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Abstract Speech contains rich acoustic and linguistic information. Using highly controlled speech

materials, previous studies have demonstrated that cortical activity is synchronous to the rhythms

of perceived linguistic units, for example, words and phrases, on top of basic acoustic features, for

example, the speech envelope. When listening to natural speech, it remains unclear, however, how

cortical activity jointly encodes acoustic and linguistic information. Here we investigate the neural

encoding of words using electroencephalography and observe neural activity synchronous to multi-

syllabic words when participants naturally listen to narratives. An amplitude modulation (AM) cue

for word rhythm enhances the word-level response, but the effect is only observed during passive

listening. Furthermore, words and the AM cue are encoded by spatially separable neural responses

that are differentially modulated by attention. These results suggest that bottom-up acoustic cues

and top-down linguistic knowledge separately contribute to cortical encoding of linguistic units in

spoken narratives.

Introduction
When listening to speech, low-frequency cortical activity in the delta (<4 Hz) and theta (4–8 Hz)

bands is synchronous to speech (Keitel et al., 2018; Luo and Poeppel, 2007). However, it remains

debated what speech features are encoded in the low-frequency cortical response. A large number

of studies have demonstrated that the low-frequency cortical response tracks low-level acoustic fea-

tures in speech, for example, the speech envelope (Destoky et al., 2019; Ding and Simon, 2012;

Koskinen and Seppä, 2014; Di Liberto et al., 2015; Nourski et al., 2009; Peelle et al., 2013).

Since the theta-band speech envelope provides an important acoustic cue for syllable boundaries, it

has been hypothesized that neural tracking of the theta-band speech envelope is a mechanism to

segment continuous speech into discrete units of syllables (Giraud and Poeppel, 2012;

Poeppel and Assaneo, 2020). In other words, the theta-band envelope-tracking response reflects

an intermediate neural representation linking auditory representation of acoustic speech features

and phonological representation of syllables. Consistent with this hypothesis, it has been found that

neural tracking of speech envelope is related to both low-level speech features (Doelling et al.,

2014) and perception. On one hand, it can occur when speech recognition fails (Etard and Reichen-

bach, 2019; Howard and Poeppel, 2010; Peña and Melloni, 2012; Zoefel and VanRullen, 2016;

Zou et al., 2019). On the other hand, it is strongly modulated by attention (Zion Golumbic et al.,

2013; Kerlin et al., 2010) and may be a prerequisite for successful speech recognition

(Vanthornhout et al., 2018).

Speech comprehension, however, requires more than syllabic-level processing. Previous studies

suggest that low-frequency cortical activity can also reflect neural processing of higher-level linguis-

tic units, for example, words and phrases (Buiatti et al., 2009; Ding et al., 2016a; Keitel et al.,

2018), and the prosodic cues related to these linguistic units, for example, delta-band speech
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envelope and pitch contour (Bourguignon et al., 2013; Li and Yang, 2009; Steinhauer et al.,

1999). One line of research demonstrates that, when listening to natural speech, cortical responses

can encode word onsets (Brodbeck et al., 2018) and capture semantic similarity between words

(Broderick et al., 2018). It remains to be investigated, however, how bottom-up prosodic cues and

top-down linguistic knowledge separately contribute to the generation of these word-related

responses. Another line of research selectively focuses on top-down processing driven by linguistic

knowledge. These studies demonstrate that cortical responses are synchronous to perceived linguis-

tic units, for example, words, phrases, and sentences, even when acoustic correlates of these linguis-

tic units are not available (Ding et al., 2016a; Ding et al., 2018; Jin et al., 2018; Makov et al.,

2017). Based on these results, it has been hypothesized that low-frequency cortical activity can

reflect linguistic-level neural representations that are constructed based on internal linguistic knowl-

edge instead of acoustic cues (Ding et al., 2016a; Ding et al., 2018; Meyer et al., 2020). Neverthe-

less, to dissociate linguistic units with the related acoustic cues, most of these studies present

speech as an isochronous sequence of synthesized syllables, which organizes into a sequence of

unrelated words and sentences. Therefore, it remains unclear whether cortical activity can synchro-

nize to linguistic units in natural spoken narratives, and how it is influenced by bottom-up acoustic

cues and top-down linguistic knowledge.

Here we first asked whether cortical activity could reflect the rhythm of disyllabic words in seman-

tically coherent stories. The story was either naturally read or synthesized as an isochronous

sequence of syllables to remove acoustic cues for word boundaries (Ding et al., 2016a). We then

asked how the neural response to disyllabic words was influenced by acoustic cues for words. To

address this question, we amplitude modulated isochronous speech at the word rate and tested

how this word-synchronized acoustic cue modulated the word response. Finally, since previous stud-

ies have shown that cortical tracking of speech strongly depended on the listeners’ task (Ding and

Simon, 2012; Zion Golumbic et al., 2013; O’Sullivan et al., 2015), we designed two tasks during

which the neural responses were recorded. One task required attentive listening to speech and

answering of comprehension questions afterwards, while in the other task participants were

engaged in watching a silent movie while passively listening to speech.

Results

Neural encoding of words in isochronously presented narratives
We first presented semantically coherent stories that were synthesized as an isochronous sequence

of syllables (Figure 1A, left). To produce a metrical structure in stories, every other syllable was

designed to be a word onset. More specifically, the odd terms in the metrical syllable sequence

always corresponded to the initial syllable of a word, that is, word onset, while the even terms corre-

sponded to either the second syllable of a disyllabic word (73% probability) or a monosyllabic word

(23% probability). In the following, the odd terms of the syllable sequence were referred to as s1,

and the even terms as s2. Since syllables were presented at a constant rate of 4 Hz, the neural

response to syllables was frequency tagged at 4 Hz. Furthermore, since every other syllable in the

sequence was the onset of a word, neural activity synchronous to word onsets was expected to

show a regular rhythm at half of the syllabic rate, that is, 2 Hz (Figure 1A, right).

As a control condition, we also presented stories with a nonmetrical structure (Figure 1B, left).

These stories were referred to as the nonmetrical stories in the following. In these stories, the word

duration was not controlled and s1 was not always a word onset. Given that the word onsets in

these stories did not show rhythmicity at 2 Hz, neural activity synchronous to the word onsets was

not frequency tagged at 2 Hz (Figure 1B, right).

When listening to the stories, one group of participants was asked to attend to the stories and

answer comprehension questions presented at the end of each story. The task was referred to as

story comprehension task, and the participants correctly answered 96 ± 9% and 94 ± 9% questions

for metrical and nonmetrical stories, respectively. Another group of participants, however, were

asked to watch a silent movie while passively listening to the same set of stories as those used in the

story comprehension task. The silent movie was not related to the auditorily presented stories, and

the participants did not have to answer any speech comprehension question. The task was referred

to as movie watching task. The electroencephalogram (EEG) responses to isochronously presented
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Figure 1. Stimulus. (A and B) Two types of stories are constructed: metrical stories and nonmetrical stories. (A) Metrical stories are composed of

disyllabic words and pairs of monosyllabic words, so that the odd terms in the syllable sequence (referred to as s1) must be the onset of a word. Here

the onset syllable of each word is shown in bold. All syllables are presented at a constant rate of 4 Hz. A 500 ms gap is inserted at the position of any

punctuation. The red curve illustrates cortical activity synchronous to word onsets, and it shows a 2-Hz rhythm, which can be clearly observed in the

spectrum shown on the right. The stories are in Chinese and English examples are shown for illustrative purposes. (B) In the nonmetrical stories, word

onsets are not regularly positioned, and activity that is synchronous to word onsets does not show 2-Hz rhythmicity. (C) Natural speech. The stories are

naturally read by a human speaker and the duration of syllables is not controlled. (D) Amplitude-modulated isochronous speech is constructed by

amplifying either s1 or s2 by a factor of 4, creating a 2-Hz amplitude modulation. The red and blue curves illustrate responses that are synchronous to

word onsets and amplified syllables, respectively. The response synchronous to word onsets is identical for s1- and s2-amplified speech, that is, the

phase difference was 0˚ at 2 Hz. In contrast, the response synchronous to amplified syllables is offset by 250 ms between conditions, that is, the phase

difference was 180˚ at 2 Hz.

