T-Match group. A one-
tailed independent groups t-test (Bonferroni corrected for multi-
ple comparisons) showed that there was a significant difference
between the Control group and the T-Match group, suggesting the
T-Match intervention improved learning (t(38) = 2.39, P = 0.012; see
Supplementary Material Fig. 2.2). Neither the PM nor the TnM
group differed from the control group (PM vs. Control: t(38) = 0.31,
P = 0.761; TnM vs. Control: t(38) = 1.20, P = 0.238). Together, these
results suggest that oscillation frequency and phase interact to
support learning.

This learning effect could not be attributed to a speed–accuracy
trade-off, as reaction times decreased similarly during training
across all groups (LME including phase, match and block (first
vs. last block); main effect of Block: t(57) = 3.00, P < 0.004), no
significant interaction for either phase (t(57) = 1.18, P = 0.242) or
match (t(57) = 1.21,P = 0.231). Further, the results could not be
attributed to individual variability in performance, as there were
no significant differences across groups for starting performance
accuracy (no main effect of phase (t(57) = 0.270, P = 0.788) or

frequency match (t(57) = 0.561, P = 0.577). Finally, we investigated
whether the variation in pre-stimulus interval (between 1 and
3.5 cycles) influenced performance in each block. There was
no significant main effect of latency on performance accuracy
(F(2,154) = 0.84, P = 0.432) nor a significant block × latency
interaction (F(2,154) = 0.84, P = 0.432). However, the main effect
of block remained significant (F(6,500) = 5.0, P < 0.001), suggesting
that the learning differences we observed between groups could
not be simply attributed to differences in mean latency.

We next tested whether the entrainment during training had
a lasting effect on participant performance. Participants were
tested without entrainment or feedback on the signal-in-noise
task in a second session (the day after the entrainment session).
A LME analysis including phase, frequency match, and day as
predictors showed no main effects (P > 0.1) and no significant
phase × day interaction (t(57) = 0.24,P = 0.812), or match × day
interaction (t(57) = 0.81,P = 0.422). These results suggest that learn-
ing was maintained the day following training. Comparing learn-
ing rates across groups in Session 2 did not show any significant
differences (LME, main effect of phase: t(57) = 0.15, P = 0.881, main
effect of frequency match: t(57) = 1.90, P = 0.062), suggesting that
differences in learning rate between groups across sessions were
due to entrainment during the first session.

Validation of alpha entrainment
To validate the efficacy of the flicker-induced entrainment, we
compared alpha power in the entrainment window (see Methods)
across groups (TM, TnM, PM). To capture the entrainment effect,
we filtered the data in 1 Hz steps between 8 and 12 Hz and binned
the data into “on-target” (i.e. the frequency targeted with entrain-
ment) versus “off-target” (non-entrained frequencies) bands. We
reasoned that successful entrainment would result in increased
alpha power in the on-target band for frequency-matched groups.
In contrast, we did not expect a difference in alpha power during
the entrainment window between Peak-Match and Trough-Match
groups as the phase manipulation occurred only after the entrain-
ment window. A linear mixed effects model (Phase, Frequency
Match, Band) showed a significant main effect of frequency match
(t(57) = 3.48, P = 0.001) and a significant frequency match × band
interaction (t(57) = 2.05, P = 0.045), but no significant main effect
of phase (t(57) = 0.14, P = 0.889). These results suggest that the
flicker-induced entrainment increased alpha power specifically
at the entrained frequency rather than at immediately adja-
cent frequencies. Further, this frequency-specific entrainment
was stronger for the Matched groups than the nonMatched group.

Conducting the same analysis in the pre-stimulus window
on the rejected ICA components (see Supplementary Material
S2) did not show any significant differences (no main effect
of match [t(57) = 1.15, P = 0.256] or phase [t(57) = 0.25, P = 0.797])
between groups in the on-target alpha power, suggesting that
the differences we observed across groups in alpha power could
not be due to differences in movement or experimental artifacts
across groups. Finally, additional control analyses showed that the
entrainment intervention: (i) resulted in a change to alpha ampli-
tude that was specific to the entrainment window (Fig. 3A), (ii) was
sustained across the session and apparent from the first block
of trials in the entrainment session (Fig. 3C), and (iii) remained
appropriately targeted due to the measured stability of the resting
state IAF (see Supplementary Methods, Fig. S1).

