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Creating invariant representations from an everchanging speech
signal is a major challenge for the human brain. Such an ability is
particularly crucial for preverbal infants who must discover the
phonological, lexical, and syntactic regularities of an extremely
inconsistent signal in order to acquire language. Within the visual
domain, an efficient neural solution to overcome variability consists in
factorizing the input into a reduced set of orthogonal components.
Here, we asked whether a similar decomposition strategy is used in
early speech perception. Using a 256-channel electroencephalographic
system, we recorded the neural responses of 3-mo-old infants to 120
natural consonant–vowel syllables with varying acoustic and phonetic
profiles. Using multivariate pattern analyses, we show that syllables
are factorized into distinct and orthogonal neural codes for conso-
nants and vowels. Concerning consonants, we further demonstrate
the existence of two stages of processing. A first phase is character-
ized by orthogonal and context-invariant neural codes for the dimen-
sions of manner and place of articulation. Within the second stage,
manner and place codes are integrated to recover the identity of the
phoneme.We conclude that, despite the paucity of articulatory motor
plans and speech production skills, pre-babbling infants are already
equipped with a structured combinatorial code for speech analysis,
which might account for the rapid pace of language acquisition
during the first year.
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Amajor, fundamental challenge for any brain is to build stable
representations of a changing world. In particular regarding

speech, the breadth of the human lexicon and its possibilities of
morphemic composition are based on fine phonetic differences
that undergo substantial acoustic restructuring depending on
many contextual factors such as voice peculiarities, intonation, and
coarticulation. Nonetheless, we effortlessly perceive “bog” and
“dog” as steady and distinct words, no matter whether shouted by
a little girl or whispered by an elderly man. The capacity to extract
invariant neural representations from the extremely variable
speech signal is essential for adults and even more crucial for in-
fants, who must discover the organizing regularities of speech in
order to acquire their native language. Yet, the neural underpin-
nings of such an ability remain underspecified.
In the visual domain, recent findings, based on neuronal re-

cordings during object (1) and face recognition (2), suggest that
in order to deal with the large amount of incoming pictures, the
brain factorizes the input into independent and orthogonal low-
dimensional components, each coding for a different dimension
of variation. For instance, faces may be decomposed into as little
as 50 orthogonal dimensions, thus effecting a remarkable dimensional
reduction (2). The components are thought to be subsequently
recombined to yield unified percepts. Can such an account be ap-
plied to speech? Apart from any neural consideration, linguists have
defined phonemes as bundles of a small set of orthogonal phonetic
features, each corresponding to a binary code that summarizes an
articulatory dimension and its acoustic correlates (3). For instance,
the phonemes “b” and “d” from the example above share all pa-
rameters (+consonantal and −vocalic, +obstruent and −sonorant,
+voiced, etc.) except for the place of articulation (+labial/−alveolar
versus +alveolar/−labial). Given their linguistic characteristics (dis-
tinctive, minimal, and combinable), these features might correspond

to the basic decomposition axes harnessed by the brain to reduce the
high dimensionality of the speech input, thereby overcoming its
variability.
In the last years, high-resolution intracranial recordings on adults

(4) and functional MRI (fMRI) adult data (5, 6) have provided
evidence in line with this hypothesis: a partial neural specialization
for phonetic features was observed during passive listening of
speech. Here, we ask whether such a decomposition strategy is
already present in early infancy.
The first essential step for language acquisition consists in the

identification of the native sound structure. Delineating the type of
speech representations infants start with is thus crucial to elucidate
how they can discover the phonetic repertoire and phonological
grammar of their native tongue. A plethora of classical studies has
demonstrated that infants come to the world with the perceptual
abilities necessary to distinguish a variety of phonetic contrasts (refs.
7 to 9, among others). Moreover, both behavioral and neuroimaging
researches have shown that, since birth, they spontaneously override
the acoustic variability produced by changes in talker’s voice (10,
11), speaking rate (12, 13), and prosody (14). Interestingly, the type
of perceptual constancy newborns exhibit corresponds precisely to
that required to establish reliable links between speech sound dif-
ferences and changes in meaning. Although remarkable, the early
ability to detect minimal phonetic contrasts among syllables does
not truly inform upon the nature of the underlying neural code:
infants might either process utterances as integral wholes (e.g., in
the form of broad spectro-temporal patterns organized around
sonorous nuclei) or decompose them into smaller elements (e.g.,
phonemes or phonetic features).
Behavioral investigations have shown that newborns and 2 mo

olds fail at identifying a shared consonant in a group of syllables
containing different vowels (15, 16). Furthermore, neonates proved
capable of categorizing utterances using the number of their syllabic

Significance

For adults to comprehend spoken language, and for infants to
acquire their native tongue, it is fundamental to encode speech
as a sequence of stable and invariant segments despite its extreme
acoustic variability. We show that the brain of a 3-mo-old baby can
achieve this critical task thanks to a decomposition system which
breaks down the speech input into minimal and orthogonal com-
ponents such as the manner and the place of articulation. These
elementary units are robust to signal variability and are flexibly
recombined into phoneme identities during a second processing
phase. Our data indicate that a combinatorial neural code for
speech is present at an early stage of language development.

Author contributions: G.G. and G.D.-L. designed research; G.G. and M.P. performed re-
search; G.G. analyzed data; A.F. contributed new analytic tools; S.M. and G.D.-L. super-
vised data analysis; and G.G. and G.D.-L. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1To whom correspondence may be addressed. Email: giulia.gennari1991@gmail.com.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2020410118/-/DCSupplemental.

Published July 29, 2021.

PNAS 2021 Vol. 118 No. 31 e2020410118 https://doi.org/10.1073/pnas.2020410118 | 1 of 11

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

https://orcid.org/0000-0002-2438-2766
https://orcid.org/0000-0002-3260-0559
https://orcid.org/0000-0003-2221-9081
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2020410118&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:giulia.gennari1991@gmail.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020410118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020410118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020410118
https://doi.org/10.1073/pnas.2020410118
xueyanan
高亮文本



constituents but not the number of phonemes (17). Following these
results, many authors have proposed the syllable as the primitive
unit for speech processing. Computational modeling has corrob-
orated the plausibility of this conclusion by showing that sonority-
based syllable-like structures are indeed accessible, in conversa-
tional speech, by means of general auditory mechanisms (18).
Currently, such kind of broad and holistic units is widely assumed
to be the starting point for lexical learning when no linguistic
knowledge is available.
However, progress in neuroimaging has opened the way to new

paradigms that, bypassing behavioral limitations, may uncover the
existence of unexpectedly refined abilities early in development.
Following the repetition of CV (consonant–vowel) syllables differing
only in their vocalic component, electroencephalographic (EEG)
recordings revealed that 3 mo olds could recognize the shared
consonant and detect when it changed (19). They could even learn
to associate each consonant to a visual shape independently of the
vocalic surroundings (20). Such a finding, easily explicable in terms
of sub-syllabic processing, prompts to reexamine the format of
early speech representations.
To this aim, we combined high-resolution EEG recordings with