Luo and Ding. eLife 2020;9:e60433. DOI: https://doi.org/10.7554/eLife.60433 3 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.60433


stories are shown in Figure 2A and C. The response spectrum was averaged over participants and

EEG electrodes.

Figure 2A shows the responses from the participants attentively listening to the stories in story

comprehension task. For metrical stories, two peaks were observed in the EEG spectrum, one at 4

Hz, that is, the syllable rate (p=0.0001, bootstrap, false discovery rate [FDR] corrected) and the other

at 2 Hz, that is, the rate of disyllabic words (p=0.0001, bootstrap, FDR corrected). For nonmetrical

stories, however, a single response peak was observed at 4 Hz (p=0.0001, bootstrap, FDR cor-

rected), while no significant response peak was observed at 2 Hz (p=0.27, bootstrap, FDR cor-

rected). A comparison of the responses to metrical and nonmetrical stories was performed, and a

significant difference was observed at 2 Hz (p=0.0005, bootstrap, FDR corrected, Figure 3A) but

not at 4 Hz (p=0.40, bootstrap, FDR corrected, Figure 3B). The response topography showed a cen-

tro-frontal distribution.

When participants watched a silent movie during story listening, however, a single response peak

was observed at 4 Hz for both metrical (p=0.0002, bootstrap, FDR corrected) and nonmetrical sto-

ries (p=0.0002, bootstrap, FDR corrected) (Figure 2C). The response peak at 2 Hz was not significant

for either kind of stories (p>0.074, bootstrap, FDR corrected). A comparison of the responses to

metrical and nonmetrical stories did not find significant difference at either 2 Hz (p=0.22, bootstrap,

FDR corrected, Figure 3A) or 4 Hz (p=0.39, bootstrap, FDR corrected, Figure 3B). Furthermore, the

2-Hz response was significantly stronger in the story comprehension task than in the movie watching

task (p=0.0004, bootstrap, FDR corrected, Figure 3A). These results showed that cortical activity

was synchronous to the word rhythm during attentive speech comprehension. When attention was

diverted, however, the word-rate response was no longer detected.

Neural encoding of words in natural spoken narratives
Next, we asked whether cortical activity was synchronous to disyllabic words in natural speech proc-

essing. The same set of stories used in the isochronous speech condition was read in a natural man-

ner by a human speaker and presented to participants. The participants correctly answered 95 ± 4%

and 97 ± 6% comprehension questions for metrical and nonmetrical stories, respectively. In natural

speech, syllables were not produced at a constant rate (Figure 1C), and therefore the syllable and

word responses were not frequency tagged. Nevertheless, we time warped the response to natural

speech and made the syllable and word responses periodic. Specifically, the neural response to each

syllable in natural speech was extracted and realigned to a constant 4-Hz rhythm using a convolu-

tion-based procedure (Jin et al., 2018; see Materials and methods for details). After time-warping

analysis, cortical activity synchronous to the word onsets was expected to show a 2-Hz rhythm, the

same as the response to the isochronous speech (Figure 2E).

The spectrum of the time-warped response was averaged over participants and EEG electrodes

(Figure 2E). For metrical stories, two peaks were observed in spectrum of the time-warped

response, one at 4 Hz (p=0.0002, bootstrap, FDR corrected) and the other at 2 Hz (p=0.0007, boot-

strap, FDR corrected). For nonmetrical stories, however, a single response peak was observed at 4

Hz (p=0.0002, bootstrap, FDR corrected), while no significant response peak was observed at 2 Hz

(p=0.37, bootstrap, FDR corrected). A comparison of the responses to metrical and nonmetrical sto-

ries was performed and found a significant difference at 2 Hz (p=0.036, bootstrap, FDR

corrected, Figure 3A) but not at 4 Hz (p=0.09, bootstrap, FDR corrected, Figure 3B). These results

demonstrated that cortical activity was synchronous to the word rhythm in natural spoken narratives

during attentive speech comprehension.

Neural responses to amplitude-modulated speech
To investigate potential interactions between neural encoding of linguistic units and relevant acous-

tic features, we amplitude modulated the isochronous speech at the word rate, that is, 2 Hz. The

amplitude modulation (AM) was achieved by amplifying either s1 or s2 by a factor of 4 (Figure 1D),

creating two conditions: s1-amplified condition and s2-amplified condition. Such 2-Hz AM provided

an acoustic cue for the word rhythm. The speech was referred to as amplitude-modulated speech in

the following. When listening to amplitude-modulated speech, the participants correctly answered

94 ± 12% and 97 ± 8% comprehension questions in the s1- and s2-amplified conditions,

respectively.
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Figure 2. Electroencephalogram (EEG) response spectrum. Response spectrum is averaged over participants and EEG electrodes. The shaded area

indicates one standard error of the mean (SEM) across participants. Stars indicate significantly higher power at 2 or 4 Hz than the power averaged over

four neighboring frequency bins (two on each side). *p<0.05, **p<0.001 (bootstrap, false discovery rate [FDR] corrected). The color of the star is the

same as the color of the spectrum. The topography on the top of each plot shows the distribution of response power at 2 Hz and 4 Hz. The five black

Figure 2 continued on next page
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The EEG responses to amplitude-modulated speech are shown in Figure 2B and D. When partici-

pants attended to the speech, significant response peaks were observed at 2 Hz (s1-amplified:

p=0.0001, and s2-amplified: p=0.0001, bootstrap, FDR corrected, Figure 2D). A comparison

between the responses to isochronous speech and amplitude-modulated speech found that AM did

not significantly influence the power of the 2-Hz neural response (s1-amplified vs. s2-amplified:

p=0.56; s1-amplified vs. isochronous: p=0.38, s2-amplified vs. isochronous: p=0.44, bootstrap, FDR

corrected, Figure 3A). These results showed that the 2-Hz response power was not significantly

influenced by the 2- Hz AM during attentive speech comprehension.

Another group of participants passively listened to amplitude-modulated speech while attending

to a silent movie. In their EEG responses, significant response peaks were also observed at 2 Hz (s1-

amplified: p=0.0001, and s2-amplified: p=0.0001, bootstrap, FDR corrected, Figure 2D). A compari-

son between the responses to isochronous speech and amplitude-modulated speech showed stron-

ger 2-Hz response in the processing of amplitude-modulated speech than isochronous speech (s1-

amplified vs. isochronous: p=0.021, s2-amplified vs. isochronous: p=0.0042, bootstrap, FDR cor-

rected, Figure 3A). No significant difference was found between responses to s1-amplified and s2-

amplified speech (p=0.069, bootstrap, FDR corrected, Figure 3A). Therefore, when attention was

diverted, the 2-Hz response power was significantly increased by the 2-Hz AM.

