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Human language is generally combinatorial: Words are combined into sentences to flexibly convey meaning. 

How the brain represents sentences, however, remains debated. Recently, it has been shown that delta-band cor- 

tical activity correlates with the sentential structure of speech. It remains debated, however, whether delta-band 

cortical tracking of sentences truly reflects mental representations of sentences or is caused by neural encoding 

of semantic properties of individual words. The current study investigates whether delta-band neural tracking 

of speech can be explained by semantic properties of individual words. Cortical activity is recorded using elec- 

troencephalography (EEG) when participants listen to sentences repeating at 1 Hz and word lists. The semantic 

properties of individual words, simulated using a word2vec model, predict a stronger 1 Hz response to word lists 

than to sentences. When listeners perform a word-monitoring task that does not require sentential processing, 

the 1 Hz response to word lists, however, is much weaker than the 1 Hz response to sentences, contradicting the 

prediction of the lexical semantics model. When listeners are explicitly asked to parse word lists into multi-word 

chunks, however, cortical activity can reliably track the multi-word chunks. Taken together, these results suggest 

that delta-band neural responses to speech cannot be fully explained by the semantic properties of single words 

and are potentially related to the neural representation of multi-word chunks. 
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. Introduction 

It remains debated whether the brain can group individual items in
 sequence into chunks and builds a unified neural representation for
ach chunk in processing sequences. In the domain of speech process-
ng, it is elusive how the brain integrates information across words to
nderstand sentences and passages ( Goucha et al., 2017 ; Hagoort and In-
efrey, 2014 ; Pylkkänen, 2019 ). At one end of the spectrum, it has been
ypothesized that the brain applies a set of syntactic rules to recursively
ombine words into larger chunks, forming a hierarchically organized
yntactic structure, and then derives meaning of the sentence based
n its syntactic structure ( Chomsky, 1957 ; Frazier and Fodor, 1978 ;
riederici, 2002 ). At the other end of the spectrum, it has been hypoth-
sized that the brain does not construct multi-word chunks at all, but
irectly integrates information across words by statistical and semantic
nalysis instead ( Elman, 1990 ; Frank et al., 2012 ). 

Neuroscientific studies have also been used to test whether the
rain groups words into chunks, i.e., phrases, during on-line speech
omprehension, and the results are mixed. Some studies are in fa-
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or of the chunking hypothesis. For example, an EEG closure posi-
ive shift (CPS) response is observed at phrasal boundaries ( Li and
ang, 2009 ; Steinhauer et al., 1999 ), suggesting that the brain is sen-
itive to phrasal boundaries. More recent studies have demonstrated
ow-frequency EEG and magnetoencephalography (MEG) activity can
rack the time course of phrases and sentences ( Ding et al., 2016 , 2018 ;
eitel et al., 2018 ; Kulasingham et al., 2021 ), which has been viewed
s evidence that the brain applies syntactic rules to group events into
uperordinate chunks ( Ding et al., 2017a ; Martin and Doumas, 2017 ;
eyer and Gumbert, 2018 ). Furthermore, computational models that

ncorporate phrasal structures can predict the neural responses to lan-
uage ( Artoni et al., 2020 ; Brennan and Hale, 2019 ; Fedorenko et al.,
016 ; Hale et al., 2018 ; Nelson et al., 2017 ). Another line of research,
owever, argues that models that lack phrasal structure can better
redict the EEG response to language ( Frank et al., 2015 ) and it has
een proposed that neural tracking of phrases and sentences may po-
entially be explained by the semantic properties of individual words
lone ( Frank and Yang, 2018 ). For example, since the sentences used
n Ding et al. (2016) have a regular syntactic structure, i.e., adjec-
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a  
ive + noun + verb + noun, the presentation rate of adjectives and verbs
as identical to the presentation rate of sentences. Consequently, it is
ossible that the neural activity appearing to track sentences tracks lex-
cal semantical properties that differentiate adjectives and verbs as a
atter of fact. 

To tease apart the role of syntactic structure and lexical semanti-
al properties, a recent study presents sequences of words that do not
onstruct sentences and explicitly asks participants to apply an artificial
ule to chunk the sequences ( Jin et al., 2020 ). It is found that corti-
al activity tracks multi-word chunks defined by the explicit chunking
ule, instead of lexical semantical properties. The study demonstrates
hat neural activity can track multi-word chunks during an explicit
equence chunking task. It remains elusive, therefore, to what extent
he neural tracking of sentences can be explained by lexical semantical
roperties. It is also elusive whether neural activity will predominantly
rack lexical semantical properties when listeners attend to the seman-
ic information of words instead of performing a sequence chunking
ask. 