time-resolved multivariate pattern analysis. A total of 25 3-mo-old
infants were exposed to 120 natural CV syllables presented in
pseudorandom order during about 1 h. Syllables were chosen to
independently vary the consonantal dimensions of manner (obstruent
versus sonorant) and place of articulation (labial versus alveolar
versus velar). Each consonant was coupled with two vowels (/i/ and /o/)
and produced by a male and a female speaker in five distinct ut-
terances to ensure acoustic and coarticulatory variability across
tokens with the same phonetic profile (Fig. 1A). The dimensions
of manner and place of articulation were chosen due to the highly
contrasted levels of consistency characterizing their acoustic corre-
lates: whereas manners are reflected in prominent spectro-temporal
prototypes (21), the acoustic cues for place are more subtle (22) and
complex (23), hence fundamentally dependent on the context of
production (24). Such acoustical divergence was especially evident
in the auditory similarity structure of our stimuli set, as illustrated in
SI Appendix, Fig. S1.
We used multivariate decoding analyses to investigate infant

speech processing at three possible levels corresponding to holistic
syllables, phonemes, and phonetic features.* Linear classification
algorithms are powerful tools in that they can combine multiple
sources (here, EEG channels) to find the optimal combination of
brain signals reflecting the variables of interest (25). Since any
peculiarity in the data can be used to separate classes, showing
that neural responses can be sorted according to certain labels, in
itself, does not speak to the underlying encoding scheme. A key
strategy in this regard consists in examining the pattern of gen-
eralization: how decoders trained in a particular context perform
across variations that are expected to be nonpertinent for a given
code (26). For instance, if infants extract speaker-invariant infor-
mation, then decoders trained on the brain responses to syllables
produced by the male voice are expected to generalize to the fe-
male voice (and vice versa). This logic was central to the purpose
of the present study. We reasoned that, if consonants and vowels
were processed separately, then a decoder trained in the context
of, say, vowel “o,” should generalize to the context of the other
vowel “i.” Conversely, such generalization should not be possible
if each syllable was encoded by its own idiosyncratic neural code.
At the subsyllabic level, we could ask whether a decoder trained
to separate “bo” versus “do” is able to 1) correctly classify “mi”
versus “ni,” thus revealing the presence a neural code for the
places “labial” versus “alveolar” that is orthogonal to vowels and

manners, or 2) generalize only to “bi” versus “di,” thus indicating
an idiosyncratic and integrated neural code for the consonants
“b” versus “d” without further decomposition into separable
dimensions.
In addition, by using time-resolved EEG signals, it is possible

to train a distinct decoder at each time point to probe the presence
of distinct patterns of generalization over time (27). By tracing the
time course of generalizations and class confusability, we could ask
whether and when particular pieces of information were recoded
across stages of processing. A factorized encoding model, similar
to that observed for faces (2), predicts an early projection of the
signal into a small set of orthogonal dimensions followed by their
integration into broader chunks (consonants/vowels or even entire
syllables). The opposite decomposition process, progressing from
holistic syllables to phonemes or/and features, is also imaginable.
Decoding speech from noisy infant event-related potentials

(ERPs) is a difficult task. To enable it, we recorded a large data set
consisting of ∼3,100 trials/participant. Furthermore, we collected
ERPs with a high-density custom net featuring an unusual number
of 256 channels (Figs. 1B and SI Appendix, Fig. S2; see also Fig. 1C
and Movie S1 for the grand average across all syllables and its
sources). This intensive electrode coverage, combined with the
thinness of infant skulls, should enhance the spatial resolution of
our recordings and facilitate the discrimination of ERPs arising
from spatially close neuronal clusters (28).

Results
For all the analyses described below, we trained and tested series
of linear estimators on brief (20 ms) consecutive windows all
along the time course of the ERPs. Our goal was to define the
granularity of the infant coding scheme for speech: is it syllabic,
phonetic, or featural?

Successful Classification Is Achieved on the Basis of Dynamic and Discrete
Neural Patterns.We first assessed whether decoders trained on infant
brain responses could classify the EEG recordings according to the
phonetic characteristics of the speech stimuli. Fig. 2 A and B show
that obstruents could be distinguished from sonorants starting from
80 ms after syllable onset (pclust = 0.0001; peak performance ob-
served at 200 ms: n = 25, M = 0.735 ± 0.08, chance = 0.5), while
places of articulation were reliably classified over two time windows:
220 to 480 ms (pclust = 0.0001; peak at 260 ms: M = 0.545 ± 0.039)
and 540 to 720 ms (pclust = 0.0028; peak at 640 ms: M = 0.534 ±
0.042). As for what concerns vowels, the two alternatives in our
design (/i/ and /o/) differ in both height and backness, precluding
the isolation of phonetic subclasses. Nonetheless, Fig. 2C shows
that vowel identity was reliably discerned in between 260 and
600 ms (pclust = 0.0001; peak at 480 ms: M = 0.596 ± 0.08,
chance = 0.5) and from 760 ms onwards (pclust = 0.0001; peak at
860 ms: M = 0.56 ± 0.067, chance = 0.5).
To fully characterize the neural dynamics underlying such per-

formances, the same classifiers were systematically tested on their
ability to decode across time. When neural activation is maintained
over time, a successful estimator, trained at a given time point, will
continue to achieve above-chance scores over a broader time range
(27). Fig. 2D illustrates how classifiers generalized only over a
limited amount of time lags, an indication that the neural activity
was progressing along a functional pathway. Concretely, the “cone”
shape arising from the generalization matrices discloses the retrieval
of evolving neural codes: the activity supporting classification was
either transferring across cortical regions, transformed within the
same region over time, or both. Presumably, the mild widening of
the generalization performance observable in the second portion of
the trial denotes a change in the representational format reached
relatively late after syllable onset.
To objectivize this interpretation, we used classifier weights

to reconstruct informative activity patterns (SI Appendix, Weights
Projection). Discriminative activity was diffused over the scalp,

*For the moment, the terms “syllable,” “phoneme,” and “phonetic feature” are used as
convenient stimuli descriptors, regardless of the acoustic/linguistic value they might hold
for the brain.
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resembling the auditory ERP topographies arising from multiple
perisylvian sources that are typical of this age (SI Appendix, Fig. S3
and Movie S1). Crucially, informative clusters were qualitatively
different during the first and second time windows of reliable
classifiability, substantiating the occurrence of distinct encoding
stages. Change was particularly appreciable in the individual
topographies (SI Appendix, Fig. S3 A and B) which are free of the
blurring effect created by averaging across participants. We ad-
ditionally observed that sensors supporting manner and place
classification were somewhat separable (SI Appendix, Fig. S3) and
found significant differences between brain activity patterns pre-
cisely distinctive for either labials, alveolars, or velars (SI Appendix,
Fig. S4, in which a detailed overview of place-informative activations
is also reported). These findings uncover that infant syllable per-
ception is supported by spatially distinct, although distributed and
partially overlapping, neural responses, as described for adults (29, 6).