The Fourier transform decomposes an arbitrary signal into sinusoids and each complex-valued

Fourier coefficient captures the magnitude and phase of a sinusoid. The power spectrum reflects the

response magnitude but ignores the response phase. The phase difference between the 2-Hz

responses in the s1- and s2-amplified conditions, however, carried important information about

whether the neural response was synchronous to the word onsets or amplified syllables: Neural activ-

ity synchronous to amplified syllables showed a 250 ms time lag between the s1- and s2-amplified

conditions (Figure 1D), which corresponded to a 180˚ phase difference between conditions at 2 Hz.

Neural activity synchronous to the word onsets, however, should be identical in the s1- and s2-

amplified conditions.

The 2-Hz response phase difference between the s1- and s2-amplified conditions is shown in

Figure 3C. The phase difference, when averaged across participants and EEG electrodes, was 41˚

(95% confidence interval: �25–91˚) during the story comprehension task and increased to 132˚ (95%

confidence interval: 102–164˚) during the movie watching task (see Figure 3—figure supplement 1

for response phase in individual conditions).

Separate the responses to words and word-rate AM
In the previous section, we analyzed the difference in 2-Hz response phase difference between the

s1- and s2-amplified conditions. A 0˚ phase difference indicated that the 2-Hz response was only

synchronous to word onsets, while a 180˚ phase difference indicated that the 2-Hz response was

only synchronous to amplified syllables. A phase difference between 0˚ and 180˚ indicated that neu-

ral response synchronous to word onsets and neural response synchronous to amplified syllables

both exist, but the phase analysis could not reveal the strength of the two response components.

Therefore, in the following, we extracted the neural responses to words and the 2-Hz AM by averag-

ing the responses across the s1- and s2-amplified conditions in different manners.

To extract the neural response to words, we averaged the neural response waveforms across the

s1- and s2-amplified conditions. The word onsets were aligned in these two conditions and there-

fore neural activity synchronous to the word onsets was preserved in the average. In contrast, corti-

cal activity synchronous to the amplified syllables exhibited a 250 ms time lag between the s1- and

Figure 2 continued

dots in the topography indicate the position of electrodes FCz, Fz, Cz, FC3, and FC4. (A–D) Response spectrum for isochronous speech and amplitude-

modulated speech during two tasks. To facilitate the comparison between stimuli, the red curves in panels A and C are repeated in panels B and D,

respectively. (E) Response spectrum when the participants listen to natural speech. In this analysis, the response to natural speech is time warped to

simulate the response to isochronous speech, and then transformed into the frequency-domain.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Preprocessed electroencephalogram (EEG) data recorded in Experiments 1–3.

Figure supplement 1. 2-Hz response power in individual electroencephalogram (EEG) electrodes and individual participants.
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Figure 3. Response power and phase. (A and B) Response power at 2 and 4 Hz. Color of the bars indicates the stimulus. Black stars indicate significant

differences between different types of speech stimuli while red stars indicate significant differences between tasks. *p<0.05, **p<0.01 (bootstrap, false

discovery rate [FDR] corrected). Throughout the manuscript, in all bar graphs of response power, the response power at a target frequency is

subtracted by the power averaged over four neighboring frequency bins (two on each side) to reduce the influence of background neural activity. (C)

Figure 3 continued on next page
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s2-amplified conditions. Therefore, the 2-Hz response synchronous to the amplified syllables was

180˚ out of phase between the two conditions, and got canceled in the average across conditions. In

sum, the average over the s1- and s2-amplified conditions preserved the response to words but

canceled the response to amplified syllables (Figure 4A). This average was referred to as the word

response in the following.

For the word response, a significant response peak was observed at 2 Hz during both story com-

prehension task (p=0.0001, bootstrap, FDR corrected) and movie watching task (p=0.011, bootstrap,

FDR corrected, Figure 4B). The response power was significantly stronger in the story comprehen-

sion task than that in the movie watching task (p=0.0008, bootstrap, FDR corrected, Figure 4E). Dur-

ing the movie watching task, a significant 2-Hz word response was observed when amplitude-

modulated speech was presented (p=0.011, bootstrap, FDR corrected, Figure 4B), while no signifi-

cant 2-Hz word response was observed when isochronous speech was presented (p=0.074, boot-

strap, FDR corrected, Figure 2C). This finding indicated that the 2-Hz AM facilitated word

processing during passive listening.

Furthermore, during the story comprehension task, the power of the 2-Hz word response did not

significantly differ between amplitude-modulated speech and isochronous speech (p=0.69, boot-

strap, FDR corrected), suggesting that the 2-Hz AM did not significantly modulate the 2-Hz word

response during attentive speech comprehension.

To extract the neural response to 2-Hz AM, we first aligned the responses in the s1- and s2-

amplified conditions by adding a delay of 250 ms to the response in the s1-amplified condition. We

then averaged the response waveforms across conditions (Figure 4C). After the delay was added to

the response to s1-amplified speech, the 2-Hz AM was identical between the s1- and s2-amplified

conditions. Therefore, the average across conditions preserved the response to 2-Hz AM while can-

celing the response to words. The averaged response was referred to as the AM response in the

following.

For the AM response, significant 2-Hz response peaks were observed during both the story com-

prehension task (p=0.0021, bootstrap, FDR corrected) and the movie watching task (p=0.0001,

bootstrap, FDR corrected). The 2-Hz response power did not significantly differ between tasks

(p=0.39, bootstrap, FDR corrected), suggesting that the 2-Hz AM response was not strongly

enhanced when participants attended to speech.

During the story comprehension task, the 2-Hz response power averaged across electrodes was

significantly stronger for the word response than the AM response (p=0.021, bootstrap, FDR cor-

rected, Figure 4E). During the movie watching task, however, the reverse was true, that is, the 2-Hz

word response was significantly weaker than the 2-Hz AM response (p=0.013, bootstrap, FDR cor-

rected, Figure 4E).

An analysis of individual electrodes showed the 2-Hz word response was significantly stronger

than the 2-Hz AM response in centro-frontal electrodes during the story comprehension task

(p<0.05, bootstrap, FDR corrected, Figure 4F, left). To further compare the spatial distribution of 2-

Hz word and AM responses, on top of their power difference, we normalized the response topogra-

phy by dividing its maximum value. Significant difference was found in the normalized topography

between the 2-Hz word and AM responses in temporal electrodes (p<0.05, bootstrap, FDR cor-

rected, Figure 4F, right). These results suggested that the 2-Hz word and AM responses had distinct

neural sources.

Neural responses to amplitude-modulated speech: a replication
The responses to amplitude-modulated speech suggested that the brain encoded words and acous-

tic cues related to words in a different manner. Furthermore, the word-related acoustic cues seemed

Figure 3 continued

The difference in 2-Hz response phase between the s1- and s2-amplified conditions at 2 Hz. The phase difference is averaged across participants, and

the polar histogram shows the distribution of phase difference across 64 electrodes.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Preprocessed EEG data recorded in Experiment 1-3.

