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Abstract
When we move our articulator organs to producetsmrech, the brain generates
a corollary discharge that acts to suppress theahand perceptual responses to
our speech sounds. Recent research suggestsribaspeech — the silent
production of words in one’s mind — is also accomed by a corollary discharge.
Here, we show that this corollary discharge comstamformation about the
temporal and physical properties of inner speathwb experiments, participants
produced an inner phoneme at a precisely-definedenoin time. An audible
phoneme was presented 300 ms before, concurreittlyav 300 ms after
participants produced the inner phoneme. We fobatgdroducing the inner
phoneme attenuated the N1 component of the eviatedepotential — an index of
auditory cortex processing — but only when the frarel audible phonemes
occurred concurrently and matched on content dfatindible phoneme was
presented before or after the production of theimihoneme, or if the inner
phoneme did not match the content of the audib&eime, there was no
attenuation of the N1. These results suggest him&trispeech is accompanied by a
temporally-precise and content-specific corollaigcarge. We conclude that
these results support the notion of a functionaivedence between the neural
processes that underlie the production of inneraalt speech, and provide
empirical support for the influential hypothesiattimner speech is a special form
of overt speech.

Keywords: Inner speech, internal forward model, dident-related potentials
(ERPs).
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Introduction

As you read this text, you can probably hear yooer voice narrating the
words. Inner speech — the silent production of wandone’s mind (Alderson-Day
& Fernyhough, 2015; Perrone-Bertolotti et al., 202®in, 1979) — is a core
aspect of our mental lives; it is linked to a wrdege of psychological functions,
including reading, writing, planning, memory, selibtivation, and problem-
solving (Alderson-Day et al., 2018; Morin et al014, 2018; Sokolov et al.,
1972). Despite its ubiquity, relatively little im&wn about the neural processes
that underlie the production of inner speech. Oifleeéntial hypothesis states that
inner speech is a special form of overt speecmfieeg, 1978; Frith, 1987; Jones
& Fernyhough, 2007). Evidence for this comes frown dbservation that the brain
regions involved in producing inner speech arelaimo those involved in
producing overt speech, including auditory, langyamd supplementary motor
areas (Aleman et al., 2005; McGuire et al., 19%8mier et al., 2001; Shergill et
al., 2001; Shuster & Lemieux, 2005; Zatorre etE96). According to the
internal forward model of overt speech (Miall & Vigert, 1996), when we move
our articulator organs to speak, efference copy is issued in parallel (Von Holst
& Mittelstaedt, 1950). This efference copy forme thasis of a neural prediction —
acorollary discharge (Sperry, 1950) — regarding the temporal and playsic
properties of our speech sounds, which is usedgprsss the neural and
perceptual responses to those sounds (Crapse & 8Qraa08; Straka et al.,
2018). If inner speech is, in fact, a special fahovert speech, then it should also
be accompanied by a temporally-precise and cosfegitific corollary discharge.
The present study investigated this issue.

There is a growing body of research suggestingitim&tr speech is
accompanied by a corollary discharge (Ford & MathaR004; Scott, 2013; Tian
& Poeppel, 2010, 2012, 2013, 2015; Tian et al. 52@018; Whitford et al., 2017,
Ylinen et al., 2015). Of particular relevance te firesent study is an experiment
conducted by Whitford et al. (2017), who introdu@egrocedure in which
participants viewed a ticker-tape-style cue whiobvgled them with precise
knowledge about when they would hear an audibleeim. In theisten
condition of their experiment, participants were instrudi@gassively listen to
the audible phoneme; in tivaner speech condition, participants were instructed to
produce an inner phoneme at the precise momentigeayl the audible phoneme.
On a random half of the trials in the inner spesmmdition, the inner and audible
phonemes matched on content — this was calledhdbah condition; on the other
half of the trials, the inner and audible phonerhidshot match on content — this
was called thenismatch condition. Whitford et al. (2017) found that producing
the inner phoneme attenuated the N1 componentadvbnt-related potential
(ERP) — an index of auditory cortex processing (&iéén & Picton, 1987;
Woods, 1995) — compared to passive listening, blytwhen the inner and
audible phonemes matched on content. If the inhengme did not match the
content of the audible phoneme, there was no atemuof the N1. These results
suggest that inner speech, similar to overt spé@ehroozmand et al., 2009;
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Behroozmand & Larson, 2011; Eliades & Wang, 2008nkKs-Maldonado et al.,
2005; Houde et al., 2002; Liu et al., 2011, Sitekle 2013), is accompanied by a
content-specific corollary discharge, in that ibtains information about the
physical properties of inner speech.