An Invariant Code for Subsyllabic Components. Second, we examined
the invariance of the neural code by training new sets of manner
and place estimators on a single context (e.g., stimuli spoken by
the female voice) and testing them on the alternative untrained
condition (e.g., male voice). We considered the speaker context in
a first analysis and the vowel in a second analysis. Since several
adult and infant studies have shown that information about pho-
nemes and about speaker identity is encoded separately at an early
processing stage (30, 31), we expected full generalization across
voice genders. As explained in the introduction, successful gener-
alization across vowels would be indicative of subsyllabic processing.
For manner, the timing of cross-context decoding was virtually

identical to that seen in the overall analysis, and the accuracy only
marginally reduced (Fig. 3A, Table 1, and SI Appendix, Table S1).
Such generalization proves that the infant brain encodes manner
features uniformly and irrespective of harmonic particularities,

corroborating and extending previous behavioral evidence from
older infants (32). Remarkably, clear generalization across voices
and vowels was also obtained for place (Fig. 3B). The time course
of classification, with two distinct decodable periods, and its ac-
curacy were comparable to those achieved in the initial analysis
(Fig. 3B, Table 1, and SI Appendix, Table S1). Since the acoustic
cues for place vary substantially with the context (33, 34), these
cross-condition performances clearly reveal that the infant brain is
able to extract an invariant code beyond acoustic differences, even
in the challenging case of place contrasts.
Complementarily to these results, vowel estimators trained on

single manner or place conditions fully generalized to the alternative
contexts (Fig. 3C and Table 1). Thus, the cross-decoding patterns
observed so far demonstrate that syllables are not perceived
holistically but broken down into subcomponents independently
of the coarticulated vowel for consonants and consonantal fea-
tures for vowels.

Syllables Are First Factorized into Orthogonal Codes Corresponding
to Place and Manner Features, Which Are Secondarily Integrated.
Holistic, unrelated codes for each of the six consonants might
suffice for classifiers to sort trials into arbitrary subsets (e.g., /b/,
/d/, /g/ versus /m/, /n/, /ɲ/) as shown in the previous sections.
Crucially, if infants encode consonants by factorizing them into
separate orthogonal dimensions, akin to the phonetic features
postulated by linguists, then successful generalization should be
obtained for decoders trained on one featural dimension, re-
gardless of the variation in the other phonetic domains. That is to
say, estimators would retrieve the same manner code across la-
bials, velars, and alveolars and the same place code in obstruents
as in sonorants. To evaluate this possibility, we trained decoders at
one featural context (e.g., manner classifiers were trained only on
labials) and tested them on left-out data either within the same

Fig. 1. Experimental setup and average syllable-related potential. (A) Stimuli subconditions and their phonetic characteristics (f = female, m = male voice).
(B) 256 channels super high-density net on a 3-mo-old infant: tight grids of custom electrodes are arranged over the auditory linguistic areas of the superior
temporal lobe (see also SI Appendix, Fig. S2). (C) Grand average ERP: all conditions are pulled together.
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condition (labials) or across untrained phonetic contexts (e.g.,
alveolars or velars). According to the decomposition/factorized
hypothesis, the two tests should yield similar performances.
This criterion revealed two distinct stages (Fig. 4A): during an

early time window, both manner and place estimators achieved
successful generalization, with a classification accuracy approaching
that obtained within the trained condition. Initial processing was
therefore based on orthogonal codes for the dimensions of manner
and place. Beyond ∼450 ms, however, classification performance
was significantly lower across contexts as compared to within, sug-
gesting a change in the format. Cross-condition decoding fell to
chance level for place, while manner information was more resilient
but nevertheless altered by the variation in place context (Fig. 4A).
This finding suggests that a second phase of processing involved the
grouping of multiple elementary dimensions into an integrated
neural code. In other words, during this later time window, features
were merged and no longer encoded as orthogonal, separately
decodable dimensions.

Consonants and Vowels Remain Separated.Were the consonant and
the vowel ever merged in a syllabic unit? The results obtained so
far contain a few interesting hints in this regard. As shown in Figs. 2
and 3, vowel decodability follows a double-peak pattern very similar
to that observed for consonantal dimensions, but peak scores are
achieved markedly later and at times when consonantal place is
hardly discriminable. Together with the invariance of vowel codes
across consonantal features (Fig. 3C), these observations suggest
that infants encoded the two phonemes composing the syllable in a
separate and well-ordered fashion.
In a final step, we queried a possible interconnection between

consonant and vowel processing. Using a logic similar to the one

described above, we compared the performance of consonant and
vowel estimators within and across vowel and consonant condi-
tions. The presence of an integrated syllabic code would generate
a drop in performance across context. As displayed in Fig. 4B,
such a drop never occurred, suggesting that consonants and vowels
were kept separated, at least until 1 s after syllable onset.
All the decoding results described above were further vali-

dated by the sanity check analyses illustrated in SI Appendix, Fig.
S5 in which we used randomized training sets and arbitrary cross-
condition tests. By showing the absence of haphazard decod-
ability, the latter confirmed a) the appropriateness of the stimuli
set employed; b) the reliability and interpretability of the multi-
variate techniques applied; and c) the nonarbitrariness of pho-
nemes and phonetic features as relevant linguistic dimensions.

Neural Confusion Matrices. To gain additional evidence on the nature
of the encoding across time, we trained algorithms on whole-syllable
identities (i.e., 12 labels: “bi” versus “bo” versus “di” versus “do”
versus “gi” versus “go,” etc.) and explored their error patterns at
test. With this decoding scheme, class separation might be based
on either one or a mixture of the stimuli dimensions explored so far.
It follows that, in this analysis, class-wise accuracy (SI Appendix, Fig.
S6 A, Top) will be poorly informative per se. Between-class con-
fusion, on the other hand, can provide an exhaustive picture of the
encoding modality at each time point. For instance, whereas
the retrieval of neural codes for whole syllables would produce
a purely diagonal confusion matrix, phoneme identity neural codes
would trigger conspicuous mislabeling among pairs of stimuli shar-
ing the same consonant or vowel. Using multiple linear regression,
we tested whether and when pairwise neural syllable confusion
(Fig. 4 C, Left, and SI Appendix, Fig. S6 A, Bottom) was explained by

Fig. 2. Classification performances of estimators trained on single time windows (20 ms) along the ERP. (Top) Estimators are tested at the trained time
sample. The shaded areas correspond to the SE (SEM) across subjects, the dotted black lines mark theoretical chance level, and the filled circles indicate
significant scores (cluster-corrected Student’s t test). (A) Performance of classifiers trained on manner distinctions: obstruents (/b/, /d/, and /g/) versus sonorants
(/m/, /n/, and /ɲ/). (B) Performance of classifiers trained on place distinctions: labials (/b/ and /m/) versus alveolars (/d/ and /n/) versus velars (/g/ and /ɲ/). (C)
Classification of vowel identities: /i/ versus /o/. (D) Temporal generalization matrices: each panel displays above-chance decoding scores of estimators trained
on a single time window (y-axis) and tested at every possible time sample (x-axis) along the ERP. The diagonal thin lines demark classifiers trained and tested
on the same time sample. The dashed contours indicate significant clusters (manner: pclust = 0.0001; place: pclust = 0.0001 and 0.0028, vowel: pclust = 0.0097 and
pclust = 0.0108).
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the isolation of either featural, consonant identity, and/or whole-
syllable codes (Fig. 4 C, Middle) once vowel distinctions were en-
tered as a variable of noninterest (since our paradigm did not enable
to disentangle vocalic features from vowel identity). We found that
consonantal place of articulation drove neural confusability early in
the trial (240 to 380 ms: pclust = 0.017). Crucially, consonant identity
predicted the patterns of neural separability only later, between 500
and 700 ms (Fig. 4 C, Right; pclust = 0.006). Lastly, the syllable re-
gressor never reached significance (Fig. 4C). Complementing the
decoding outcomes in Fig. 4 A and B, these results show that fol-
lowing the encoding of orthogonal features, place and manner codes
were integrated into comprehensive consonant bundles, while con-
sonants and vowels remained separated.