Figure supplement 1. 2-Hz response phase in individual electroencephalogram (EEG) electrodes.
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Figure 4. Word and amplitude modulation (AM) responses to amplitude-modulated speech. (A–D) Neural responses in s1- and s2-amplified

conditions are aligned based on either word onsets (AB) or amplified syllables (CD), and averaged to extract the 2-Hz response synchronous to words

or AM, respectively. Panels A and C illustrate the procedure. The red and blue curves illustrate the response components synchronous to word onsets

and the AM respectively, which are mixed in the electroencephalogram (EEG) measurement and shown separately for illustrative purposes. The

Figure 4 continued on next page
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to facilitate word processing during passive listening, but not significantly enhance the word

response during attentive listening. To further validate these findings, we conducted a replication

experiment to measure the neural response to amplitude-modulated speech in a separate group of

participants. These participants first performed the movie watching task and then the story compre-

hension task. During the story comprehension task, the participants correctly answered 96 ± 8% and

95 ± 9% questions in the s1-amplified and s2-amplified conditions, respectively.

We first analyzed the spectrum of response to s1- and s2-amplified speech. Consistent with pre-

vious results, a significant 2-Hz response peak was observed whether the participants attended to

the speech (s1-amplified: p=0.0001, and s2-amplified: p=0.0001, bootstrap, FDR corrected) or

movie (s1-amplified: p=0.0001, and s2-amplified: p=0.0004, bootstrap, FDR corrected, Figure 5—

figure supplement 1A and B). When averaged across participants and electrodes, the 2-Hz

response phase difference between the s1- and s2-amplified conditions was 7˚ (95% confidence

interval: �26–47˚) during the story comprehension task and 96˚ (95% confidence interval: 55–143˚)

during the movie watching task (Figure 5—figure supplement 1C and D).

We then separately extracted the word and AM responses following the procedures described in

Figure 4A and C. Similar to previous results, in the spectrum (Figure 5A and B), a significant 2-Hz

word response was observed during both tasks (story comprehension task: p=0.0001, bootstrap;

movie watching task: p=0.0003, bootstrap, FDR corrected), and a significant 2-Hz AM response was

also observed during both tasks (story comprehension task: p=0.0001, bootstrap; movie watching

task: p=0.0001, bootstrap, FDR corrected). Furthermore, the 2-Hz word response exhibited signifi-

cantly stronger power than the 2-Hz AM response during the story comprehension task (p=0.0036,

bootstrap, FDR corrected, Figure 5C), and the two responses showed distinct topographical distri-

bution (Figure 5D). In sum, the results obtained in the replication experiment were consistent with

those from the original experiment. A follow-up comparison of the results from the original and rep-

lication experiments suggested that the 2-Hz word response exhibited significantly stronger power

during the movie watching task in the replication experiment than the original experiment

(p=0.0008, bootstrap, FDR corrected).

Time course of EEG responses to words
The event-related potential (ERP) responses evoked by s1 and s2 are separately shown in Figure 6.

The ERP analysis was restricted to disyllabic words so that the responses to s1 and s2 represented

the responses to the first and second syllables of disyllabic words respectively. When participants

attended to speech, the ERP responses to s1 and s2 showed significant differences for both isochro-

nous (Figure 6A) and natural speech (Figure 6B). When participants watched a silent movie, a

smaller difference was also observed between the ERP responses to s1 and s2 (Figure 6A). The

topography of the ERP difference showed a centro-frontal distribution. For isochronous speech, the

ERP latency could not be unambiguously interpreted for isochronous speech, given that the stimulus

was strictly periodic. For natural speech, the ERP responses to s1 and s2 differed in a time window

around 300–500 ms.

The ERP results for amplitude-modulated speech are shown in Figure 6C and D. When partici-

pants attended to speech, a difference between the ERP responses to s1 and s2 was observed in

both s1- and s2-amplified conditions (Figure 6C). During passive listening, however, a significant

ERP difference was observed near the onset of the amplified syllable. These results were consistent

with the results in the replication experiment (Figure 6—figure supplement 1).

Figure 4 continued

spectrum and topography in panels B and D are shown the same way as they are shown in Figure 2. *p<0.05, **p<0.001 (bootstrap, false discovery

rate [FDR] corrected). (E) Response power at 2 Hz. Black stars indicate significant differences between the word and AM responses, while red stars

indicate a significant difference between tasks. *p<0.05, **p<0.01 (bootstrap, FDR corrected). (F) The left panel shows the power difference between

the word and AM responses in single electrodes. The right panel shows the difference in normalized topography, that is, topography divided by its

maximal value. Black dots indicate electrodes showing a significant difference between the word and AM responses (p<0.05, bootstrap, FDR

corrected).

The online version of this article includes the following source data for figure 4:

Source data 1. Preprocessed electroencephalogram (EEG) data recorded in Experiments 1–3.
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Figure 5. Replication of the neural response to amplitude-modulated speech. (A and B) Spectrum and topography for the word response (A) and

amplitude modulation (AM) response (B). Colored stars indicate frequency bins with stronger power than the power averaged over four neighboring

frequency bins (two on each side). *p<0.05, **p<0.001 (bootstrap, false discovery rate [FDR] corrected). The topography on the top of each plot shows

the distribution of response power at 2 Hz and 4 Hz. (C) Response power at 2 Hz. Black stars indicate significant differences between the word and

(AM) responses, while red stars indicate a significant difference between tasks. *p<0.05, **p<0.01 (bootstrap, FDR corrected). (D) Power difference

between the word and AM responses in individual electrodes are shown in the left panel. To further illustrate the difference in topographical

distribution instead of the response power, each response topography is normalized by dividing its maximum value. The difference in the normalized

topography is shown in the right panel. Black dots indicate electrodes showing a significant difference between the word and AM responses (p<0.05,

bootstrap, FDR corrected).

Figure 5 continued on next page
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Discussion
Speech comprehension is a complex process involving multiple stages, for example, encoding of

acoustic features, extraction of phonetic features, and processing of higher-level linguistic units such

as words, phrases, and sentences. Here, we investigate how low-frequency cortical activity encodes

linguistic units and related acoustic features. When participants naturally listen to spoken narratives,

we observe that cortical activity is synchronous to the rhythm of spoken words. The word synchro-

nous response is observed whether participants listen to natural speech or synthesized isochronous

speech that removes word-related acoustic cues. Furthermore, when introducing an AM cue to the

word rhythm, neural responses to words and the AM cue are both observed and they show different

spatial distribution. In addition, when participants are engaged in a story comprehension task, the

word response exhibits stronger power than the AM response. The AM cue does not clearly modu-

late the word response during story comprehension task (Figure 2B), but can facilitate word proc-

essing when attention is diverted: The word response is not detected for isochronous speech

(Figure 2C), but is detected for amplitude-modulated speech during passive listening (Figures 4B

and 5A). In sum, these results show that both top-down linguistic knowledge and bottom-up acous-

tic cues separately contribute to word synchronous neural responses.

Neural encoding of linguistic units in natural speech
In speech, linguistic information is organized through a hierarchy of units, including phonemes, sylla-

bles, morphemes, words, phrases, sentences, and discourses. These units span a broad range of

time scales, from tens of milliseconds for phonemes to a couple of seconds for sentences, and even

longer for discourses. It is a challenging question to understand how the brain represents the hierar-

chy of linguistic units, and it is an appealing hypothesis that each level of linguistic unit is encoded

by cortical activity on the relevant time scale (Ding et al., 2016a; Doumas and Martin, 2016;

Giraud and Poeppel, 2012; Goswami, 2019; Keitel et al., 2018; Kiebel et al., 2008; Meyer and

Gumbert, 2018). Previous fMRI studies have suggested that neural processing at different levels,

for example, syllables, words, and sentences, engages different cortical networks (Blank and Fedor-

enko, 2020; Hasson et al., 2008; Lerner et al., 2011). Magnetoencephalography (MEG)/

Electroencephalogram (EEG) studies have found reliable delta- and theta-band neural responses

that are synchronous to speech (Ding and Simon, 2012; Luo and Poeppel, 2007; Peelle et al.,

2013), and the time scales of such activity are consistent with the time scales of syllables and larger

linguistic units.