However, when we move our articulator organs takpthe accompanying
corollary discharge is not only content-specifiat Also temporally-precise, in
that it contains information about the temporalgamies of overt speech.
Evidence for this comes from studies showing thhialtenuation can be reduced
or abolished by imposing a temporal delay betwegoudator movement and
auditory feedback (Behroozmand et al., 2010, 2Ct&n et al., 2012; see also
Blakemore et al., 1999; Elijah et al., 2016; Oeskret al., 2016; Whitford et al.,
2011). In the present study, we investigated whatiner speech, like overt
speech, is accompanied by a temporally-precisecantent-specific corollary
discharge. To accomplish this, we used the sarkertiape-style cue introduced
by Whitford et al. (2017) to control the time atiathparticipants produced the
inner phoneme, and we presented the audible phoBéthms before,
concurrently with, or 300 ms after participantsguoed the inner phoneme — we
call these théefore, precise, andafter conditions, respectively. In Experiment 1,
we compared the N1 elicited by the audible phondurang passive listening and
the production of inner speech across the diffetierd delays; in Experiment 2,
we compared the N1 elicited by an audible phondrakdither matched or
mismatched the inner phoneme across the differaetdelays. Assuming that
inner speech is accompanied by a temporally-pregigecontent-specific
corollary discharge, we hypothesize larger N1-atéion effects when the timing
and content of the inner phoneme matches the augditineme compared to
when it does not.

Experiment 1
Method

Participants. Forty-two students from UNSW Sydney participatedur
study for course credit. All participants gave vent informed consent prior to the
experiment and reported having normal hearing th bars. Data from three
participants were excluded from the analyses d@xtessive artefacts in the
electroencephalogratEEG) recording (> 75% of epochs meeting the repecti
criteria; see ERP processing and ERP analysis)niga of the remaining
participants, 20 of whom were female and 38 of whwegne right-handed, was 20
(SD = 3) years. The experiment was approved by UNSWh&y's Human
Research Ethics Advisory Panel and was conductaddardance with the ethical
standards laid down in the Declaration of HelsiiWborld Medical Association,
2004).

Apparatus, stimuli, and procedure. Participants sat in a quiet, dimly-lit
room, approximately 60 cm in front of a computemibar (BenQ XL2420T) and
wore headphones (AKG K77). Stimulus presentatios @gatrolled by specially
written Matlab scripts using the Psychophysics Bogrl(Brainard, 1997; Kleiner
et al., 2007; Pelli, 1997). Participants watchecaimation, on every trial: it
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began with a green horizontal line in the centréhefscreen — the ticker-tape — a
red vertical line in the centre of the screen —fikation line — and a green vertical
line on the right-hand side of the screen — thgetialine (see Figure 1a).
Participants were instructed to look at the fixatime (which remained
stationary) for the duration of the trial. Afteda& delay, the target line began to
move leftwards across the screen at a speed 6f%.8uch that after 4 s the target
line overlapped the fixation line and subsequecatigtinued to move across the
ticker-tape for an additional 1 s (see Figure 1bAfler each trial, participants
rated their subjective performance on that tridhvai 5-point Likert scale, with
scores ranging from 1, meaning “not at all suced§4b 5, meaning “completely
successful”. We used these ratings to identify @dasdsify trials in which
participants successfully performed the task.

Fixation

Listen Condition Inner Speech Condition

O- > -

Audible Phoneme Inner Phoneme Audible Phoneme Inner Phoneme

Before Condition Precise Condition After Condition

Audible Audible Audible
‘D Phoneme ‘)) Phoneme ‘)) Phoneme

Figure 1.  Procedure for Experiment 1. (a—f) Participants were instructed to look at the
fixation line (which remained stationary) for the duration of the trial. After a
short delay, the target line began to move leftwards across the screen such
that after 4 s the target line overlapped the fixation line and subsequently
continued to move across the ticker-tape. In the listen condition, participants
were instructed to passively listen to a recording of the phoneme /ba/. (h) In
the inner speech condition, participants were instructed to silently produce
the phoneme /ba/ in their minds at the precise moment the fixation and
target lines overlapped (as shown in €). (i) On a random one-third of trials for
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both conditions, the audible phoneme was presented 300 ms before the
fixation and target lines overlapped — the before condition; (j) on a different
one-third of trials, the audible phoneme was presented at the precise
moment the fixation and target lines overlapped — the precise condition; (k)
on the remaining one-third of trials, the audible phoneme was presented 300
ms after the fixation and target lines overlapped — the after condition.