Discussion
The classification patterns observed in this study reveal two
speech encoding formats in the infant brain. During a first stage
of processing, each consonant was encoded by its coordinates
along the manner and place dimensions as evidenced from the

fact that decoders trained on one dimension could generalize to
different levels of the other dimension. In a second stage, the two
features were combined into idiosyncratic bundles, still allowing
phoneme classification but hindering full generalization of featural
decoding across different consonants. This functional progression is
consistent with the dynamic nature of the neural codes as revealed
by the matrices in Fig. 2D and the corresponding informative
activity patterns in SI Appendix, Figs. S3 and S4. Although our
experiment was mainly focused on consonants, similar processing
stages for vowels are likely. Finally, we found no evidence for an
encoding of the syllable in its entirety.
According to several mainstream accounts, authentic adult-like

phonetic perception requires the acquisition of refined motor
skills that would enable a proficient mapping between articulatory
movements and acoustic outcomes (35–38). Through vocal plays
aimed at imitating ambient language, infants would gradually
familiarize with the sensory consequences of their own utterances.
Once they begin to master production, the acquired availability
of internal motor models would enable them to process speech

Fig. 3. Cross-condition decoding. (A, Left) Generalization of manner estimators across voice conditions: classifiers trained on syllables produced by one
speaker are tested on stimuli uttered by the other speaker. (Right) Generalization of manner estimators across vowel conditions: classifiers trained on
consonants associated to one vowel are tested on syllables containing the alternative vowel. (B) Same as A but for place estimators. (C, Left) Vowel classi-
fication across manners: classifiers are trained on obstruents, then tested on sonorants and vice versa. (Right) Vowel classification across places: vowel es-
timators are trained on one place condition (e.g., labials) and tested on the other two (e.g., alveolars and velars). The shaded areas correspond to the SE (SEM)
across subjects; the dotted black lines mark theoretical chance level. The filled circles indicate scores significantly above chance (exact P values are reported in
Table 1). Performances from all possible training/test directions are averaged.
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sounds in phonetic terms (35, 39, 38). In this scenario, canonical
babbling, which signals the beginning of a fairly controlled artic-
ulation around 6 to 8 mo of age (40), represents an important
milestone, while infants in the pre-babbling phase are thought to
rely on refined but domain-general auditory mechanisms (41). It
follows that, according to these widely accepted views, the primitive
units for speech processing consist of spectro-temporally detailed
but phonetically undefined acoustic chunks roughly corresponding
to syllables.
The decoding performances shown here suggest a different

developmental scenario. First, the observed separation between
consonants and vowels demonstrates that, even for pre-babbling
infants, syllables are not holistic units. Without diminishing the
importance of syllabic-level analysis (e.g., ref. 42), our finding of
neural codes for consonant identity complements adult data (43)
in corroborating the reality of the phoneme as a relevant entity
for the cortical encoding of speech (44).
Second, our generalization approach, involving the comparison

of decoding performances within and across phonetic domains,
disclosed the existence of a preliminary phase in which consonants
are decomposed along distinct and orthogonal axes for the manner
and place of articulation. Although we tested only two consonantal
features, the characteristics of our experimental design allow strong
insights upon the nature of such a first encoding stage. To start with,
we carefully selected the stimuli to avoid any trivial difference, for
instance, in consonant duration (SI Appendix, Stimuli Construction).
Importantly, we opted for the dimensions of place and manner
because the consistency of their acoustic correlates across contexts
is largely different. Furthermore, the experimental stimuli were
appositely chosen to push the variability of place cues at the max-
imum [e.g., /i/ versus /o/, situated at opposite corners of the vowel
diagram, accentuated the spectro-acoustical inconsistency of place
cues due to coarticulatory phenomena (33)]. Such a prioris were
confirmed by our inspection of the auditory spectrograms (SI Ap-
pendix, Fig. S1), in which the acoustic similarity between tokens was
explained by manner, vowel, and voice commonalities but not
place. Yet, on EEG recordings, cross-classification performances
for both features remained qualitatively similar and disclosed invariant
neural codes that outreach context-dependent spectro-temporal
details. These observations suggest that, within a first stage of
processing, the infant brain is capable of reducing the intrinsic
sensory richness of the speech input by factorizing it. In this fashion,
a complex signal, varying along many axes, is compressed by pro-
jection onto a few linguistically relevant dimensions.
Overall, the current study shows that the neural foundations of

speech perception are strikingly similar in infants and adults (4, 6,
29, 43, 45) and compatible with the decomposition into distinctive

features postulated by linguists (3). Other than providing evidence
for phonetic encoding in pre-babblers, our results clarify some
ambiguities from previous adult studies and extend our knowledge
of human speech perception. In adults who passively listened to
sentences, the EEG revealed a temporal progression of phoneme-
related potentials characterized by distinct topographies over a
period ranging 50 to 400 ms relative to phoneme onset (45).
However, the experimental design did not allow to explore the
functional significance of such evolving activity patterns. Cortical
recordings in adults have uncovered how distinct electrodes en-
code different dimensions of the speech signal (4), but they could
primarily capture the neural correlates of manner and voice onset
time. Since the latter have clear acoustical signatures in the
stimulus spectrum, such evidence might not suffice to conclude in
favor of a genuinely featural code for speech. Meanwhile, when
applied to fMRI data, a multivariate decoding procedure equat-
able with that proposed here disclosed feature-specific responses
in various areas of the adult temporal lobe (6). Our findings are
fully congruent with all these observations carried on subjects who
master their native language, thus supporting a continuity in
speech encoding from the learner to the expert. Furthermore, our
results unify these previous insights into a coherent picture: we
propose that the extraction of minimal orthogonal features (6)
constitutes the first step of a perceptual process (45) leading to
phoneme identity computation. Such a process creates a structured
and highly generalizable space that is robust to surface variability
across speakers and coarticulatory contexts.
A factorized representational mechanism was previously dis-

covered in the monkey face patch system (2). As outlined for the
visual domain, such a decomposition strategy applied to speech is
more parsimonious, efficient, and flexible than exemplar coding
(e.g., refs. 46 and 47). Given these characteristics, a factorized
encoding system seems ideally suited to bootstrap learning: it
enables infants to discover linguistic regularities based on the
combinatorial possibilities of a reduced set of elements rather than
a large diversity of syllables and spectro-temporal patterns.
In particular, a code based on invariant phonetic features might

play a crucial role in lexicon acquisition. A first support for this
claim comes from evidence demonstrating its effectiveness in real-
world scenarios: when minimal phonetic distinctions are embed-
ded in acoustically prominent but irrelevant variations, infants
become especially prone to catch phonetic regularities in order to
learn words (48). In this context, the vectorized system we propose
discards the irrelevant variability to organize the input according
to phonetic criteria; such perceptual reorganization turns up those
subtle phonetic differences that define word’s meaning. Impor-
tantly, in order to discover words, infants must cope not only with