Nevertheless, it remains unclear whether these MEG/EEG responses directly reflect neural encod-

ing of hierarchical linguistic units, or simply encode acoustic features associated with these units

(Daube et al., 2019; Kösem and van Wassenhove, 2017). On one hand, neural tracking of sound

envelope is reliably observed in the absence of speech comprehension, for example, when partici-

pants listen to unintelligible speech (Howard and Poeppel, 2010; Zoefel and VanRullen, 2016) and

non-speech sound (Lalor et al., 2009; Wang et al., 2012). The envelope tracking response is even

weaker for sentences composed of real words than sentences composed of pseudowords

(Mai et al., 2016), and is weaker for the native language than an unfamiliar language (Zou et al.,

2019). Neural tracking of speech envelope can also be observed in animal primary auditory cortex

(Ding et al., 2016b). Furthermore, a recent study shows that low-frequency cortical activity cannot

reflect the perception of an ambiguous syllable sequence, for example, whether repetitions of a syl-

lable is perceived as ‘flyflyfly’ or ‘lifelifelife’ (Kösem et al., 2016).

On the other hand, cortical activity synchronous to linguistic units, such as words and phrases,

can be observed using well-controlled synthesized speech that removes relevant acoustic cues

(Ding et al., 2016a; Jin et al., 2018; Makov et al., 2017). These studies, however, usually present

semantically unrelated words or sentences at a constant pace, which creates a salient rhythm easily

noticeable for listeners. In contrast, in the current study, we presented semantically coherent stories.

Figure 5 continued

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Preprocessed electroencephalogram (EEG) data recorded in Experiment 4.

Figure supplement 1. Electroencephalogram (EEG) response spectrum and 2-Hz phase difference in the replication experiment.
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Figure 6. Event-related potential (ERP) responses evoked by disyllabic words. The ERP responses evoked by s1 and s2 are shown in red and black,

respectively. The ERP response is averaged over participants and electrodes. The shaded area indicates 1 SEM across participants. The gray lines on

top denote the time intervals in which the two responses are significantly different from each other (p<0.05, cluster-based permutation test). The

Figure 6 continued on next page
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It was found that for both synthesized isochronous speech and natural speech, cortical activity was

synchronous to multi-syllabic words in metrical stories when participants were engaged in a story

comprehension task. Furthermore, few listeners reported noticing any difference between the metri-

cal and nonmetrical stories (see Supplementary materials for details), suggesting that the word

rhythm was not salient and was barely noticeable to the listeners. Therefore, the word response is

likely to reflect implicit word processing instead of the perception of an explicit rhythm.

A comparison of the responses to natural speech and isochronous speech showed that responses

to word and syllable were weaker for natural speech, suggesting that strict periodicity in the stimulus

could indeed boost rhythmic neural entrainment. Although the current study and previous studies

(Ding et al., 2018; Makov et al., 2017) observe a word-rate neural response, the study conducted

by Kösem et al., 2016 does not report observable neural activity synchronous to perceived word

rhythm. A potential explanation for the mixed results is that Kösem et al., 2016 repeat the same

word in each trial while the other studies present a large variety of words with no immediate repeti-

tions in the stimuli. Therefore, it is possible that low-frequency word-rate neural response more

strongly reflects neural processing of novel words, instead of the perception of a steady rhythm (see

also Ostarek et al., 2020).

Mental processes reflected in neural activity synchronous to linguistic
units
It remains elusive what kind of mental representations are reflected by cortical responses synchro-

nous to linguistic units. For example, the response may reflect the phonological, syntactic, or seman-

tic aspect of a perceived linguistic unit and it is difficult to tease apart these factors. Even if a

sequence of sentences is constructed with independently synthesized monosyllabic words, the

sequence does not sound like a stream of individual syllables delivered at a constant pace. Instead,

listeners can clearly perceive each sentence as a prosodic unit. In this case, mental construction of

sentences is driven by syntactic processing. Nevertheless, as long as the mental representation of a

sentence is formed, it also has an associated phonological aspect. Previous psycholinguistic studies

have already demonstrated that syntax has a significant impact on prosody perception (Buxó-

Lugo and Watson, 2016; Garrett et al., 1966).

It is also possible that neural activity synchronous to linguistic units reflect more general cognitive

processes that are engaged during linguistic processing. For example, within a word, later syllables

are more predictable that earlier syllables. Therefore, neural processing associated with temporal

prediction (Breska and Deouell, 2017; Lakatos et al., 2013; Stefanics et al., 2010) may appear to

be synchronous to the perceived linguistic units. However, it has been demonstrated that when the

predictability of syllables is controlled as a constant, cortical activity can still synchronize to per-

ceived artificial words, suggesting that temporal prediction is not the only factor driving low-fre-

quency neural activity either (Ding et al., 2016a). Nevertheless, in natural speech processing,

temporal prediction may inevitably influence the low-frequency response. Similarly, temporal atten-

tion is known to affect low-frequency activity and attention certainly varies during speech perception

(Astheimer and Sanders, 2009; Jin et al., 2018; Sanders and Neville, 2003). In addition, low-fre-

quency neural activity has also been suggested to reflect the perception of high-level rhythms

(Nozaradan et al., 2011) and general sequence chunking (Jin et al., 2020).

Since multiple factors can drive low-frequency neural responses, the low-frequency response to

natural speech is likely to be a mixture of multiple components, including, for example, auditory

responses to acoustic prosodic features, neural activity related to temporal prediction and temporal

attention, and neural activity encoding phonological, syntactic, or semantic information. These pro-

cesses are closely coupled and one process can trigger other processes. Here we do not think the

Figure 6 continued

topography on top is averaged over all time intervals showing a significant difference between the two responses in each plot. Time 0 indicates syllable

onset.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Preprocessed electroencephalogram (EEG) data recorded in Experiments 1–3.

Figure supplement 1. Event-related potential (ERP) responses evoked by disyllabic words in the replication experiment.
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word-rate response exclusively reflects a single process. It may well consist of a mixture of multiple

response components, or provide a reference signal to bind together mental representations of mul-

tiple dimensions of the same word. Similar to the binding of color and shape information in the per-

ception of a visual object (Treisman, 1998), the perception of a word requires the binding of,

for example, phonological, syntactic, and semantic representations. It has been suggested that tem-

poral coherence between neural responses to different features provides a strong cue to bind these

features into a perceived object (Shamma et al., 2011). It is possible that the word-rate response

reflects the temporal coherence between distinct mental representations of each word and function-

ally relates to the binding of these representations.

In speech processing, multiple factors contribute to the word response and these factors interact.