Here, we investigate how task and sentential structure separately in-
uence neural tracking of word sequences. We use a word-monitoring
ask to direct listeners’ attention to semantic properties of individual
ords. Under this task, to investigate the influence of sentential struc-

ures, we present to the listeners both sentence sequences and word
ists that are designed to frequency tag the neural responses track-
ng lexical semantical properties. We also predict the neural response
racking lexical semantical properties using the word2vec model, a con-
ectionism model that describes semantic relationship between words
 Bengio et al., 2000 ; Mikolov et al., 2013 ), and test whether the mea-
ured neural responses are consistent with the prediction of the model.
urthermore, to analyze to what extent the neural response is modu-
ated by the task, we also compare the neural responses recorded in the
ord-monitoring task with the responses in an explicit sequence chunk-

ng task in which listeners employ a sequence chunking rule to parse
ord lists into multi-word chunks ( Jin et al., 2020 ). 

. Materials and methods 

.1. Participants 

Thirty-two native listeners of Mandarin Chinese (20–30 years old,
ean 23 years old, 17 males) participated in the study. All participants
ere right-handed, with no self-reported hearing loss or neurological
isorders. The experimental procedure was approved by the Research
thics Committee of the College of Medicine, Zhejiang University (2019-
47) and was in accordance with the declaration of Helsinki. All par-
icipants provided written informed consent before participating in the
xperiment and received financial compensation in cash after the exper-
ment. The payment was calculated as the sum of base pay (¥60) plus
onus (¥30 × task accuracy). 

.2. Stimuli 

The study presented two kinds of word sequences, i.e., word list and
entence sequence ( Fig. 1 A). Each sequence consisted of 24 disyllabic
ords in Mandarin Chinese. All disyllabic words were synthesized in-
ependently using the iFLYTEK synthesizer ( http://peiyin.xunfei.cn/ ;
andarin Chinese; female voice, Xiaoying). The intensity of each word
as adjusted to be the same and the duration was adjusted to 500 ms,

ollowing the procedure in Ding et al. (2016) . Within a word, however,
o additional control was applied to adjust the intensity and duration
f individual syllables, so that coarticulation may exist between sylla-
les (c.f., Levelt, 1993 ), i.e., the syllables within a word are not acousti-
ally independent. The disyllabic words synthesized as a whole sounded
ore natural, compared with speech materials in which each syllable
as independently synthesized. The synthesized disyllabic words were
irectly concatenated to construct sequences, and no acoustic gaps were
2 
nserted between words. Therefore, each disyllabic word was an acous-
ically independent unit and was isochronously presented at 2 Hz. The
pectrum of stimuli intensity only showed that acoustic fluctuations at
 Hz ( P = 0.0002 for both word lists and sentence sequences; paired
wo-sided bootstrap, FDR corrected; Fig. A.1A). 

In the sentence sequence condition, 80 4-syllabe sentences were con-
tructed, in which the first two syllables formed a noun (or a common
oun phrase) and the last two syllables formed a verb (or a common verb
hrase) ( Fig. 1 A). The sentences were all common sentences in Chinese
Table A.1) and on average each sentence appeared 5.7 times in the ex-
eriment. Unlike sentence sequences, word lists presented no syntactic
tructure but were constructed with disyllabic nouns ( N = 240), either
iving ( l ) or nonliving ( n ) nouns. Living nouns included two subcate-
ories, i.e., animals ( N = 60; e.g., monkey, panda) and plants ( N = 60;
.g., tulip, strawberry). In each word list, each living noun was randomly
elected from one subcategory. Likewise, nonliving nouns included two
ubcategories, i.e., small manipulatable objects ( N = 60; e.g., teacup,
oothbrush) and large non-manipulatable objects ( N = 60; e.g., play-
round, hotel). Each nonliving noun in a word list was randomly se-
ected from one subcategory. In a word list, the semantic categories of
ords changed cyclically with a period of two words ( Fig. 1 A), and each
ord was selected independent of its neighboring words. 

Since living and nonliving nouns formed two distinct categories, the
exical semantical properties alternate periodically with periods of two
ords. Accordingly, neural activity tracking the lexical semantical prop-
rties of words was expected to show periodicity at 1 Hz, which was
urther illustrated using word2vec-based model simulation (see Results ).
dditionally, to build outlier trials, a pool of 42 disyllabic abstract nouns

e.g., honor, spirit) was used and each abstract noun only appeared once
n the experiment. 