Table 1. Cross-condition decoding

Classes based on Generalization across: Time window (ms) p-clust

Peak performance

Latency (ms) Score SD

Manner Speakers 100 to 920 0.0001 200 0.673 0.079
Vowels 100 to 920 0.0001 200 0.678 0.086

Place Speakers 200 to 520 0.0001 260 0.548 0.035
560 to 720 0.0014 640 0.522 0.047

Vowels 240 to 480 0.0001 260 0.538 0.034
540 to 680 0.006 640 0.522 0.042

Vowel Speakers 260 to 580 0.0001 460 0.561 0.078
760 to 920 0.0002 800 0.554 0.052

Manners 300 to 580 0.0001 460 0.57 0.08
680 to 960 0.0001 820 0.552 0.067

Places 280 to 600 0.0001 480 0.564 0.082
760 to 960 0.0001 820 0.544 0.066

Statistical description of the decoding performances shown in Fig. 3.
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acoustical but also with phonological variation due to the segmental
context: for example, in order to apprehend that “wet shoes” and
“we[p] pants” share the same word “wet,” English infants should
apply a rule stating that an alveolar stop consonant borrows the
place of articulation from the subsequent stop (49). Phonotactic

rules of this sort pertain to phonetic features rather than holistic
phonemes. Several behavioral studies reported that infants are
sensitive to phonotactic cues already by the age of 9 mo: they
prefer to listen to sequences that are phonotactically legal in their
native language (50, 51) and use their phonotactic knowledge to

Fig. 4. Orthogonal feature codes are merged into phoneme identities at a late stage of processing. (A) Time-resolved performance of estimators trained on a
single phonetic feature (e.g., manner estimators trained on labials: /b/ versus /m/). In light colors: classification within the trained condition (e.g., test on
labials); in darker colors: performance at novel phonetic contexts (e.g., test on alveolars: /d/ versus /n/ and velars: /g/ versus /ɲ/). The scores from all possible
training conditions or train/test directions are averaged. The shaded areas correspond to the SEM across subjects. Filled circles indicate significant general-
ization across contexts (100 to 900 ms: pclust = 0.0001 for manner; 240 to 420 ms: pclust = 0.001 for place). The diamonds indicate higher performance within as
compared to across conditions (exact time window of significance for manner: 480 to 640 ms; for place: 460 to 660 ms). (B, Left) Performance of estimators
trained on discriminating all consonants (/b/ versus /d/ versus /g/ versus /m/ versus /n/ versus /ɲ/) coupled with one vowel (e.g., “-i“) and tested within the same
(light green) and across the other vocalic context (e.g. “-o”; dark green). (Right) Performance of vowel classifiers trained on a single consonant (e.g., /b/) and
tested within the same consonant (yellow) and across the remaining five (orange). Filled circles mark significant generalization across contexts (consonant
classifiers: 80 to 900 ms, pclust = 0.0001; vowel classifiers: 340 to 560 ms, pclust = 0.0001 and 760 ms onwards, pclust = 0.0002). (C, Left) Example of a neural
confusion matrix at time t (660 ms) obtained with a 12-class (syllables) decoding problem (average across subjects). The numbers within each cell indicate the
percentage of times a given syllable from the x-axis was classified with the label reported on the y-axis. Off-diagonal values diverging from 0 signal mis-
identification (chance = 8.3%). (Middle) Theoretical confusion matrices depicting a perfect separation between (i.e., the ideal classification of) consonantal
places, consonant identities, and broad syllable identities (classes are ordered as in the left matrix). The darker colors correspond to the values 33.3, 50, and
100%, respectively, and the light colors correspond to 0%. These matrices were entered as predictors of interest in a multiple regression analysis to explain
neural syllable confusion at each time point. (Right) The obtained beta weights averaged across subjects and marked by filled circles when significantly above
zero (cluster-based permutation Student’s t test). The vertical lines correspond to the SEM. To enhance clarity, the remaining predictors (i.e., manner and
vowel discrimination) and the relative beta weights are illustrated in SI Appendix, Fig. S6B.
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find word boundaries in continuous speech (52). At this age, co-
herently with our argument, phonotactic rules are easily learned if
expressed at the level of phonetic features while they are not
detected when they concern the identity of the phonemes (53).
Lastly, a featural encoding of speech is consistent with the docu-
mented ability of young infants to use phonetic details in word-
referent mapping (54, 55).
Also, the neural separation between consonants and vowels,

which characterizes the second stage of processing, seems par-
ticularly valuable for learning. Consonants and vowels have been
proposed to hold diverging roles in language: while the former
carry lexical distinctions, the latter are especially apt to mark
structural organization (56). Their encoding as orthogonal/separate
entities enables the maintenance of two parallel pathways of
processing, optimizing in this way the accessibility of lexicon on
one side and syntax on the other. Coherently with our findings,
and just as adults (57), infants are known to exploit the “division
of labor” between consonants and vowels already by the age of 12 mo
(58). The inclusion of different syllabic structures in future ex-
perimental paradigms will bring further insights on this matter
(for example, investigations with CCV/CVV tokens will enable
to elucidate whether orthogonal encoding concerns single phonemes
or rather consonantal/vocalic functional clusters).
Phonetic features and phonemes might thus correspond to

essential and quickly available building blocks for human lan-
guage acquisition. Still, the developmental origin of these codes,
and in particular their dependence on motor representations,
require further study to be understood. At ∼12 wk, the age of our
subjects, vocal production is very limited (41). Strikingly, even
preterm neonates can detect a place of articulation change (“ba”
versus “ga”) at 6 mo of gestation, when articulatory movements
are extremely poor. Before term, such discriminative ability is
carried by a network of temporal and frontal brain areas similar
to that recruited at later ages (59, 60). These observations sug-
gest that the encoding system isolated here develops prior to,
and independently of, motor skills. Nevertheless, orofacial ste-
reotypies such as tongue protrusion/retraction occur already in
the womb, and protophones, the earliest precursors of oral lan-
guage, start to be produced in an exploratory fashion immedi-
ately after birth (61). These primitive behaviors could provide a
primordial knowledge of the shape and configurability of the
upper vocal tract (62), and, combined with sound exposure, they
might foster an integrative/multimodal representational space
for speech before the onset of canonical babbling. Coherently
with this conjecture, a recent study in 3 mo olds showed that
altering the movements of the tip of the tongue modulates the
perception of a labial–alveolar contrast, thereby revealing the
presence of a refined auditory–motor mapping (63). Although
multimodal speech processing appears from an early age (31),
the perceptual stage at which different modalities are integrated,
as well as their relative weights, remain to be determined.
As a final remark, we would like to warn the reader about two