For example, the current study suggested that prosodic cues such as AM had a facilitative effect on

word processing: It was observed that, during passive listening, a word response was observed for

amplitude-modulated speech but not for isochronous speech. In addition, the word response to

amplitude-modulated speech during passive listening exhibited stronger power in the replication

experiment that only presented amplitude-modulated speech, compared with the results obtained

in the original experiment that presented amplitude-modulated speech with isochronous speech in a

mixed manner. Consistent with this finding, a larger number of participants reported the noticing of

stories during passive listening in the replication experiment (see Materials and methods). All these

results suggest that the 2-Hz AM, which provides an acoustic cue for the word rhythm, facilitates

word processing during passive listening. This result is consistent with the idea that prosodic cues

have a facilitative effect on speech comprehension (Frazier et al., 2006; Ghitza, 2017; Ghitza, 2020;

Giraud and Poeppel, 2012).

Finally, it should be mentioned that we employed AM to manipulate the speech envelope, given

that the speech envelope is one of the strongest cues to drive stimulus-synchronous cortical

response. However, the AM is only a weak prosodic cue compared with other variables such as tim-

ing and pitch contour (Shen, 1993). Furthermore, stress is strongly modulated by context and does

not affect word recognition in Chinese (Duanmu, 2001). Future studies are needed to characterize

the modulation of language processing by different prosodic cues and investigate the modulatory

effect across different languages.

Attention modulation of cortical speech responses
It has been widely reported that cortical tracking of speech is strongly modulated by attention. Most

previous studies demonstrate that in a complex auditory scene consisting of two speakers, attention

can selectively enhance neural tracking of attended speech (Ding and Simon, 2012; Zion Golumbic

et al., 2013). These results strongly suggest that the auditory cortex can parse a complex auditory

scene into auditory objects, for example, speakers, and separately represent each auditory object

(Shamma et al., 2011; Shinn-Cunningham, 2008). When only one speech stream was presented,

cross-modal attention can also modulate neural tracking of the speech envelope, but the effect is

much weaker (Ding et al., 2018; Kong et al., 2014).

Consistent with previous findings, in the current study, the 4-Hz syllable response was also

enhanced by cross-modal attention (Figure 3B). The 2-Hz AM response power, however, was not

significantly modulated by cross-modal attention (Figures 4D and 5B), suggesting that attention did

not uniformly enhance the processing of all features within the same speech stream. Given that the

2-Hz AM does not carry linguistic information, the result suggests that attention selectively enhances

speech features relevant to speech comprehension. This result extends previous findings by showing

that attention can differentially modulate different features within a speech stream.

Time course of the neural response to words
The neurophysiological processes underlying speech perception has been extensively studied using

ERPs (Friederici, 2002). Early ERP components, such as the N1, mostly reflect auditory encoding of

acoustic features, while late components can reflect higher-level processing of lexical, semantic, or

syntactic processing (Friederici, 2002; Friederici, 2012; Sanders and Neville, 2003). In the current

study, for isochronous speech, response latency cannot be uniquely determined: Given that syllables

are presented at a constant rate of 4 Hz, a response with latency T cannot be distinguished from

responses with latency T ± 250 ms. The periodic pattern in the stimulus design enables accurate
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prediction of its timing in the brain, and therefore the responses observed could turn out to be pre-

dictive instead of reactive.

In natural speech, the responses to the two syllables in a disyllabic word differ in a late latency

window of about 400 ms. This component is consistent with the latency of the N400 response, which

can be observed when listening to either individual words or continuous speech (Broderick et al.,

2018; Kutas and Federmeier, 2011; Kutas and Hillyard, 1980; Pylkkänen and Marantz, 2003;

Pylkkänen et al., 2002). A previous study on the neural responses to naturally spoken sentences has

also shown that the initial syllable of an English word elicits larger N1 and N200–300 components

than the word-medial syllable (Sanders and Neville, 2003). A recent study also suggests that the

word onset in natural speech elicits a response at ~100 ms latency (Brodbeck et al., 2018). The cur-

rent study, however, does not observe this early effect, and language difference might offer a poten-

tial explanation: In Chinese, a syllable generally equals a morpheme, while in English single syllables

do not carry meaning in most cases. The 400 ms latency response observed in the current study is

consistent with the hypothesis that the N400 is related to lexical processing (Friederici, 2002;

Kutas and Federmeier, 2011). Besides, it is also possible that the second syllable in a disyllabic

word elicits weaker N400 since it is more predictable than the first syllable (Kuperberg et al., 2020;

Lau et al., 2008).

The difference between the ERPs evoked by the first and second syllables in disyllabic words was

amplified by attention (Figure 6A). Furthermore, the ERP difference remained significant when par-

ticipants’ attention was diverted away from the speech in the movie watching task, while the 2-Hz

response in the power spectrum was no longer significant (Figure 2C). These results are similar to

the findings of a previous study (Ding et al., 2018), in which no word-rate response peak in the EEG

spectrum is observed in contrast to coherent word-rate response phase across participants in unat-

tended listening task. Taken together, these results suggest that word-level processing occurs dur-

ing the movie watching task, but the word-tracking response is rather weak.

In sum, the current study suggests that bottom-up acoustic cues and top-down linguistic knowl-

edge separately contribute to neural construction of linguistic units in the processing of spoken

narratives.

Materials and methods

Participants
Sixty-eight participants (20–29 years old, mean age, 22.6 years; 37 females) took part in the EEG

experiments. Thirty-four participants (19–26 years old, mean age, 22.5 years; 17 females) took part

in a behavioral test to assess the naturalness of the stimuli. All participants were right-handed native

Mandarin speakers, with no self-reported hearing loss or neurological disorders. The experimental

procedures were approved by the Research Ethics Committee of the College of Medicine, Zhejiang

University (2019–047). All participants provided written informed consent prior to the experiment

and were paid.

Stories
Twenty-eight short stories were constructed for the study. The stories were unrelated in terms of

content and ranged from 81 to 143 in word count (107 words on average). In 21 stories, word onset

was metrically organized and every other syllable was a word onset, and these stories were referred

to as metrical stories (Figure 1A). In the other seven stories, word onset was not metrically orga-

nized and these stories were referred to as nonmetrical stories (Figure 1B). In an ideal design, metri-

cal stories should be constructed solely with disyllabic words to form a constant disyllabic word

rhythm. Nevertheless, since it was difficult to construct such materials, the stories were constructed

with disyllabic words and pairs of monosyllabic words. In other words, in between two disyllabic

words, there must be an even number of monosyllabic words. After the stories were composed, the

word boundaries within the stories were further parsed based on a Natural Language Processing

(NLP) algorithm (Zhang and Shang, 2019). The parsing result confirmed that every other syllable in

the story (referred to as s1 in Figure 1A) was the onset of a word. For the other syllables (referred

to as s2 in Figure 1A), 77% was the second syllable of a disyllabic word while 23% was a monosyl-

labic word.
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Similarly, nonmetrical stories used as a control condition were composed with sentences with an

even number of syllables. Nevertheless, no specific constraint was applied to word duration, and the

odd terms in the syllable sequence were not always a word onset. Furthermore, in each sentence, it

was required that at least one odd term was not a word onset.

Speech
Each story was either synthesized as an isochronous sequence of syllables or naturally read by a

human speaker.

Isochronous speech
All syllables were synthesized independently using the Neospeech synthesizer (http://www.neo-

speech.com/, the male voice, Liang). The synthesized syllables were 75–354 ms in duration (mean

duration 224 ms). All syllables were adjusted to 250 ms by truncation or padding silence at the end,

following the procedure in Ding et al., 2016a. The last 25 ms of each syllable were smoothed by a

cosine window and all syllables were equalized in intensity. In this way, the syllables were presented

at a constant rate of 4 Hz (Figure 1A and B). In addition, a silence gap lasting 500 ms, that is, the

duration of two syllables, was inserted at the position of any punctuation, to facilitate story

comprehension.