.3. Procedures and tasks 

At the beginning of the experiment, participants were required to
amiliarize themselves with the synthesized words. In this session, all
ords used in this study were presented to participants in a random
rder. When participants heard a word, they pressed a key to see the
ord on computer screen. Then, they could choose to listen to the word
gain or proceed to the next word by pressing different keys. 

In the experiment, neural responses were recorded using EEG. The
xperiment consisted of three conditions that were presented in sepa-
ate blocks. Two conditions presented word lists and sentence sequences
hile the participants performed a word-monitoring task, and another

ondition presented word lists while the participants performed a se-
uence chunking task. Behavioral performance was reported in Table
.2. In each block, 30 normal sequences and 7 outlier sequences were
ixed and presented in a random order. Participants had a rest between

locks. 
The first and the second conditions presented word lists and sen-

ence sequences, respectively, and participants were asked to perform
he word-monitoring task. In this task, participants were instructed to
etect occasionally presented abstract nouns ( Fig. 1 B). An outlier trial
ad the same design as a normal trial did, except that two words in
on-adjacent sites were replaced with two abstract nouns in sequences.

Note that before tasks of the first two conditions began, participants
ere told that normal word lists and sentence sequences only contained

oncrete words, but were not informed of the variations in sequence
tructure, that is, the cyclic alternation of nouns of different semantic
ategories in word lists and “noun + verb ” combination in sentence se-
uences. Moreover, the first condition was further separated into two
locks: one block consisting of sequences starting with a living noun,
nd the other starting with a nonliving noun. In data analysis, the two
locks were separately analyzed, and the power spectra were averaged
cross the two blocks. 

The third condition presented word lists, and participants performed
 sequence chunking task with rules explicitly explained to them. Par-

http://peiyin.xunfei.cn/
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Fig. 1. Stimuli and tasks. A , A word list consists of isochronously-presented disyllabic nouns from two semantic categories, i.e., living ( l ) and nonliving ( n ) nouns. In 

the word list, the semantic categories of words form cyclic patterns repeating every 2 words. In a sentence sequence, each sentence is constructed with a disyllabic 

noun (N) followed by a disyllabic verb (V). B , During the word-monitoring task, outlier trials are constructed by replacing two words in non-adjacent sites with two 

abstract nouns (A), and participants are instructed to detect these abstract nouns while listening to word lists and sentence sequences. During the sequence chunking 

task, outlier trials are constructed by switching the position of a living noun with its neighboring nonliving noun in word lists, thus two words in a chunk fall into 

the same semantic category forming an invalid chunk. Participants are instructed to detect invalid chunks while listening to word lists. 
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icipants were told that two neighboring words in the word lists could
onstruct a chunk on the condition and the two words fell into differ-
nt semantic categories, i.e., living nouns and nonliving nouns. During
he task, they had to detect invalid chunks that contained words of the
ame category ( Fig. 1 B). To build such invalid chunks in an outlier trial,
 living noun was switched with its neighboring nonliving noun, and
herefore two nouns in a chunk fell into the same semantic category,
iolating the chunk construction rule. The sequences in this condition
tarted with either a living noun or a nonliving noun, with equal prob-
bility. 

In the experiment, participants were not explicitly informed of the
equence structure in the first and second condition. The order of the
rst and the second conditions were counterbalanced, while the third
ondition was always administered at the end. After listening to a se-
uence in a trial, participants pressed different keys to indicate whether
t was a normal or an outlier sequence. Then the next sequence was pre-
ented after a silent interval randomized between 1 and 2 s (uniform
istribution). Only trials with normal sequences were used in EEG anal-
sis. 

Before EEG recording, participants were familiarized with the word-
onitoring task by listening to sample word lists and sentence se-

uences. Before the sequence chunking task, the EEG session was given
 pause when participants were instructed about the sequence structure
f word lists. After receiving the instruction, the participants were given
wo normal sequences and two outlier sequences for familiarization.

hen listening to the outlier sequences, they were asked to verbally re-
ort the invalid chunks as soon as they heard them. The sequences could
e replayed upon request. The participants then went through a practice
ession; it ended after the participants made 8 correct responses in 10
onsecutive sequences. The EEG experiment resumed after the practice
ession. 