interpretative issues our methodology entails. Strictly speaking,
our multivariate decoding approach revealed a statistical depen-
dence between a psycholinguistically defined representational space
composed of phonetic vectors and the spatiotemporal activity pat-
terns captured by the EEG sensors (25, 64). When conceiving the
brain as an information processing system based on population
coding (65), pattern-information analyses are likely to have con-
siderable functional significance, especially in comparison to more
classical activation-based approaches (25, 64). Furthermore, our
choice of linear (as opposed to nonlinear) classifiers ensures the
biological plausibility of our conclusions (66). Nonetheless, dem-
onstrating that neural activity patterns incorporate phonetic in-
formation does not necessarily imply that the infant brain actually
uses such information for its operations. The literature provides
two hints in this direction. First, a behavioral investigation relying
on the head-turn preference procedure reported that 4 mo olds

could successfully learn a phonotactic rule shaping VC pairings on
the basis of featural classes (i.e., “nasal vowels are always followed
by fricatives and oral vowels by stop consonants”) (67). Moreover,
a recent ERP study found that when exposed to syllables varying
in their vocalic constituents, 3-mo-old infants could learn to pair
consonants with visual shapes and generalize this pairing to a new
vocalic context, demonstrating that subsyllabic representations are
already operational at this age (20). We point this line of study as a
meaningful direction for future research.
A second interpretative issue might arise from linear models

being, by nature, strongly dependent on the experimenter’s a
priori insights: by fitting only the phonetic variables included in
our hypothesis, we might have missed the influence of unexpected
variables possibly accounting for the successful classification of the
former. In light of such caveat, the emergence of phonetic codes in
a (relatively) unsupervised decoding analysis is particularly note-
worthy (Fig. 4C and SI Appendix, Fig. S6). Namely, in the absence
of any predefined stimulus grouping, the representational structure
revealed by the confusion patterns of syllable classifiers matched the
predictions of the phonetic representational space hypothesized.
To conclude, pending more definitive experimental evidence,

we point out the possibility that an abstract combinatorial code
for speech might be available very early on and endow infants
with the ability to discriminate phonemes from most languages
(68). We further highlight that an encoding system based on a
finite set of minimal and orthogonal elements is ideally suited to
bootstrap the acquisition of phonotactic, lexical, and syntactic
rules. The method presented here provides the foundation for
future experiments that, spanning a range of languages and ages,
will need to investigate how the observed codes develop and
adapt to the inventory of native phonemes.

Materials and Methods
Participants. A total of 25 full-term, normal-hearing infants (12 females, 13
males) coming from a French-speaking environment were tested between
12 and 14 wk after birth (mean age = 12 wk and 6 d). An additional 16
participants were excluded from analysis because of excessive agitation
during the experimental session (n = 6), insufficient number of trials after
artifact rejection (n = 3, the artifact rejection procedure is described in EEG
Recording and Data Preprocessing), technical problems during data collec-
tion (n = 3), or aberrant global field power (GFP) in the average of all
syllable-related potentials (i.e., peak GFP < 4 μV, n = 4). The protocol was
approved by the regional ethical committee for biomedical research (Comité
de Protection des Personnes Region Centre Ouest 1). Parents gave their
written informed consent before starting the experiment.

Stimuli. Stimuli consisted of 120 speech sounds constructed upon six conso-
nants: /b/, /d/, /g/, /m/, /n/, and /ɲ/. These consonants were selected to cover
two manner features, that is, obstruent (/b/, /d/, and /g/) and sonorant (/m/,
/n/, and /ɲ/), and three places of articulation, that is, labial (/b/ and /m/), al-
veolar (/d/ and /n/), and palatal–velar (/g/ and /ɲ/, referred to as “velar” for
simplicity). Each consonant was associated with two vowels, /i/ and /o/, and
produced by a male and female speaker to obtain 2 manner × 3 place × 2
vowel × 2 voice factor design (i.e., 24 subconditions). To increase acoustic
variability (and extend the external validity of our measurements), speakers
were asked to repeat the same tokens several times while changing their
intonation. For every subcondition, we selected five utterances distinct in
low-level acoustic characteristics such as pitch and duration. In the resulting
set of syllables, each manner of articulation condition contained 60 spectro-
temporal profiles (3 consonants × 2 vowels × 2 voices × 5 utterances); simi-
larly, each place of articulation was presented in 40 (2 consonants × 2
vowels × 2 voices × 5 utterances) spectro-temporal versions.

Further details are provided in SI Appendix, Stimuli Construction.

Procedure. Subjects were tested in a soundproof Faraday cage equipped with
a computer screen and loudspeakers on the top. Infants were held by a
caregiver, and their position was chosen to guarantee personal comfort and
at the same time enable good-quality data acquisition. Syllables were
broadcast through the loudspeakers at 70 decibels in a Latin square ran-
domized order and with a randomly selected interstimulus interval between
600 and 1,000 ms. To minimize body movements, we presented engaging
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visual animations that were unsynchronized with the auditory stream. Sleep
was highly encouraged at any time; on average, our subjects slept for 65%
of the experimental session. Breaks were taken whenever necessary. The
experiment finished with the presentations of 3,136 tokens (corresponding
to ∼63 min of listening time) or as soon as infants became restless.

EEG Recording and Data Preprocessing. The EEG was continuously digitized at
500 Hz (Net Amps 300 EGI amplifier combined with NetStation 5.3 software)
from 256 channels. We used a prototype HydroCel net (Electrical Geodesics,
Inc.) referenced to the vertex. The sensor layout of this prototype diverges
from the classical geodesic 128 locations partitioning (69) in that 20 of the
standard temporal positions are covered by two tight grids of sensors (70
electrodes on each side, organized in hexagonal pods) with no sponge in-
serts (SI Appendix, Fig. S2). Electrodes are made of carbon fibers embedded
within a plastic (ABS) substrate and coated with silver chloride.
Artifact Detection and Correction. Data preprocessing was conducted through
custom-made MATLAB scripts based on the EEGLAB toolbox 14.0 (70).
While following the main preprocessing steps normally used in develop-
mental studies, we introduced some modifications inspired by efforts carried
to improve adult data quality (71, 72). Namely, we identified artifacts on the
continuous recordings with the employment of adaptive rather than abso-
lute/predefined thresholds. In this way, we could account for interindividual
variability and the heterogeneous influence that reference distance and
vigilance state exert on the voltage. Moreover, we did not discard but cor-
rected local and transient artifacts, exploiting the redundancy of informa-
tion provided by our dense sensor layout (SI Appendix, Fig. S2) and high
sampling rate.

As a first step, EEG recordings were band-pass filtered (0.5 to 40 Hz), and
the mean voltage of each electrode was set to zero. Artifacts were detected
before segmentation by a series of algorithms with adaptive thresholds.
These algorithms rejected samples on the basis of the following: the voltage
amplitude and its first derivative, the variance across a 500-ms long moving
time window, and the fast-running average and the deviation between the
fast- and the slow-running averages within a 500-ms long sliding time window.
Thresholds were set independently for each subject and for each electrode
upon the distribution of these measures along the whole recording (thresh-
old =median ± n × IQ, where IQ is the interquartile range of the distribution).
Two additional algorithms identified whether the power within the 0- to
10-Hz band was excessively low or within 20 to 40 Hz excessively high relative
to the total power and whether the voltage amplitude displayed by each
sensor at a given time point was disproportionate relative to that recorded by
the other sensors at the same instant. For these last two algorithms, thresholds
were computed upon the distribution across channels.