The enhanced alpha amplitude we observed for the frequency-
matched, on-target frequency suggests that our targeted entrain-
ment procedure was successful. However, this could reflect
power increase from a steady-state visual response. Therefore,
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Fig. 3. Entrainment effects on alpha power. A) Time series showing amplitude of alpha envelope in the on-target frequencies within the trial epoch. Gray
highlighted regions show the 3 time windows of interest for further analysis: entrainment window, pre-stimulus, and post-stimulus (from L-R). Solid
lines show the mean per group, shaded regions show ±1 SEM. B) Barplots showing the comparison of mean alpha amplitude within the entrainment
window, for on-target (solid color) and off-target (hatched) alpha frequencies across groups. Error bars show ±1 SEM. C) Mean alpha amplitude across
participants within the entrainment window for on-target frequencies is shown across blocks for each experimental group. Error bars show ±1 SEM.

we further tested whether the flicker-induced entrainment was
successful in manipulating the phase of alpha band activity
at stimulus onset. We predicted that alpha band activity for
the PM and TM groups would be at opposite phase at the
time of stimulus onset, given the scaling of the pre-stimulus
interval by alpha frequency. Figure 4A shows the phase clustering
statistic for each participant at the time of stimulus onset.
Comparing the phase angle of the on- versus off-target alpha
at the time of target onset across groups showed a significant
difference between PM and TM for the on-target frequency data
(Watson–Williams test FDR-corrected: F(1,38) = 18.0, P < 0.001);
in contrast, no phase differences were observed in the off-
target frequency data l (F(1,38) = 0.81, P = 0.50). Further, there was
no significant difference between the TM and the TnM group
for the on-frequency (F(1,38) = 5.09, P = 0.060) nor the off-target
frequency bands (F(1,38) = 0.21, P = 0.65). For all groups, entrain-
ment produced significant phase clustering (i.e. nonuniformity)
during the entrainment window preceding stimulus onset

(Supplementary Fig. S4). Finally, conducting similar phase
analyses for a control frequency band (i.e. beta-band) showed
no systematic phase alignment effects at stimulus onset
(Supplementary Fig. S5), despite some increase in beta power
during the entrainment window. This suggests that any temporary
increases in beta power that might have occurred during
entrainment dissipated quickly and did not carry over into the
stimulus onset period. Taken together, these results suggest
that individualized (frequency-matched) entrainment results
in alpha-band specific phase clustering, consistent with the
predicted phase opposition between the TM and PM groups.

Entrainment modulates early visual processing
To investigate whether the flicker-induced entrainment during
training altered neural processing in visual cortex that relates
to faster learning, we tested for differences in the event-related
potential (ERP) (broadband) response to target onset between
the entrainment groups. For each participant, we selected 3
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Fig. 4. Entrainment effects on alpha phase. Circular mean phase angle
for stimulus onset across participants (solid lines) per group; individual
values are shown in the corresponding circular histogram. Data are
shown for on- versus off-target frequency for 2 comparisons: Trough-
Match versus Peak-Match (left column) and Trough-Match versus Trough-
nonMatch (right column).

components (P1, N1, and P2, see Fig. 5A) of the visual evoked
potentials, as these components have previously been linked to
alpha oscillations (Klimesch et al. 2004; Gruber et al. 2005) and the
processing of Glass pattern stimuli (Ohla et al. 2005; Pei et al. 2005).
We compared latency and amplitude of the ERP response in these
components in 2 linear mixed models, with factors of group and
component. There was no main effect of group and no significant
interactions for either amplitude (TM vs. PM: (t(57) = 0.37,
P = 0.714; TnM vs. PM: t(57) = 0.14, P = 0.887) or latency (TM vs.
PM: (t(57) = −0.49, P = 0.624; TnM vs. PM: t(57) = 0.21, P = 0.838).
There were no significant group × component interactions
for either amplitude or latency (P > 0.051). However, a priori
pairwise comparisons per component based on previous work
showing component-specific relationships with alpha oscillations
(Klimesch et al. 2004; Gruber et al. 2005; Fellinger et al. 2012)
showed that there were main effects of both phase and match
for the latency of the N1 (phase: t(57) = −2.25, P = 0.028; match:
t(57) = 2.21, P = 0.031), reflecting the earlier N1 of the TM group.
Taken together, these results suggest that frequency-matched
alpha entrainment is associated with the rapid engagement of a
neural response associated with visual discrimination (Vogel and
Luck 2000).