.4. Data acquisition 

In the experiment, EEG responses were recorded from 5 channels,
.e., Cz, Fz, FCz, FC3, and FC4, using a 64-channel Biosemi ActiveTwo
ystem at the Zhejiang University. The 5 channels were chosen since
revious studies showed that they were sensitive to neural tracking of
poken sentences ( Ding et al., 2018 ; Jin et al., 2018 ). Additionally, four
lectrodes were used to record horizontal and vertical EOGs. Two ref-
3 
rence electrodes were placed at the left and right mastoids and their
verage was the reference for EEG. 

.5. Data processing 

Only the neural responses to normal sequences were analyzed. To
emove ocular artifacts in EEG, the horizontal and vertical EOG were re-
ressed out using the least-squares method ( Ding et al., 2017b ). To show
roadband responses between 0 and 45 Hz (Fig. A.1B), the EEG signals
ere first down-sampled at 512 Hz. Since the study focused on responses
t 1 and 2 Hz, the EEG signals were further bandpass filtered between
.3 and 2.7 Hz using a linear-phase finite impulse response (FIR) filter
-6 dB attenuation at the cut-off frequencies, 10-s Hamming window),
nd down-sampled at 20 Hz. The narrowband response to each sequence
as extracted and was referred to as a trial. 

.6. Frequency-domain analysis 

In frequency-domain analysis, to avoid the influence of onset re-
ponse, the response during the first two seconds of each trial were
emoved. Consequently, the neural response was 10 s in duration for
ach trial. The average of all trials was transformed into the frequency
omain using the Discrete Fourier Transform (DFT) without any addi-
ional smoothing window. The frequency resolution of the DFT analysis
as 1/10 Hz. If the complex-valued DFT coefficient at frequency f was
enoted as X ( f ), the response power was | X ( f )| 2 , The DFT was separately
pplied to each EEG channel. In EEG power analyses, neural response
ower was averaged across channels. 

.7. Model simulations 

.7.1. Single-Word semantic model 

The study was designed to investigate whether the lexical semantics
odel proposed by Frank and Yang (2018) can fully explain the low-

requency neural response to sentences. The model by Frank and Yang
ssumes that neural activity only encodes the distributive semantic fea-
ures of individual words, and it is implemented using the following
rocedure. 

Pulse Sequence: We constructed the lexical semantics model to sim-
late how the semantical properties of individual words contributed to
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he neural response to word lists and sentences. In the model, the small-
st unit being considered was word. The semantical properties of in-
ividual words were first simulated using a pulse sequence, in which
 pulse was placed at the onset of each word. The pulse amplitude of
ords was determined by the word2vec representation ( Bengio et al.,
000 ; Li et al., 2018 ). Each word was represented by 300 feature dimen-
ions, which were learned based on a large corpora (the ‘combination’
orpora in Li et al., 2018 ). Each of the 300-feature dimension was coded
y a real number and modulated the amplitude of the pulse. The neural
esponse to each word was simulated by 300 pulse sequences. 

Neural Response Waveform Simulation: Neural response waveforms
ere further simulated by convolving the pulse sequences with a 500-ms
uration Gaussian window. For the lexical semantics model, the neural
esponse to each one of the 300 features was independently simulated
nd transformed into frequency domain. In fact, the experiment only
ecorded from 5 electrodes and therefore at most could resolve 5 feature
imensions. However, to assume the highest power of the lexical seman-
ics model, we used all the 300 feature dimensions in the simulation.
he power spectrum was averaged over feature dimensions ( Frank and
ang, 2018 ). 

.7.2. Other models 

Although the purpose of the study was to test the Frank and Yang
odel, we also simulated the properties of neural responses tracking

ther features of speech (Fig. A.2). The first model considering semantic
orrelation between consecutive words in a word sequence, i.e., seman-
ic relatedness model. Different from the lexical semantics hypothesis, it
as certainly possible that the neural encoding of semantic relatedness

i.e., correlation) between individual words in a sentence could explain
he mental representation of the sentence without inferring sentential
rocessing. The semantic relatedness model was built on the lexical se-
antics model ( Broderick et al., 2018 ) and was characterized by the

orrelation coefficient between the current word and the adjacent pre-
ious word. The correlation coefficient was always a scalar. Since the
eural response to a stimulus was usually weaker instead of stronger if
he stimulus was preceded by a similar stimulus, we used 1 minus the
orrelation coefficient to modulate the amplitude of each pulse. 

The second and the third model separately considered the occur-
ence frequency of individual words and the bigram probability. We
etrieved the occurrence frequency of each word and each word pair
ased on a large Chinese corpus ( Zhan et al., 2019 ). For occurrence fre-
uency model and bigram probability model, the amplitude of the pulse
o each word was set to its value of occurrence frequency and bigram
robability, respectively. 