The output of the artifact detection procedure was a rejection matrix with
the same size of the EEG recording. We used this matrix to mark time points
with prominent artifacts (bad times) and channels that did not function
properly (bad channels). We identified as bad times periods longer than
50 ms with a percentage of rejected channels superior to 30% or beyond 2IQ
from the third quartile of the distribution of the percentage of rejected
channels across time. Similarly, bad channels were the ones not working
properly for more than 30% of time or with a percentage of bad samples
that went beyond 2IQ from the third quartile of the distribution of the
percentage of rejected samples across channels.

Periods defined as bad times were not corrected because there was not
enough information available to reconstruct the signal. For the rest, two
kinds of corrections were applied. When the rejected segments had a very
short duration (50 ms max, e.g., heart beats or jumps) we relied on the as-
sumption that, during these periods, most of the variance came from noise.
For each of them, principal components were estimated, and the first n
components determining 90% of the variance were removed. Otherwise, we
corrected bad channels and long rejected segments that did not contain bad
times using spherical splines interpolation (73). Spatial interpolation was
carried out only if at least 50% of the neighboring channels were intact.
Corrected segments were realigned with the rest of the data, which were
then high-pass filtered (0.5 Hz) to eliminate possible drifts resulting from this
operation.

The artifact detection–correction procedure was applied iteratively,
keeping previously identified bad samples aside for the subsequent artifact
detection steps.
Epoching. EEG recordings (and the corresponding rejection matrix) were
segmented into epochs starting 200 ms before and ending 1,400 ms after
syllable onset. Trials were rejected if more than 15% of their samples con-
tained artifacts. Epochs were also discarded based on their Euclidean distance
from the average, that is, when their mean or maximum distance from the
average response was an outlier in the distribution (>3rd quartile + 1.5 × IQ).

Following automated rejection, the remaining epochs were visually inspec-
ted, and a few trials still presenting obvious aberrancies were manually
eliminated.

Since multivariate pattern analysis requires a conspicuous number of trials,
we included subjects with a minimum of 40 epochs/subcondition. In our final
group of infants (n = 25), the mean trial rejection rate was 28.7% (12.4 to
53.5%). On average, the number of artifact-free epochs available per subject
in each subcondition (e.g., “bi-female”) was 70, providing 840 trials for each
manner of articulation condition and 560 trials for every place of articulation
condition.

Before submitting them to the main analyses, epochs were low-pass fil-
tered at 20 Hz, mathematically re-referenced to the mean of all channels,
and down sampled (with a moving average of two time points) to 250 Hz. All
themain analyses (decoding) were carried at the single-trial level. Nonetheless,
epochs were also averaged per either subcondition or manner/place condition
in order to examine evoked responses (ERPs, e.g., SI Appendix, Fig. S4C).

Decoding. Multivariate pattern analyses were conducted within subject, re-
lying on the Scikit-Learn (74) and MNE (75, 76) Python packages. To decode in
time, epochs were divided into 60 consecutive windows of 20 ms (from −200
to 1,000 ms relative to stimulus onset), each corresponding to a matrix with
the shape n channels × 5 samples (sampling rate = 250 Hz, 5 samples = 20 ms).
Each analysis was carried on a single window with the general aim of pre-
dicting a vector of categorical data (y) from a matrix of single-trial neural data
(X), which included all EEG channels. To decode the manner of articulation,
trials were labeled as belonging to either the category of “obstruent” or to
the category of “sonorant” depending on whether /b/, /d/, /g/ or /m/, /n/, /ɲ/
exemplars were presented. To decode the place of articulation, y comprised
three classes: “labial” (/b/ and /m/), “alveolar” (/d/ and /n/), and “velar” (/g/
and /ɲ/). For vowel decoding, trials were separated in two classes, “i” and
“o,” based on the vocalic portion of the stimulus.

All decoding analyses were performed within a stratified cross-validation
procedure consisting of 100 iterations. At each run, trials were shuffled and
then split into a training and a test set containing 90 and 10% of trials,
respectively. As compared to the most common folding approach, this cross-
validation outline enabled to maximize the number of iterations (and thus
the reliability of the final performance) while maintaining a fixed and rea-
sonable amount of test trials. Importantly, stratification ensured a) that the
same proportion of each class was preserved within each set and b) that all
sources of variability (e.g., voice gender) were evenly represented across sets
(e.g., training and test sets contained syllables produced by the female
versus male speaker in the same proportion).

Given the high-amplitude fluctuations typically seen in infant EEG back-
ground activity, we first aimed at improving our signal-to-noise ratio. Once
the training and the test set for a given run were defined, we applied a
“micro-averaging” procedure, a strategy previously used on adults with the
same purpose (77). This consisted in averaging together randomly picked
groups of 16 epochs within each class. The number of trials to average being
arbitrary, we tried with 4, 8, and 12 and observed that by averaging 16 trials
we could reach the best performance without compromising its reliability.
Note that such assessment was conducted on the first decoding analysis we
had planned (i.e., manner of articulation within a standard cross-validation
schema), and the choice of 16 was then adopted a priori for all the other
decoding analyses. At the end of this operation, to ensure perfect balance
among classes, we equalized the number of (micro-averaged) epochs across
categories. In practice, this consisted in dropping one to three randomly
picked trials from the most numerous class(es).

Next, following the z-scoring of each feature (i.e., channel and time point
across trials), a L1-norm regularized logistic regression (78) was fitted to the
training set in order to find the hyperplane that could maximally predict y
from X while minimizing a log-loss function. L1 penalty was chosen to ex-
clude less informative features from the solution (their weights being set to
zero). Such regularization can be conceived in terms of dimensionality re-
duction, an optimization that enabled us to prevent overfitting [by reducing
model complexity (79)] but still exploit the high density of our EEG data. The
other model parameters were kept to their default values as provided by the
Scikit-Learn package. When decoding concerned more than two classes (e.g.,
place classification), we adopted a “one-versus-rest” approach: for each class
(i.e., each place of articulation) one model was fitted against all the other
classes.

Once trained, the models were used to predict y from the test set, and
their performance was evaluated by comparing estimates to the ground truth.
The outcome of each algorithm was a vector of probabilistic estimates. These
probabilities were scored by computing the area under the receiver operating
characteristic curve (AUC), which summarizes the ratio between true positives
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(e.g., trials correctly classified as “obstruent”) and false positives (e.g., trials
classified as “obstruent” while a sonorant consonant was presented). The
value of AUC ranges between 0 and 1, with 0.5 corresponding to chance level.
Once again, in multiclass decoding, a “one-versus-rest” scheme was used: the
AUC scores were computed for each class against all the others and then av-
eraged. Lastly, for both binary and multiclass problems, the outcomes from all
cross-validation runs were averaged.