The experiment consisted of 20 blocks of trialghweiach block containing
18 trials. On half of the blocks, participants peniied thdisten condition: they
were instructed to passively listen to a recordifthe audible phoneme /ba/ (see
Figure 1g), which was produced by a male speakas,atout 200 ms long, and
was about 70 dB SPL. On the other half of the doplarticipants performed the
inner speech condition: they listened to a recording of the audible pmoadba/,
and they were instructed to silently produce thengme /ba/ in their minds at the
precise moment the fixation and target lines oygréal (see Figure 1h). The order
of blocks alternated between the listen and inpeesh conditions, and the
starting block was counterbalanced over particgpant

On a random one-third of the trials in each bldbk,audible phoneme was
presented 300 ms before the fixation and targesloverlapped — tHaefore
condition (see Figure 1i); on a different one-third of thals, the audible
phoneme was presented at the precise moment ttefixand target lines
overlapped — thprecise condition (see Figure 1j); on the remaining one-third of
the trials, the audible phoneme was presented 308ftar the fixation and target
lines overlapped — thafter condition (see Figure 1k). The order of the before,
precise, and after conditions was random and eifitefior each block, as well as
different for each participant.

EEG acquisition. We recorded the EEG with a BioSemi ActiveTwo syste
using 64 Ag/AgCl active electrodes placed accordiintpe extended 10-20
system (FP1, FPz, FP2, AF7, AF3, AFz, AF4, AF8,i,F3, F1, Fz, F2, F4,
F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6,AT8C5, C3, C1, Cz, C2,
C4, Ce6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, TP®, P9, P7, P5, P3, P1,
Pz, P2, P4, P6, P8, P10, PO7, PO3, POz, PO4, PD&LH 02, I1z). We also
recorded the vertical electrooculogram (EOG) byipig an electrode above (we
used FP1) and below the left eye, and the horiz&®& by placing an electrode
on the outer canthus of each eye. We also placetkatrode on the tip of the
nose. The sampling rate of the EEG was 2,048 Hz.

ERP processing and ERP analysis. We re-referenced the data to the
electrode on the tip of the nose, and we filteheddata using a half-amplitude 0.5
to 30 Hz phase-shift free Butterworth filter (48/@Bt slope), as well as a 50 Hz
Notch filter. We extracted the epochs from -10@®@0 ms relative to audible
phoneme onset, we corrected the epochs for eyk-&id movement artefacts
using the technique described in Gratton et aB31@and Miller et al. (1988), and
we excluded all epochs with signals exceeding pgegleak amplitudes of 200
pnV at any EEG channel. We also excluded any epiochkich participants
subsequently rated their performance on the tsid¢ss than or equal to 3 out of
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199 5. We baseline-corrected all epochs to their medtage from —100 to 0 ms, and
200 we computed an ERP for each condition. On aveiaB®s were computed from
201 43 (D = 16)listen-before, 52 @D = 10)listen-precise, 37 @D = 12)listen-after,
202 34 (& = 18)inner speech-before, 48 @D = 15)inner speech-precise, and 33 §D
203 = 14)inner speech-after epochs. We analysed the mean amplitude of the N1
204 averaged over Fz, FCz, and Cz electrodes in thewmdow of 80 to 120 ms

205  with repeated-measure ANOVA using the factask (listen, inner speech) and
206 time (before, precise, after). We chose these eledrtilbe consistent with

207  Whitford et al. (2017) and the literature on Nleatiation to overt speech

208 (Behroozmand et al., 2009, 2010, 2016; Behroozn8abdrson, 2011; Chen et
209 al.,, 2012; Eliades & Wang, 2008; Heinks-Maldonatlale 2005; Houde et al.,
210 2002; Liu et al., 2011; Sitek et al., 2013), andsekected this time-window using
211  the collapsed localiser technique (Luck & Gaspe&lil 7).

212 Results

213 Behavioural results. Participants rated their subjective performanteraf
214  each trial with a 5-point Likert scale, with scoraaging from 1, meaning “not at
215  all successful”, to 5, meaning “completely succai§sParticipants’ mean ratings
216  were 4.12 8D = 0.69) in the listen-before condition, 4.&D(= 0.46) in the

217  listen-precise condition, 4.3@) = 0.56) in the listen-after condition, 3.53(=
218 0.86) in the inner speech-before condition, 487 € 0.74) in the inner speech-
219  precise condition, and 4.18% = 0.80) in the inner speech-after condition. These
220 results show that participants performed the taskstructed.