Natural speech
The stories were read in a natural manner by a female speaker, who was not aware of the purpose

of the study. In natural speech, syllables were not produced at a constant rate and the boundaries

between syllables were labeled by professionals (Figure 1C). The total duration of speech was 1122

s for the 21 metrical stories and 372 s for the seven nonmetrical stories. A behavioral test showed

that most participants did not perceive any difference between the metrical and nonmetrical stories

(Supplementary file 1).

Amplitude-modulated speech
Amplitude modulation (AM) was applied to isochronous speech to create a word-rate acoustic

rhythm (Figure 1D). In s1-amplified condition, all s1 syllables were amplified by a factor of 4. In s2-

amplified condition, all s2 syllables were amplified by a factor of 4. Such 2-Hz AM was clearly per-

ceivable but did not affect speech intelligibility, since sound intensity is a weak cue for stress

(Zhong et al., 2001) and stress does not affect word recognition in Mandarin Chinese

(Duanmu, 2001). A behavioral test suggested that when listening to amplitude-modulated speech, a

larger number of participants perceived s1-amplified speech as more natural than s2-amplified

speech (Supplementary file 1).

Experimental procedures and tasks
Behavioral test
A behavioral test was conducted to assess the naturalness of the stimuli. The test was divided into

two blocks. In block 1, the participants listened to a metrical story and a nonmetrical story read by a

human speaker, which were presented in a pseudorandom order. The stories were randomly

selected from the story set. Each story ranged from 53 to 66 s in duration. After listening to each

story, the participants were asked to write a sentence to summarize the story and fill out a question-

naire. Block 2 was of the same procedure as block 1, except that the metrical and nonmetrical sto-

ries were replaced with s1- and s2-amplified speech.

In block 1, the first question in the questionnaire asked whether the two types of stories, a metri-

cal and a nonmetrical story, showed any noticeable difference regardless of their content. Thirty-one

participants (91%) reported no difference perceived, and the other three participants (9%) were

asked to elaborate on the differences they detected. Two of them said the metrical story showed

larger pitch variations, and the other said they were read with a different tone. Therefore, the vast

majority of the participants did not notice any difference between the two types of stories read by a

human speaker. A few participants noticed some differences in the intonation pattern but no partici-

pants reported the difference in word rhythm.
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The second question was to check the naturalness of the stories read. Twenty-four participants

(71%) reported that both the two types of stories were naturally read. Three participants (9%) com-

mented that metrical story was not naturally read, and all of them attributed it to intonation. The

rest seven participants (20%) thought neither types of stories were naturally read. The reasons

reported included (1) exaggerated intonation (N = 2); (2) the speed and intonation pattern seemed

uniform (N = 2); (3) lack of emotion (N = 2); and (4) the pitch went up at the end of each sentence

(N = 1). In sum, most participants thought the stories were naturally read and only two participants

(6%) commented on the uniformity of pace.

In block 2, only one question was asked. Participants had to compare the naturalness and accessi-

bility of s1-amplified speech or s2-amplified speech. Fifteen participants (44%) perceived s1-ampli-

fied speech as being more natural, two participants (6%) perceived the s2-amplified speech as

being more natural, and the rest 17 participants (50%) thought there was no difference in natural-

ness between the two conditions. In sum, relatively more participants thought the s1-amplified

speech was more natural.

EEG experiment
The study consisted of four EEG experiments. Experiments 1–3 involved 16 participants respectively,

and Experiment 4 involved 20 participants. Experiments 1 and 4 both consisted of two blocks with

stories presented in a randomized order within each block. In Experiments 2 and 3, all stories were

presented in a randomized order in a single block.

Experiment 1
Synthesized speech was presented in Experiment 1. The experiment was divided into two blocks. In

block 1, participants listened to isochronous speech, including seven metrical stories and seven non-

metrical stories. In block 2, the participants listened to amplitude-modulated speech, including 7 s1-

amplified stories and 7 s2-amplified stories. All 14 stories presented in block 2 were metrical stories

and did not overlap with the stories used in block 1. Participants were asked to keep their eyes

closed while listening to the stories. After listening to each story, participants were required to

answer three comprehension questions by giving oral responses. An experimenter recorded the

responses and then pressed a key to continue the experiment. The next story was presented after

an interval randomized between 1 and 2 s (uniform distribution) after the key press. The participants

took a break between blocks.

Experiment 2
Speech stimuli used in Experiment 2 were the same as those used in Experiment 1, while the task

was different. The participants were asked to watch a silent movie (The Little Prince) with subtitles

and ignored any sound during the experiment. The stories were presented ~5 min after the movie

started to make sure that participants were already engaged in the movie watching task. The interval

between stories was randomized between 1 and 2 s (uniform distribution). The movie was stopped

after all 28 stories were presented. The experiment was followed up with questions on the aware-

ness of stories being presented during the movie watching task, and 87.5% participants (N = 14)

reported that they did not notice any story.

Experiment 3
Experiment 3 used the same set of stories as those used in Experiment 1, but the stories were natu-

rally read by a human speaker. The task was of the same design as that in Experiment 1. Participants

listened to 21 metrical stories and seven nonmetrical stories. Participants took a break after every 14

stories.

Experiment 4
Experiment 4 was designed to test whether the results based on amplitude-modulated speech was

replicable in a different group of participants. All stories used in Experiment 4 were metrical stories

and each story was presented once. In block 1, participants were asked to watch a silent movie (The

Little Prince) with subtitles and ignored any sound during the task. Amplitude-modulated speech (5

s1-amplified and 5 s2-amplified stories) were presented ~5 min after the movie started. The interval
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between stories was randomized between 1 and 2 s (uniform distribution). Block 1 was followed up

with questions on the awareness of stories being presented during the movie watching task, and

15% participants (N = 3) reported that they did not notice any story during the task. Note that the

percentage of participants reporting no awareness of the presentation of stories was much lower in

Experiment 4 than that in Experiment 2. A potential explanation was that Experiment 4 only pre-

sented amplitude-modulated speech and the consistent presence of word-rate acoustic cues facili-

tated word recognition. In Experiment 2, however, as amplitude-modulated speech was mixed with

isochronous speech, the lack of consistent presence of AM cue diminished its effect. After block 1

was finished, the participants took a break.

In block 2, participants listened to amplitude-modulated speech (5 s1-amplified stories and 5 s2-

amplified stories) with their eyes closed. At the end of each story, three comprehension questions

were presented, and answers were to be given with oral responses. The experimenter recorded the

responses and then pressed a key to continue the experiment. The next story was presented after

an interval randomized between 1 and 2 s (uniform distribution) after the key press.

Data recording and preprocessing
Electroencephalogram (EEG) and electrooculogram (EOG) were recorded using a Biosemi Active-

Two system. Sixty-four EEG electrodes were recorded. Two additional electrodes were placed at the

left and right temples to record the horizontal EOG (right minus left), and two electrodes were

placed above and below the right eye to record the vertical EOG (upper minus lower). Two addi-

tional electrodes were placed at the left and right mastoids and their average was used as the refer-

ence for EEG (Ding et al., 2018). The EEG/EOG recordings were low-pass filtered below 400 Hz

and sampled at 2048 Hz.