Discussion
Using a flicker-induced entrainment paradigm, we demonstrate
that individualized alpha entrainment boosts our ability to
improve perceptual decisions through training and facilitates
early processing in the visual cortex. In particular, we show
that brain entrainment accelerates learning when stimulating
individuals at their own brain state (i.e. alpha oscillation
frequency) in a phase-specific manner (i.e. the target stimulus
is aligned to the trough rather than the peak of the entrainment
phase). Our findings advance our understanding of the role of
brain states in individualized learning for improved cognitive
skills in the following main respects.

First, previous work has implicated alpha oscillations in per-
formance in a range of perceptual tasks. Further, recent work has
shown that individual alpha peak frequency is a physiologically
meaningful measure that mediates the efficacy of flicker entrain-
ment interventions (Haegens et al. 2014; Gulbinaite et al. 2019,
2017). Here, we extend beyond previous work showing that train-
ing alters alpha power (Bays et al. 2015), demonstrating a benefit
of individualized alpha frequency entrainment on learning ability;
that is, entraining at IAF, as measured by resting state EEG, accel-
erates learning. The visual cortex has been shown to respond to
a range of alpha frequencies (Rager and Singer 1998; Herrmann
2001) and local variations in alpha frequency have been reported
across different brain regions (Barzegaran et al. 2017) and time
(Mierau et al. 2017; Benwell et al. 2019). Here, we provide evidence
that entraining the brain at an individual’s dominant frequency at
rest boosts learning, while misaligning the entrainment frequency
from the IAF (i.e. introducing ±1 Hz frequency shift) reduces the
efficacy of the entrainment and any learning benefit. This boost
in learning could not be simply due to a rhythmic cue signaling
the onset of the target stimulus, as behavioral improvement was
specific to the group that received individualized entrainment.
It is possible that individualized alpha entrainment increases
attentional resources available for stimulus processing resulting
in faster learning, consistent with the role of alpha rhythms in
the attentional selection of sensory information (Foxe and Snyder
2011; Klimesch 2012; Peylo et al. 2021) and temporal prediction
(Hanslmayr et al. 2011; Rohenkohl and Nobre 2011).

Second, we demonstrate that individualized entrainment
resulted in increased alpha power during entrainment, validating
that flicker-induced stimulation drives alpha oscillations. Alpha
power has been suggested to relate to inhibitory processing
(Klimesch et al. 2007; Luft et al. 2018) and gain control mecha-
nisms in visual cortex (Jensen and Mazaheri 2010; Van Diepen
et al. 2019). It is possible that alpha entrainment in the context
of our task (i.e. target identification in clutter) serves to inhibit
distracting visual information (Wiesman and Wilson 2019) for
efficient target selection and optimized processing through
training. Another possibility is that alpha entrainment may
modulate attention via an early-stage cortical mechanism that
is distinct from the endogenous regulation of alpha activity
(Keitel et al. 2019). However, the relationship between alpha
power and attention has been controversial (Antonov et al. 2020;
Zhigalov and Jensen 2020; Benwell et al. 2022). Our results showing
enhanced pre-stimulus alpha, but limited learning for the PM
compared to the TM group, suggest that increase in alpha power
alone may not be sufficient for learning.

Furthermore, we provide evidence that phase alignment of
the target stimulus to the entrainment frequency is critical for
faster learning, suggesting that phase gating plays a key role in
learning. Phase-linked effects on cognition can be observed in
multiple domains (Leong et al. 2014; Leong and Goswami 2015;
Clouter et al. 2017; Wang et al. 2018), supporting the critical
role of phase in the organization of cortical interactions. It is
known that transmission delays may contribute to individual
variability in the efficacy of brain stimulation protocols. Further
methods that use online monitoring of brain-state (Bergmann
2018) (e.g. phase; (Zrenner et al. 2018; Zarubin et al. 2020)
may provide more accurate phase targeting of stimulation
delivery. However, as a consistent phase difference was main-
tained across phase-manipulated Peak and Trough groups, it
is unlikely that our results were significantly affected by any
between-participant variation in transmission delays that may
accumulate. Despite evidence that visual flicker affects phase
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Fig. 5. Entrainment effects on visual evoked potentials. A) Posterior evoked potential for all trials, time-locked to the onset of the target stimulus. Top
panel shows time series for central occipital electrodes and the gray shaded region indicate the N1 search region. Bottom panel shows the time series
for the lateral occipital electrodes and gray shaded areas indicate P1 and P2 search windows. Data are shown for each group; solid line indicates mean
amplitude; shaded regions indicate ±1 SEM. B) Topographies for the amplitude of the evoked response averaged within the search windows for each
component (P1, N1, and P2 respectively). Black dots indicate electrode sites. C) Left panel: Barplots show mean latency of evoked potential response
across participants, following target stimulus onset, for each entrainment group. Top right panel shows the between-group comparison of latency
values for the N1 component. Bottom panel shows the mean component amplitude across all components (N1, P1, P2). Error bars indicate SEM across
participants.