221 ERP results. Figure 2a shows the ERPs, Figure 2b shows the mean

222 amplitudes for the N1 time-window, and Figure 2o0wh the voltage maps for the
223 N1 time-window. Repeated-measures ANOVA found aifigant interaction

224  between task and timE(2, 76) = 3.84p = .026,1],[,2 =.09. There was also a

225 significant main effect of time;(2, 76) = 3.94p = .024,11|02 =.09; however, the
226  main effect of task was not significaR{(1, 38) = 0.21p = .649,11|02 <.01. Post-
227  hoct-tests found that N1-amplitude was significantlyadier for the inner speech-
228  precise condition than for the listen-precise cbodjt(38) = 2.64p =.012,d =

229 0.42. However, the difference between the inneespdefore and listen-before
230 conditions was not significart{38) = 0.88p = .383,d = 0.14, nor was the

231 difference between the inner speech-after anchliafeer conditionst(38) = 0.69,
232 p=.496,d=0.11. Moreover, N1-amplitude was significanthyadler for the inner
233  speech-precise condition than for the inner sp&etbre conditiont(38) = 3.64,
234 p=.001,d=0.58, and for the inner speech-after conditi(88) = 3.03p = .004,
235 d=0.49. There were no other significant differencehese results show that

236  producing the inner phoneme attenuated the N1 caedpa passive listening, but
237  only when the inner and audible phonemes occumadwrently. If the audible
238  phoneme was presented before or after the productithe inner phoneme, there
239  was no attenuation of the N1. This pattern of tssslconsistent with the idea
240 that inner speech, similar to overt speech, isapamied by a temporally-precise
241  corollary discharge.

242
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244  Figure 2.  Results for Experiment 1. (a) The graph shows the grand-averaged ERPs for
245 each condition averaged over Fz, FCz, and Cz electrodes, showing time
246 (ms) on the x-axis, with 0 indicating the onset of the auditory phoneme, and
247 voltage (4V) on the y-axis, with negative voltages plotted upwards. The grey
248 bar shows the N1 time-window (80—-120 ms), which was selected using the
249 collapsed localiser technique (Luck & Gaspelin, 2017). (b) The bar graph
250 shows the mean amplitudes for the N1 time-window for the listen and inner
251 speech conditions across the different time delays: before (B), precise (P),
252 and late (L). Error bars show the standard error of the mean (SEM). (c) The
253 voltage maps show the distribution of voltages over the scalp during the N1
254 time-window.
255
256 Our primary focus is N1-amplitude; however, we aleaducted

257  supplementary analyses on the peak latency of thand the mean amplitudes of
258 the P2 and P3. To see the results of these anabee#s\ppendix A.

259 Experiment 2
260 Method
261 Participants. Sixty-one students participated in our study fourse credit.

262  Data from six participants were excluded from thalgses due to excessive

263  artefacts in the EEG recording (see ERP processidgERP analysis). Mean age
264  of the remaining participants, 42 of whom were feEnaand 52 of whom were

265 right-handed, was 2D = 3) years.

266 Apparatus, stimuli, and procedure. The apparatus, stimuli, and animation
267  were identical to Experiment 1. The experiment iad of 20 blocks of trials,
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268  with each block containing 18 trials. On half oé thlocks, participants performed
269  theinner speech /ba/ condition: they were instructed to silently produce the

270  phoneme /ba/ in their minds at the precise montenfixation and target lines
271 overlapped; on the other half of the blocks, paréints performed thiener

272 speech /bi/ condition: they were instructed to silently produce the mroa /bi/ in
273 their minds at the precise moment the fixation &amget lines overlapped. The
274  order of the blocks alternated between the inneeslp /ba/ and inner speech /bi/
275  conditions, and the starting block was counterlz@drover participants.

276 On a random half of the trials in each block, tieer and audible phonemes
277  matched on content; that is, participants produkegphoneme /ba/ or /bi/ and
278 listened to a recording of the phoneme /ba/ or fegpectively — thenatch

279  condition (see Figure 3a—b). On the other half of trials,itiner and audible

280 phonemes did not match on content; that is, ppeids produced the phoneme
281 /bal or /bi/ and listened to a recording of thendrae /bi/ or /ba/, respectively —
282  themismatch condition (see Figure 3c—d). Similar to Experiment 1, oaredom
283  one-third of trials for the match and mismatch abads, the audible phoneme
284  was presented 300 ms before the fixation and téirges overlapped — thaefore
285  condition; on a different one-third of the trials, the audiphoneme was

286  presented at the precise moment the fixation aigetdines overlapped — the

287  precise condition; on the remaining one-third of the trials, theialedlphoneme
288  was presented 300 ms after the fixation and tdirges overlapped — thafter

289  condition. The order of the trials was random and diffefeneach block, as well
290 as different for each participant.