.8. Statistical tests 

All tests were carried out using bias-corrected and accelerated boot-
trap ( Efron and Tibshirani, 1994 ). In the bootstrap procedure, data
f all participants was resampled 10,000 times with replacement. All
omparisons in this study were paired comparisons. For one-sided com-
arison, if the data in one condition was greater than that in the
ther condition in A% of the resampled data, the significance level was
100A + 1)/10,001. For two-sided comparisons, if the data was greater
n one condition for A% of the resampled data, the significance level was
200A + 1)/10,001. A false discovery rate (FDR) correction was applied
o adjust the P -value during multiple comparisons. 

.8.1. Spectral peak 

The statistical significance of a spectral peak at frequency f was
ested by comparing the response power at f with the response power
n the frequency bin just below f ( Jin et al., 2018 ). The comparison was
ne-sided. The comparison only considered the frequency bin below f

ince spontaneous neural activity had a 1/f spectrum and the response
ower in the frequency bin above f tended to be weaker than the power
4 
t f even without stimulus-evoked activity. This significance test was
nly applied to the response power at 1 and 2 Hz. 

.8.2. Response power 

The comparisons in normalized power between conditions were two-
ided. The normalized response power was defined as the difference
etween the power at f and the power in the frequency bin just below f .
his significance test was only applied to the response power at 1 and
 Hz. 

.8.3. Post-hoc effect size calculation 

To validate the sample size in the study was appropriate, we calcu-
ated effect size and power to the 1 Hz spectral peak using G 

∗ Power
ersion 3.1 ( Faul et al., 2007 ). We applied a paired t -test to compare

he power at 1 Hz and its neighboring frequency bin just below 1 Hz.
e calculated effect size d and power based on their comparison. For

he effect size observed in the data set, the study was powerful with the
escribed sample population and the 𝛼 level of 0.05 (Table A.3). 

. Results 

.1. Model predictions 

We simulated the neural responses to word lists and sentence se-
uences based on the word2vec-based lexical semantics model. The lex-
cal semantics model assumed that some components of the EEG re-
ponses were tuned to semantic features which were captured using
he word2vec model. Through statistical analysis of large corpus, the
ord2vec algorithm constructed a 300-dimensional vectorial represen-

ation for each word that could characterize its lexical semantic prop-
rties. In general, words with similar meanings had similar word2vec
epresentations. For the words used in the current study, the correlation
etween word2vec representations was higher for words from the same
ubcategory, e.g., animals and plants ( Fig. 2 A). In each word list, living
ouns were selected from a fixed subcategory; nonliving nouns were se-
ected from a fixed subcategory. A distinct semantic contrast between
iving and nonliving nouns was formed, and therefore the word2vec rep-
esentation could capture such a contrast between the nouns in a word
ist. In addition, in each sentence sequence, a noun and its following
erb established a predication structure indicating obvious syntactic re-
ations between the two words; it could be predicted that the word2vec
epresentation could also capture semantic coherence of words in a sen-
ence sequence. We quantified the semantic correlation between words
n both word lists and sentence sequences, and found that the corre-
ation between nouns and verbs in sentence sequences was stronger
han that between living and nonliving nouns in word lists (Fig. A.2A;
 = 1 × 10 − 4 ; paired two-sided bootstrap, FDR corrected). 

The lexical semantics model predicted significant 1- and 2 Hz re-
ponses to both word lists and the sentence sequences ( Fig. 2 B; P = 10 − 4 

or both responses and frequencies; paired one-sided bootstrap, FDR cor-
ected). Importantly, the lexical semantics model predicted that the 1-
nd 2 Hz responses to word lists were stronger than those to sentence
equences ( Fig. 2 C; P = 0.0003 for both frequencies; paired two-sided
ootstrap, FDR corrected). 