alignment (Keitel et al. 2019), the role of alpha power versus
phase in task-specific behavioral improvement remains debated
(Harris et al. 2018; Hülsdünker et al. 2018; Hansen et al. 2019;
Zazio et al. 2021). Here, we demonstrate that individualized
alpha entrainment boosts learning only when the task-relevant
stimulus is aligned to the trough—rather than the peak—of
the flicker-induced alpha frequency. This is consistent with

previous studies, suggesting that the trough of alpha frequency
is associated with stronger disinhibition resulting in increased
excitability (Busch et al. 2009; Mathewson et al. 2011, 2010;
Fakche et al. 2022). It is possible that individualized entrainment
maximizes a form of “pulsed inhibition” (Jensen et al. 2012) that
regulates cortical excitability and visual target detection; that
is, individualized entrainment provides windows of maximum
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inhibition (peak) and excitation (trough) to support detection of
task-relevant features from noise and visual target identification.
Interestingly, we observed behavioral differences despite the
fact that the duration of stimulus presentation spans at least
one full alpha cycle for all participants. This may suggest that
phase is critical for setting the state of the visual system,
or that participants did not make use of the whole stimulus
presentation window before making their choice (Kiani et al. 2008;
Fabre-Thorpe 2011; Tsetsos et al. 2012). However, arbitrating
between these possibilities is not possible with the present
design and would be an important consideration for future
studies.

Finally, we provide evidence that individualized alpha entrain-
ment alters early visual processing (i.e. early visual evoked
responses measured with EEG) to support improved percep-
tual decisions through training. Previous work has shown a
relationship between the phase of pre-stimulus alpha (at the
peak frequency) and the latency of early visual EEG compo-
nents (Klimesch et al. 2004; Hülsdünker et al. 2018). Further,
training has been shown to alter N1 amplitude and/or latency
(Ahmadi et al. 2018; Xi et al. 2020). These results suggest
that individualized alpha entrainment enhances attentional
selection of target features and optimizes their processing
in the visual cortex to support efficient target detection and
identification.

In sum, combining flicker-induced entrainment with EEG, we
demonstrate that individuals learn faster when learning at their
own brain rhythm (i.e. IAF). It is likely that visual flicker induces
a widespread entrainment across brain regions. Further work
using more spatially precise interventions (e.g. TMS) is needed
to determine the role of different brain regions and stimulation
protocols (sensory vs. electrical) in brain entrainment. Recent
studies suggest that mismatched/non-IAF frequencies may play
a functional role in task performance (Nelli et al. 2021; Di Gre-
gorio et al. 2022; Janssens et al. 2022), that is, performance may
be optimized by non-IAF stimulation. Here, we did not observe
any significant differences between faster vs. slower subgroups,
suggesting that these “off-peak” mechanisms may not be critical
for learning to extract the relevant information from cluttered
visual displays. Our findings shed light into the brain mechanisms
that underlie improved learning for perceptual decisions due to
entrainment. In particular, individualized entrainment of alpha
oscillations may enhance attentional selection and gain control
mechanisms in visual cortex to support the detection and iden-
tification of targets from background noise. Our findings have
strong translational potential for lifelong learning. Investigating
the role of intrinsic variations in individual brain states is key for
understanding why the same training protocol is effective in some
individuals but not others. Our findings provide evidence for the
role of individual brain states in learning, proposing that taking
into account brain state variability is key for successful training
interventions.
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