291
a
Match Condition Match Condition
0~ < -
Audible Phoneme eolnner Phoneme Audible Phoneme oolnner Phoneme
b
Mismatch Condition Mismatch Condition

- < -
292 Audible Phoneme aoInner Phoneme Audible Phoneme oolnner Phoneme
293 Figure 3.  Procedure for Experiment 2. (a—b) On half of the blocks, participants were
294 instructed to silently produce the phoneme /ba/ in their minds at the precise
295 moment the fixation and target lines overlapped; on the other half of the
296 blocks, participants were instructed to silently produce the phoneme /bi/ in
297 their minds at the precise moment the fixation and target lines overlapped.
298 On half of the trials in each block, the inner and audible phonemes matched
299 on content — the match condition; (c—d) on the other half of trials, the inner
300 and audible phonemes did not match on content — the mismatch condition.
301 Similar to Experiment 1, on a random one-third of trials for both conditions,
302 the audible phoneme was presented 300 ms before the fixation and target
303 lines overlapped — the before condition; on a different one-third of trials, the
304 audible phoneme was presented at the precise moment the fixation and

305 target lines overlapped — the precise condition; on the remaining one-third of
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trials, the audible phoneme was presented 300 ms after the fixation and
target lines overlapped — the after condition.

EEG acquisition. The EEG acquisition was identical to Experiment 1.

ERP processing and ERP analysis. The ERP processing and ERP analysis
were identical to Experiment 1. On average, ERRA® wemputed from 39D =
18) match-before, 50 @D = 10)match-precise, 31 D = 14) match-after, 31 @
= 16) mismatch-before, 42 D = 15)mismatch-precise, and 31 §D = 13)
mismatch-after epochs. Similar to Experiment 1, we analysed teamamplitude
of the N1 averaged over Fz, FCz, and Cz electrodiége time-window of 80 to
120 ms with repeated-measure ANOVA using the fadask (listen, inner
speech) antime (before, precise, after).

Results

Behavioural results. Participants’ mean ratings were 3.8 (= 0.80) in
the match-before condition, 4.580 = 0.43) in the match-precise condition, 4.38
(SD = 0.52) in the match-after condition, 3.4D(= 0.80) in the mismatch-before
condition, 4.00 8D = 0.76) in the mismatch-precise condition, an843D =
0.75) in the mismatch-after condition. Again, thessults show that participants
performed the task as instructed.

ERP results. Figure 4a shows the ERPs, Figure 4b shows the mean
amplitudes for the N1 time-window, and Figure 4owh the voltage maps for the
N1 time-window. Repeated-measures ANOVA found aiicant interaction
between task and timg(2, 108) = 3.25p = .043,np2 = .06. There was also a
significant main effect of timds(2, 108) = 6.84p = .002,11'02 =.11; however, the
main effect of task was not significaf{1, 54) = 0.03p = .856,11|02 <.01. Post-
hoct-tests found that N1-amplitude was significantlyadler for the match-
precise condition than for the mismatch-preciseddan, t(54) = 2.38p = .021,

d = 0.32. However, the difference between the matfiore and mismatch-before
conditions was not significart(54) = 1.43p =.160,d = 0.19, nor was the
difference between the match-after and mismatar-atinditionst(54) = 0.62p
=.536,d = 0.08. Moreover, N1-amplitude was significantiyadler for the match-
precise condition than for the match-before conditi(54) = 5.63p <.001,d =
0.76, and for the match-after conditiofh4) = 2.08p = .043,d = 0.28, as well as
significantly smaller for the match-after conditithran for the match-before
condition,t(54) = 2.40p = .020,d = 0.32. There were no other significant
differences. These results show that producingnaeriphoneme that matched the
audible phoneme attenuated the N1 compared to tieeinner and audible
phonemes did not match, but only when the inneraarible phonemes occurred
concurrently. If the audible phoneme was presebéfdre or after the production
of the inner phoneme, there was no attenuatioheof\tl. This pattern of results is
consistent with the idea that inner speech, sindlarvert speech, is accompanied
by a temporally-precise and content-specific cargldischarge.
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350 Figure 4. Results for Experiment 2. (a) The graph shows the grand-averaged ERPs for
351 each condition averaged over Fz, FCz, and Cz electrodes, showing time
352 (ms) on the x-axis, with 0 indicating the onset of the auditory phoneme, and
353 voltage (4V) on the y-axis, with negative voltages plotted upwards. The grey
354 bar shows the N1 time-window (80—120 ms), which we used to be consistent
355 with Experiment 1. (b) The bar graph shows the mean amplitudes for the N1
356 time-window for the match and mismatch conditions across the different time
357 delays: before (B), precise (P), and late (L). Error bars show the SEM. (c)
358 The voltage maps show the distribution of voltages over the scalp during the
359 N1 time-window.
360
361 Similar to Experiment 1, we also conducted supplearg analyses on the

362 peak latency of the N1 and the mean amplitudeBeoP2 and P3. To see the

363 results of these analyses, see Appendix B.