Although the purpose of the study was to test the lexical semantics
odel, to fully characterize the properties of the stimulus sequences,
e also analyzed how the occurrence frequency of individual words, bi-
ram probability, and semantic relatedness between consecutive words
ight differ between the word lists and sentences. The occurrence fre-

uency of words predicted a 1 Hz response to both word lists and sen-
ences (Fig. A.2B; P = 1 × 10 − 5 for both sequences; paired two-sided
ootstrap, FDR corrected), but the power of the 1 Hz response was not
ignificantly different between conditions ( P = 0.274; paired two-sided
ootstrap, FDR corrected). The bigram probability model and seman-
ic relatedness model predicted a significant 1 Hz response to sentences
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Fig. 2. Model simulations. A , Semantic correlation between the word2vec rep- 

resentations of words. The plot above the diagonal shows the actual correlation 

and the plot below the diagonal illustrates regions expected to show higher cor- 

relation by different word relations. Words in each subcategory, e.g., animals 

and plants, are correlated, and words in the same sentence also showed corre- 

lation. B , Simulated response spectrum. The lexical semantics model predicts 1- 

and 2 Hz responses to word lists and sentence sequences. C , Simulated response 

power. The lexical semantics model predicts stronger 1- and 2 Hz responses to 

word lists than to sentence sequences. ∗ ∗ P < 0.005. 
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nly ( P = 1 × 10 − 5 and 1 × 10 − 4 , respectively; paired two-sided boot-
trap, FDR corrected; Fig. A.2C and A.2D), but not to word lists. 

Next, we tested whether the actual neural responses were consistent
ith the predictions of the lexical semantics model using an EEG ex-
eriment. The experiment tested whether the actual neural response to
ord lists had a significant 1 Hz component, which was predicted by
oth the lexical semantics model and the word occurrence frequency
odel, and whether the 1 Hz response to word lists was stronger than

hat to sentences, which was predicted by the lexical semantics model
lone. 

.2. EEG responses 

The experiment presented word lists and sentence sequences to par-
icipants, and recorded their neural responses using EEG. Participants
ere asked to perform a word-monitoring task to detect occasionally-
resented abstract words in a sequence. During this task, the sequence
tructure of word lists and sentence sequences were not disclosed to
he participants. In the EEG response, statistically significant 1 Hz re-
5 
ponses to word lists and to sentence sequences were observed during
he word-monitoring task ( Fig. 3 A; P = 0.002 and P = 1 × 10 − 4 , respec-
ively; paired one-sided bootstrap, FDR corrected), consistent with the
rediction of the lexical semantics model and the word occurrence fre-
uency model. Importantly, we found that the 1 Hz response to sentence
equences was significantly stronger than that to word lists ( Fig. 3 B;
 = 0.001; paired two-sided bootstrap, FDR corrected), suggesting that
he 1 Hz response to sentence sequences cannot be sufficiently explained
y the lexical semantics model, which predicted a stronger 1 Hz response
o the word lists than to sentence sequences. 

We further tested whether the 1 Hz response to word lists could be
nhanced by the sequence chunking task in which participants received
xplicit explanation of the sequence structure of word lists and were re-
uired to detect invalid chunks in a sequence. During this task, the 1 Hz
esponse to word lists was significant ( Fig. 3 A; P = 10 − 4 ; paired one-
ided bootstrap, FDR corrected), and was stronger than that during the
ord-monitoring task ( Fig. 3 B; P = 0.0006; paired two-sided bootstrap,
DR corrected). This result suggested that implicit syntactic process-
ng and explicit sequence chunking can both drive cortical responses
ore effectively than lexical semantical properties of single words. Ad-
itionally, to evaluate whether the neural response significantly var-
ed over the course of experiment, we separately showed the EEG spec-
rum for three 10-trials blocks in each condition (Fig. A.3A). The results
howed that only the 1 Hz response to sentences decreased over tri-
ls: The response in the last 10 trials was significantly weaker than the
rst 10 trials ( P = 0.015; paired two-sided bootstrap, FDR corrected;
ig. A.3B). 

Significant 2 Hz responses in all conditions were observed ( Fig. 3 A;
 = 0.0003 and P = 10 − 4 for word lists and sentence sequences, respec-
ively, during the word-monitoring task, and P = 10 − 4 for word lists
uring the sequence chunking task; paired one-sided bootstrap, FDR
orrected). The 2 Hz response to sentence sequences was weaker than
hat to word lists during both the word-monitoring task and sequence
hunking task ( Fig. 3 B; P = 0.011 for both comparisons; paired two-
ided bootstrap, FDR corrected). 