All preprocessing and analysis in this study were performed using MATLAB (The MathWorks,

Natick, MA). The EEG recordings were down-sampled to 128 Hz, referenced to the average of mas-

toid recordings, and band-pass filtered between 0.8 Hz and 30 Hz using a linear-phase finite impulse

response (FIR) filter (6 s Hamming window, �6 dB attenuation at the cut-off frequencies). A linear-

phase FIR filter causes a constant time delay to the input. The delay equals to N/2, where N was the

window length of the filter (Oppenheim et al., 1997). The delay was compensated by removing the

first N/2 samples in the filter output. To remove ocular artifacts in EEG, the horizontal and vertical

EOG were regressed out using the least-squares method (Ding et al., 2018). Occasional large arti-

facts in EEG/EOG, that is, samples with magnitude >1 mV, were removed from the analysis

(Jin et al., 2018).

Data analysis
Frequency-domain analysis
The EEG responses during the gap between sentences and the responses to the first two syllables

of each sentence were removed from analysis to avoid the responses to sound onsets. The EEG

responses to the rest of the sentence, that is, from the third syllable to the last syllable of each sen-

tence, were then concatenated.

To further remove potential artifacts, the EEG responses were divided into 7 s trials (a total of

148 trials for Experiments 1–3, and 104 trials for Experiment 4), and we visually inspected all the tri-

als and removed trials with identifiable artifacts. On average, 8.45 ± 3.20% trials were rejected in

Experiment 1, 15.20% ± 3.97% trials were rejected in Experiment 2, 10.35% ± 1.53% trials were

rejected in Experiment 3, and 12.9 ± 4.46% trials were rejected in Experiment 4.

Then, the response averaged over trials was transformed into the frequency-domain using Dis-

crete Fourier transform (DFT) without any additional smoothing window. Therefore, the frequency

resolution of the DFT analysis was 1/7 Hz. The response power, that is, the square of the magnitude

of the Fourier coefficients, was grand averaged over EEG electrodes and participants. The phase of

the Fourier coefficients were averaged using the circular mean (Fisher, 1995). The 2-Hz phase differ-

ence between the s1- and s2-amplified conditions was averaged over participants in each

electrode.
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Time-warping analysis
In natural speech used in Experiment 3, syllables were not produced at a constant rate, and there-

fore the responses to syllables and words were not frequency tagged. However, the neural response

to natural speech could be time warped to simulate the response to isochronous speech (Jin et al.,

2018). In the time-warping analysis, we first extracted the ERP response to each syllable (from 0 to

750 ms), and simulated the response to 4-Hz isochronous speech using the following convolution

procedure: s(t) = Sj hj(t)*d(t –0.25j), where s(t) was the time-warped response, d(t) was the Dirac delta

function, and hj(t) was the ERP evoked by the jth syllable. The word index j ranged from one to the

total number of syllables in a story.

In the time-warping procedure, it was assumed that the syllable response was time-locked to the

syllable onsets and the word response was time-locked to word onsets. The frequency-domain analy-

sis was subsequently applied to the time-warped response, following the same procedure as

adopted in the analysis of the response to isochronous speech.

Time-domain analysis
Time-domain analysis was only applied to the responses to disyllabic words, and the responses to

monosyllabic words were not analyzed. The ERP responses to the first and second syllables of each

disyllabic word were separately extracted and averaged across all disyllabic words. The

ERP response to each syllable was baseline correlated by subtracting the mean response in a 100 ms

window before the syllable onset.

Statistical test
In the frequency-domain analysis, statistical tests were performed using bias-corrected and acceler-

ated bootstrap (Efron and Tibshirani, 1994). In the bootstrap procedure, data of all participants

were resampled with replacement 10,000 times. To test the significance of the 2-Hz and 4-Hz peaks

in the response spectrum (Figures 2A–E, 3B and D, and 4A and B), the response amplitude at the

peak frequency was compared with the mean power of the neighboring four frequency bins (two bin

on each side, one-sided comparison). If the response power at 2 Hz or 4 Hz was stronger than the

mean power of the neighboring bins N times in the resampled data, the significance level could be

calculated as (N + 1)/10,001 (Jin et al., 2018).

When comparing the response power between conditions, the response power was always sub-

tracted by the power averaged over four neighboring frequency bins (two on each side) to reduce

the influence of background neural activity. A two-sided test was used to test the power difference

between conditions within an experiment (solid black lines in Figure 3A and B and Figures 4E and

5C; topography in Figures 4F and 5D). If the response power was greater in one condition N times

in the resampled data, the significance level could be calculated as (2N +1)/10,001. As to the power

difference between experiments (dotted red lines in Figures 3A and B and Figure 4E), the signifi-

cance level was v if the sample mean in one experiment exceeded the 100 v/2 percentile (or fell

below the v/2 percentile) of the distribution of the sample mean in the other experiment

(Ding et al., 2018).

To test the phase difference between conditions, the V% confidence interval of the phase differ-

ence was measured by the smallest angle that could cover V% of the 10,000 resampled phase differ-

ence (Jin et al., 2018). In the inter-participant phase coherence test (Figure 3—figure supplement

1), 10,000 phase coherence values were generated based on the null distribution, that is, a uniform

distribution. If the actual phase coherence was smaller than N of the 10,000 phase coherence values

generated based on the null distribution, its significance level was (N + 1)/10,001 (Ding et al.,

2018).

In the time-domain analysis (Figure 6), the significance of ERP difference between conditions was

determined by means of the cluster-based permutation test (Maris and Oostenveld, 2007). The test

was performed with the following steps given below: (1) The ERP for each participant in two condi-

tions were pooled into the same set. (2) The set was randomly partitioned into two equally sized

subsets. (3) At each time point, the responses were compared between the two subsets using a

paired t-test. (4) The significantly different data points in the responses were clustered based on

temporal adjacency. (5) The cluster-level statistics were calculated by taking the sum over the
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t-values within each cluster. (6) Steps 2–5 were repeated 2000 times. The p-value was estimated as

the proportion of partitions that resulted in a higher cluster-level statistic than the actual two

conditions.

When multiple comparisons were performed, the p-value was adjusted using the false discovery

rate (FDR) correction (Benjamini and Hochberg, 1995).

Post-hoc effect size calculation
On top of showing the 2-Hz response power from individual participants and individual electrodes in

Figure 2—figure supplement 1, an effect size analysis was applied to validate that the sample size

was appropriate to observe the 2-Hz response. To simplify the analysis, we calculated the effect size

based on a paired t-test to compare the power at 2 Hz and the power averaged over four neighbor-

ing frequencies. Since the response power was not subject to a normal distribution, such a t-test had

lower power than, for example, the bootstrap test. However, based on the t-test, the 2-Hz response

remained significantly stronger than the mean response averaged over neighboring frequency bins

in all conditions shown in Supplementary file 2. The effect size of the t-test was calculated using the

G*Power software (version 3.1) (Faul et al., 2007). We calculated d and power based on the mean

and standard deviation of the 2-Hz response (reported in Supplementary file 2). The power was

above 0.8 for all conditions, suggesting that the sample size was big enough even for the more con-

servative t-test.
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Kösem A, van Wassenhove V. 2017. Distinct contributions of low- and high-frequency neural oscillations to
speech comprehension. Language, Cognition and Neuroscience 32:536–544. DOI: https://doi.org/10.1080/
23273798.2016.1238495
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