364 Discussion

365 We set out to determine the properties of the tampbischarge associated
366  with inner speech: specifically, whether it containformation about the temporal
367 and physical properties of inner speech. In twoeexpents, participants produced
368 an inner phoneme at a precisely-defined momentne,tand an audible phoneme
369 was presented 300 ms before, concurrently witB0O6rms after participants

370 produced the inner phoneme. The results of theeptestudy were unequivocal:
371 we found that producing the inner phoneme atteniudite N1, but only when the
372 inner and audible phonemes occurred concurrentdynaaiched on content. If the
373  audible phoneme was presented before or afterrieuption of the inner
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phoneme, or if the inner phoneme did not matclctmgent of the audible
phoneme, there was no attenuation of the N1. Tiessdts suggest that inner
speech, similar to overt speech (Behroozmand,e2@09, 2010, 2016;
Behroozmand & Larson, 2011; Chen et al., 2012;,deka& Wang, 2008; Heinks-
Maldonado et al., 2005; Houde et al., 2002; Lialet2011; Sitek et al., 2013), is
accompanied by a corollary discharge that is battpborally-precise and content-
specific. We conclude that these results suppernhttion of a functional
equivalence between the neural processes thatlienther production of inner
and overt speech, and provide empirical supportheinfluential, yet relatively
untested, hypothesis that inner speech is a sgecmlof overt speech (Feinberg,
1978; Frith, 1987; Jones & Fernyhough, 2007).

To the best of our knowledge, only one other staly attempted to
investigate the temporal precision of inner spe&am and Poeppel (2015) asked
their participants to press a button at the premisment they produced an inner
phoneme. An audible phoneme that matched the cootéime inner phoneme
was presented concurrently with, 100, 200, or 58@after the button-press. Tian
and Poeppel (2015) found attenuation of the M1 iftagnetoencephalogram
equivalent of the N1; Virtanen et al., 1998) whiea inner and audible phonemes
occurred concurrently and when the delay betweemtvas 100 ms, but not
when the delay was 200 or 500 ms. These resultsoa@stent with ours in that
we found N1-attenuation when the inner and aughlenemes occurred
concurrently, but not when the delay was 300 msvéi@r, the present study
represents an important departure from Tian angpE€2015). Specifically,
their participants pressed a button to signal tieeyrction of the inner phoneme.
This aspect of their procedure is potentially peobétic, because finger
movements (such as those involved in pressingtarjutre known to attenuate
the M1 and N1 of the auditory-evoked potential (Adit al., 2009; Bal3 et al.,
2008; Blakemore et al., 1999; Elijah et al., 20d60¢lle et al., 2013; Mifsud et al.,
2016; Oestreich et al., 2016; SanMiguel et al. 20Imm et al., 2013; Whitford
et al., 2011), which makes it difficult to determiwhether the M1 reductions
observed by Tian and Poeppel (2015) were causdaeapner speech, the button-
press, or some combination of the two. Furthermfarger movements produce a
motor-evoked potential. This makes it difficultdetermine whether the M1
reductions reflected suppression of the auditogked potential elicited by the
audible phoneme, the motor-evoked potential etiditg the button-press, or some
combination of the two. In contrast, our procedticenot require participants to
press a button to signal the production of thernpi®neme; instead, they
watched an animation and produced the inner phor¢m@recisely-defined
moment in time. By eliminating the need for a botfwess, the present study
provides the most convincing evidence yet thatrispeech is accompanied by a
temporally-precise corollary discharge.

The results of the present study suggest thatdiwlary discharge
associated with inner speech does not result iadyriolanket suppression of all
auditory input over an extended period; rathesupipresses the input that matches
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the content of inner speech at the precise morhantittis “spoken”. This pattern
of results has previously been reported in studies/ert speech (Behroozmand et
al., 2009, 2010, 2016; Behroozmand & Larson, 2@lien et al., 2012; Eliades &
Wang, 2008; Heinks-Maldonado et al., 2005; Houds.e2002; Liu et al., 2011;
Sitek et al., 2013), and is typically interpretadhe context of the internal

forward model (Miall & Wolpert, 1996). According this framework, the brain
uses a corollary discharge to predict the sensamgequences of the movement of
our articulator organs and to suppress the audibtqyt consistent with this
prediction (Crapse & Sommer, 2008; Straka et 8l1.82. The results of the
present study suggest that inner speech exentsilarseffect on auditory
processing, indicating a functional equivalenceveen the corollary discharges
associated with inner and overt speech, even thouggn speech does not
produce an audible sound. In this sense, our sedalhonstrate a case in which
the brain’s prediction goes too far, generating@®gpectation of a sensory event
that does not occur. This prompts the followingsiios: why is inner speech
accompanied by a corollary discharge? We suspatttih most likely

explanation is that inner speech evolved from ospeech, and thus continued to
use many of the same underlying neural processesding corollary discharges
(Alderson-Day & Fernyhough, 2015; Jones & Fernytgi07); however, we
concede that this possibility is speculation.