. Discussion 

It has been debated for a long-time whether the brain constructs
hrasal and sentential representations during speech comprehension.
ecently, it has been argued that cortical activity tracks sentential
nd phrasal structures in speech, demonstrating sentential and phrasal
epresentations in the brain ( Ding et al., 2016 ). Nevertheless, it has
een argued that apparent sentential/phrasal tracking is caused by neu-
al encoding of the lexical properties of individual words ( Frank and
ang, 2018 ). The current study shows that during a word-monitoring
ask, the EEG response to word lists shows a 1 Hz response ( Fig. 3 A),
hich is predicted by both a lexical semantics model and a word oc-

urrence frequency model ( Figs. 2 B and A.2B). The lexical semantics
odel further predicts a stronger 1 Hz response to word lists than sen-

ences ( Fig. 2 C), but the 1 Hz neural response to word lists detected in
eality is significantly weaker than that to sentences ( Fig. 3 B). This sug-
ests that the semantic properties of individual words alone cannot fully
xplain neural tracking of sentences. The cortical activity, however, can
trongly track multi-word chunks defined by an artificial chunking rule
uring an explicit sequence chunking task, and the magnitude of the re-
ponse to the multi-word chunks is similar to that to sentence sequences
n the word-monitoring task. 

.1. Neural encoding of lexical semantic properties 

The lexical semantics model is constructed on the basis of the find-
ngs that words from different grammatical categories, e.g., verbs and
ouns, are separately represented in the brain ( Vigliocco et al., 2011 ;
ang et al., 2017 ) and can be selectively impaired ( Caramazza and
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Fig. 3. EEG responses to word lists and sentence sequences. A , The EEG response spectrum averaged over participants and channels show 1 Hz and 2 Hz response 

peaks. The shaded area covers 1 SEM over participants on each side. B , Response power at 1 and 2 Hz. For word lists, the 1 Hz response is stronger during the 

explicit chunking task than that during the word-monitoring task. During the same word-monitoring task, the 1 Hz response to sentence sequences is stronger than 

that to word lists. The 2 Hz response to sentences was weaker than that to word lists in both the word-monitoring task and the sequence chunking task. ∗ P < 0.05, 
∗ ∗ P < 0.005. 
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illis, 1991 ; Daniele et al., 1994 ). Similarly, words from distinct cate-
ories, e.g., living and nonliving nouns, are separately represented in the
rain and can be selectively impaired ( Bi et al., 2016 ; Warrington and
hallice, 1984 ). A number of studies have suggested that the seman-
ic categories of individual words can be detected with the spatial res-
lution of MEG recoding. For example, using a multivariate analysis
f multi-channel MEG decoding, it has been shown that the neural re-
ponses to living and nonliving nouns can be distinguished ( Chan et al.,
011 ). Using similar decoding approaches, the semantic categories of
isually presented objects can be successfully decoded ( Carlson et al.,
011 ; Sudre et al., 2012 ). 

Although these previous studies have shown that the spatial pattern
f cortical activity carries semantic information using multivariate neu-
al decoding approaches, to our knowledge no study has shown that
nivariate MEG/EEG responses (e.g., single-channel responses or global
eld power) could clearly distinguish the semantic properties of individ-
al words. The delta-band neural response tracking sentences, however,
an be observed in single MEG/EEG sensors and in the global field power
 Ding et al., 2016 ; Jin et al., 2018 ), and the sentence-rate response is typ-
cally as strong as the word-rate response. More importantly, the lexical
emantics model fails to predict a stronger 1 Hz response to sentence
equences than to word lists. 

Although the word semantics model predicts equal 1 Hz responses to
entences and word lists, only sentences contain a regular 1 Hz change in
art-of-speech information, which can also potentially drive a 1 Hz neu-
al response. Two recent studies, however, provide negative evidence for
eural tracking of part-of-speech information ( Burroughs et al., 2021 ;
o, 2021 ). For example, a study by Lo (2021) reverses the order of
very pair of words, turning normal four-syllable sentences (e.g., cot-
on sheep eat grass) into word lists (e.g., sheep cotton grass eat). For
he word lists constructed this way, part-of-speech information keeps
arying periodically but no neural response is observed at the fre-
uency of the part-of-speech information alternation. The study by
urroughs et al. (2021) compares the responses to sequences of two-
ord adjective + noun phrases (e.g., cold food) and sequences of adjec-

ive + verb word pairs (e.g., rough give). The part-of-speech information
6 
lternates in both kinds of sequences but a neural response tracking the
i-word rhythm is only observed in the phrase condition, suggesting that
art-of-speech information alone cannot drive neural tracking of word
airs. 