As a proof of concept, the main decoding analyses were performed with
two additional algorithms: L1-norm regularized linear support vector machine
(78) and linear discriminant analysis. For the latter, a shrinkage estimator of
the covariance matrix was used, taking into account the fact that the di-
mensionality of our data vectors exceeded the number of samples in each class
(80). Importantly, we restricted our alternatives to linear classifiers to make
sure that the algorithms focused on explicit neural codes (66). Besides slight
variations in accuracy, alternative classifiers yielded very similar outcomes.
Generalization across Time. Estimators trained at each time window t were
systematically tested on (both the same and) every other possible time window t’,
that is, every 20 ms from 200 ms prior to 1,000 ms after syllable onset. Such a
procedure was performed within the cross-validation so that the training set at t
and test set at t’ came from different groups of trials. In the resulting “temporal
generalization matrices,” each row corresponds to the time lag at which the es-
timator was trained, and columns correspond to the time windows at which it was
tested (27). The shape of the performance within these matrices provides peculiar
insights upon the dynamics of the underlying brain activity. If the same neural
code was found at t and t’, the classifier trained at t would generalize at t’. If, on
the contrary, information was passed to another stage of processing characterized
by its own coding scheme, performance at t’ would be at chance (27).
Generalization across Conditions. We examined the consistency of information
used by classifiers in different harmonic and coarticulatory contexts by performing
cross-condition decoding. To ask whether the same neural codes supported the
classification of phonetic features and vowel identities across different harmonic
contexts, we trained estimators onmanner contrasts (/b/, /d/, and /g/ versus /m/, /n/,
and /ɲ/), place contrasts (/b/ and /m/ versus /d/ and /n/ versus /g/ and /ɲ/), and vowel
contrasts (/i/ versus /o/) within one speaker condition (e.g., syllables pronounced by
the female voice) and tested these same estimators on the other speaker condi-
tion (e.g., syllables spoken by the male voice). The procedure regarding coarti-
culations was analogous: we trained place and manner estimators on one vowel
context and tested them on the other; we trained vowel estimators on single
manners or places and assessed their performance on the alternative ones.

To test the orthogonality of manner and place encoding, we trained es-
timators on each featural condition separately. More specifically, to reveal
place-independent phonetic processing, classifiers were trained on the man-
ner comparison (“obstruent” versus “sonorant”) at single place contexts (e.g.,
only labial sounds). These estimators were then tested both at the trained
place (e.g., labials) and at the two unseen places (e.g., alveolar and velar
consonants). In case manner neural codes were independent from the place of
articulation, we expected the classifier to perform comparably within the
trained place and across unseen place contexts. Following the same rationale,
we asked whether place codes are specific to manners of articulation by
training classifiers to discriminate labials versus alveolars versus velars on one
manner (e.g., only with obstruent sounds) and testing them within the same
(e.g., obstruents) and at the alternative manner condition (e.g., sonorants).

Moreover, we investigated the orthogonality of consonant and vowel
codes with two complementary procedures. First, we trained algorithms to dis-
tinguish each consonant based on single vocalic contexts (e.g., separation of /b/
versus /d/ versus /g/ versus /m/ versus /n/ versus /ɲ/ when they were coarticulated
with /i/) and tested them within the same and across the alternative coarticula-
tory context (e.g., classify consonant identity among “bo,” “do,” “go,” “mo,”
“no,” and “ɲo”; note that for this schema, as for place classification, we adopted
a “one-versus-rest” approach). Analogously, we trained vowel classifiers on each
consonantal option and assessed their performance within the trained conso-
nant and across the five alternative ones. In case consonant and vowel were
encoded separately, we expected to obtain comparable scores within and across
conditions; oppositely, a degradation in performance across conditions would be
indicative of interdependence between the two.

For cross-condition decoding, we modified the cross-validation scheme
described above so that models fitted on each training set were directly applied
at all trials belonging to the untrained condition (i.e., the test set “across”). In
this way, we capitalized on the independence of train and test sets. Concerning
the splitting of single-condition datasets (i.e., the dataset “within”), the number

of test trials was calibrated to guarantee a minimum of two micro-averaged
trials/class at test and at the same time maximize the number of trials avail-
able for training. Note also that in order to ensure an adequate number of
training/test samples, the micro-averaging for the last two cross-decoding sche-
mas was reduced to groups of eight epochs. Apart from these modifications, the
decoding procedures resembled those described above.

Neural Syllable Confusion and Multiple Regression Analysis. For this section, we
first built a 12-class decoding problem by pulling together the female andmale
conditions and then training algorithms to separate each syllable from all the
others (i.e., “bi” versus “bo” versus “di” versus “do” versus “gi,” etc.). We
adopted a “one-versus-rest” approach and used the same preprocessing steps
described for the main analyses. Within each cross-validation loop, we stored
the error matrices displayed by these classifiers at test. After averaging across
runs, we obtained a series of matrices in which the entry at row i and column j
corresponds to the percentage of samples belonging to class j and labeled as i
by the classifier (Fig. 4 C, Left, and SI Appendix, Fig. S6 A, Bottom). The di-
agonal of these confusion matrices depicts class-wise accuracy, with theoretical
chance being at 8.3% (SI Appendix, Fig. S6 A, Top). Given that there is a variety
of stimuli characteristics other than syllable identity which could lead to above-
chance scores (up to 50%), diagonal entries alone are hardly interpretable. On
the other hand, misclassification patterns (i.e., off-diagonal entries in the
matrices) have the potential to reveal which dimensions of the stimuli the
neural code honors or disregards. To uncover the neural representational
geometry (81) captured by our algorithms and its evolution over time, we
employed multiple linear regression. Specifically, we modeled each confusion
matrix as a linear combination of five classification performances: those of the
ideal manner, place, consonant, vowel, and whole-syllable decoders (Fig. 4 C,
Middle, and SI Appendix, Fig. S6 B, Top). Concerning the matrix modeling
manner discrimination, for example, the predicted entries for those pairs of
syllables sharing the same manner correspond to 16.6%, whereas the pre-
dicted value for pairs of syllables not sharing the same manner is 0%. The five
predictors were used to explain the (neural) syllable confusion observed at
each time point, generating a vector of beta weights for each of the five re-
gressors. All matrices were z-transformed before estimating the coefficients.
Significantly above-zero beta weights assigned to a particular regressor indi-
cate that, at a given time point, the classifier relies on the dimension reflected
by that model over and beyond the remaining four variables.

Statistical Analysis. To calculate statistics, we performed second-level tests
across subjects employing the MNE dedicated functions. Following the example
in ref. 82, we tested whether a) time-resolved classification scores were higher
than chance, b) time-resolved classification scores within the trained context
were superior to those across context, and c) whether multiple regression beta
weights were higher than zero using one-sample cluster-based permutation
t tests (83), which intrinsically account for multiple comparisons. The analyses
considered one-dimensional clusters in all cases apart from the generalization
across time matrices (with shape training times x testing times) for which clusters
were bidimensional. Univariate t-values were calculated for every score/beta
weight with the exclusion of those corresponding to the baseline period. All
samples exceeding the 95th quantile were then grouped into clusters based on
cardinal or diagonal adjacency. Cluster-level test statistics corresponded to the
sum of t-values within each cluster. Their significance was computed by means of
the Monte Carlo method: they were compared to a null distribution of test
statistics created by drawing 10,000 random sign flips of the observed outcomes.
A cluster was considered as significant when its P value was below 0.05.

Data Availability. Anonymized EEG infant data and supporting material are
available in Zenodo: https://doi.org/10.5281/zenodo.4579401.
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