The results of the present study also supporiritheential hypothesis that
inner speech is a special form of overt speecmfieeg, 1978; Frith, 1987; Jones
& Fernyhough, 2007), in that both yield similarezfts on auditory processing.
This lends support to the intriguing suggestiort tha brain does not make a
conceptual distinction between thoughts and actiahnieast in the context of
speech. But does this extend to situations invglvian-speech actions? For
example, does thinking about making a hand or finggevement result in N1-
attenuation to a consequential sound, similar tatwalas been observed in
response to actual hand or finger movements? Reesedrch from Kilteni et al.
(2018) suggests that content-specific corollarglisges may accompany
imagined hand and finger movements; however, megearch is needed. Finally,
the present study has important implications beymndunderstanding of the
neurobiology of thoughts. For instance, dysfundiohinner speech (Feinberg,
1978; Frith, 1987) — and specifically, dysfunctiamshetiming of inner speech
(Whitford et al., 2011, 2012) — have been arguedhiterlie certain classes of
auditory-verbal hallucinations, such as audiblautids Gedankenlautwerden),
which are highly characteristic of schizophrenike{¢her & Frith, 2009; Mellor,
1970). Our procedure allows us to quantify the tignof inner speech by
measuring its effect on auditory processing. Afistianlocks the possibility of
directly testing the long-held, but hitherto unéekthypothesis regarding the
critical role of inner speech dysfunction in audjteerbal hallucinations. Our
procedure may also be useful for the ongoing deweént of brain-computer
interfaces aimed at deciphering inner speech foplgewho are unable to produce
overt speech (Lebedev & Nicolelis, 2006).
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In summary, we investigated whether inner speealségempanied by a
temporally-precise and content-specific corollaigctarge. In two experiments,
we found electrophysiological evidence in suppbthes possibility. Specifically,
we found that producing the inner phoneme attewuie N1, but only when the
inner and audible phonemes occurred concurrentyn@aiched on content. If the
audible phoneme was presented before or afterrttruption of the inner
phoneme, or if the inner phoneme did not matclctdmgent of the audible
phoneme, there was no attenuation of the N1. Treszdts replicate and extend
upon Whitford et al. (2017) and Tian and Poepp@lL8), and suggest that inner
speech, similar to overt speech (Behroozmand,e2@09, 2010, 2016;
Behroozmand & Larson, 2011; Chen et al., 2012;deka& Wang, 2008; Heinks-
Maldonado et al., 2005; Houde et al., 2002; Lialet2011; Sitek et al., 2013), is
accompanied by a corollary discharge that is battpborally-precise and content-
specific. We conclude that these results supperthttion of a functional
equivalence between the neural processes — naeffgdyggnce copies and
corollary discharges — that underlie the productibmner and overt speech, and
provide empirical support for one of the most iefitial hypotheses in cognitive
neuroscience: that inner speech is a special folwnart speech (Feinberg, 1978;
Frith, 1987; Jones & Fernyhough, 2007).
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Appendix A: Supplementary analysesfor Experiment 1

We conducted three supplementary analyses thatwve¢mdirectly related to
our hypotheses. First, we analysed the peak latehitye N1 by identifying the
most negative voltage averaged over Fz, FCz, aneléctrodes in the time-
window of 50 to 150 ms for every condition and jggrant. Repeated-measures
ANOVA found that the main effect of task was narsficant,F(1, 38) = 0.19p
= .665,np2 < .01, that the main effect of time was not sigaift, F(2, 76) = 0.69,
p= .504,11|02 = .02, and that the interaction between task ene was not
significant,F(2, 76) = 0.54p = .586,n," = .01.