.2. Neural encoding of context-dependent properties of words 

The neural response to a word, e.g., the N400 component, is sen-
itive to the context, such as the semantic relation to previous words
 Kutas and Federmeier, 2011 ; Kutas and Hillyard, 1980 , 1984 ). The
400 response reduces throughout the time course of a normal sentence
 Halgren et al., 2002 ; Kutas and Federmeier, 2011 ; Lau et al., 2008 ;
oehm et al., 2004 ), which can result in a sentence-tracking response. A

actor similar to semantic relatedness is lexical surprisal/predictability.
ecent studies show that neural activity can track the lexical surprisal
f words ( Gillis et al., 2021 ) independent of their semantic relatedness
 Frank et al., 2015 ; Willems et al., 2015 ). In the current study, the bi-
ram probability calculated from large corpora shows a stronger 1 Hz
hange for sentences than word lists. Furthermore, each sentence was
resented 5, 6 times during the experiment. In contrast, the living and
onliving words in word lists were randomly paired and word pairs
ere seldom repeated. Therefore, participants could also learn online

hat later words in a sentence are more predictable than the words in
ord lists. 

Therefore, semantic relatedness between words and word sur-
risal/predictability can both predict a stronger 1 Hz response to sen-
ences than to word lists. However, these measures fail to predict the
 Hz response to word lists, and cannot explain task modulation of
he 1 Hz response. The purpose of the current study is to investigate
hether the distributive semantic properties of individual words could

ully explain delta-band EEG responses, as is proposed by Frank and
ang (2018) . Therefore, the stimuli are not optimized to isolate the ef-

ects of, e.g., the semantic relatedness between words and lexical sur-
risal/predictability. Future studies are needed to analyze how these
actors contribute to neural tracking of speech. 
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.3. Neural encoding of multi-word chunks 

It has been proposed that the brain can group multiple words into a
hunk and builds a neural representation for the chunk as a whole. On
he one hand, during normal language processing, words may be implic-
tly integrated into chunks based on syntactic rules. On the other hand,
ere we employ a task to ask participants to group words into chunks
y applying an explicit sequence chunking rule. It should be noted that
he explicit chunking task employed here could in principle be com-
leted using the same strategy in the word monitoring task, i.e., moni-
oring the appearance of living or nonliving words. If participants used
he same strategy in two tasks, however, their neural responses would
ot have differed between the word-monitoring and sequence chunking
onditions. Furthermore, there is also evidence suggesting that chunking
an occur spontaneously ( Wymbs et al., 2012 ). Humans prefer to group
tems into two- to four-items chunks ( Lerdahl and Jackendoff, 1981 ;
iller, 1956 ). However, spontaneous grouping cannot easily explain
hy sentences and word lists elicit different responses. Last, it can be
rgued that even during the word monitoring task the participants im-
licitly learn the sequence structure. However, even if the participants
earn that the sequence alternates between two classes of words, it is
nclear whether they parse the sequence into units of nl, ln, nlnl, lnln ,
r other chunks. Furthermore, the 1 Hz response to word lists during
he word monitoring task does not increase over time (Fig. A.3B) and
herefore is not likely to be the consequence of learning. 

Chunking can be implemented through multiple mechanisms. For
xample, it has been proposed that chunking can be implemented us-
ng either automatic processes or more controlled processes, which en-
age different neural circuits ( Jeon and Friederici, 2015 ). However, it
s also possible that there is a common core cortical area for chunking
n general. For example, functional MRI studies show that ventrolateral
refrontal cortex, including the Broca’s area, not only is a core area for
anguage processing, but also can be activated by rule-based nonlinguis-
ic sequential processing tasks ( Koechlin and Jubault, 2006 ; Thompson-
chill et al., 2005 ). Furthermore, chunking can also be driven by dif-
erent cues and occur on multiple dimensions. For example, in natural
peech, prosody is a critical factor to drive parsing and an EEG CPS re-
ponse is observed at prosodic phrasal boundaries ( Li and Yang, 2009 ;
teinhauer et al., 1999 ). The current speech materials, however, are de-
rived of chunk-related prosodic cues. Furthermore, chunking during
anguage comprehension can also occur in semantic and syntactic di-
ensions ( Artoni et al., 2020 ; Brennan et al., 2012 ; Nelson et al., 2017 ;
hang and Pylkkanen, 2015 , 2018 ), and future studies are needed to
nvestigate which dimension is more strongly reflected in the speech-
racking neural responses. 

. Conclusions 

In sum, the current study and previous study ( Jin et al., 2020 )
emonstrate that the semantic properties of words are insufficient to
xplain delta-band cortical response to sentences. In contrast, implicit
yntactic processing and explicit sequence chunking can more effec-
ively drive delta-band cortical responses. These results suggest that
elta-band neural activity is better explained by a chunk-level neural
epresentation, instead of lexical-level neural representation. 
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