We then analysed the mean amplitude of the P2 (leyo&v Colrain, 2004)
averaged over FCz, Cz, and CPz electrodes inrtieewiindow of 160 to 200 ms.
We chose these electrodes to be consistent withféthiet al. (2017) and we
selected this time-window using the collapsed ligealtechnique (Luck &
Gaspelin, 2017). Figure S1a shows the ERPs, Figlibeshows the mean
amplitudes for the P2 time-window, and Figure Siawss the voltage maps for
the P2 time-window. Repeated-measures ANOVA fousmjmificant interaction
between task and timgE(2, 76) = 3.29p = .043,1],[,2 = .08; however, the main
effect of task was not significari(1, 38) = 0.15p = .698,11|02 <.01, and the
main effect of time was not significafi(2, 76) = 0.74p = .480,1],[,2 =.02. Post-
hoct-tests found that P2-amplitude was significanthgéa for the inner speech-
precise condition than for the inner speech-afbeddion,t(38) = 2.13p = .040,

d = 0.34. There were no other significant difference
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Figure S1. Analysis of the P2. (a) The graph shows the grand-averaged ERPs for each
condition averaged over FCz, Cz, and CPz electrodes, showing time (ms) on
the x-axis, with 0 indicating the onset of the auditory phoneme, and voltage
(uV) on the y-axis, with negative voltages plotted upwards. The grey bar
shows the P2 time-window (160—-200 ms), which was selected using the
collapsed localiser technique (Luck & Gaspelin, 2017). (b) The bar graph
shows the mean amplitudes for the P2 time-window for the listen and inner
speech conditions across the different time delays: before (B), precise (P),
and late (L). Error bars show the SEM. (c) The voltage maps show the
distribution of voltages over the scalp during the P2 time-window.

Finally, we analysed the mean amplitude of themR8i¢h, 2007) averaged
over Cz, CPz, and Pz electrodes in the time-windb260 to 350 ms. We chose
these electrodes to be consistent with Whitforal e2017) and we selected this
time-window after visual inspection of the ERPs antlage maps, because there
was no discernible P3-peak in the ERPs. Figures§@as the ERPs, Figure S2b
shows the mean amplitudes for the P3 time-window,FEigure S2c shows the
voltage maps for the P3 time-window. Repeated-nreasANOVA found that the
main effect of task was not significaf{,1, 38) = 0.97p = .330,1]p2 = .03, that
the main effect of time was not significaR{2, 76) = 2.18p = .120,1]p2 = .05,
and that the interaction between task and timeneésignificantF(2, 76) = 0.58,
p=.562,n,° = .02.
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Figure S2. Analysis of the P3. (a) The graph shows the grand-averaged ERPs for each

condition averaged over Cz, CPz, and Pz electrodes, showing time (ms) on
the x-axis, with 0 indicating the onset of the auditory phoneme, and voltage
(uV) on the y-axis, with negative voltages plotted upwards. The grey bar
shows the P3 time-window (250-350 ms), which was selected after visual
inspection of the ERPs and voltage maps. (b) The bar graph shows the
mean amplitudes for the P3 time-window for the listen and inner speech
conditions across the different time delays: before (B), precise (P), and late
(L). Error bars show the SEM. (c) The voltage maps show the distribution of
voltages over the scalp during the P3 time-window.
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Appendix B: Supplementary analysesfor Experiment 2

Similar to Experiment 1, we analysed the peak &ateri the N1 by
identifying the most negative voltage averaged éwwi=Cz, and Cz electrodes in
the time-window of 50 to 150 ms for every conditenmd participant. Repeated-
measures ANOVA found a significant main effectiofd, F(2, 108) = 17.41p <
.OOl,np2 = .24; however, the main effect of task was ngiigicant,F(1, 54) =
0.43,p= .517,11|D2 < .01, and the interaction between task and tiag mot
significant,F(2, 108) = 1.58p = .210,11'02 = .03. Post-hottests found that the
peak latency of the N1 was later in the before @¢mrdthan in the precisé(54) =
4.53,p<.001,d=0.61, and aftet(54) = 4.93p < .001,d = 0.67, conditions.
There were no other significant differences.

We then analysed the mean amplitude of the P2 (leyofv Colrain, 2004)
averaged over FCz, Cz, and CPz electrodes inrtteewiindow of 160 to 200 ms.
We chose these electrodes and this time-windove twobsistent with Experiment
1. Figure S3a shows the ERPs, Figure S3b showsd¢ha amplitudes for the P2
time-window, and Figure S3c shows the voltage niapte P2 time-window.
Repeated-measures ANOVA found that the main effetask was not
significant,F(1, 54) = 3.34p = .073,11'02 = .06, that the main effect of time was
not significantF(2, 108) = 0.79p = .455,1]p2 = .01, and that the interaction
between task and time was not signific&{g, 108) = 0.89p = .414,11|D2 =.02.
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Figure S3.

Analysis of the P2. (a) The graph shows the grand-averaged ERPs for each
condition averaged over FCz, Cz, and CPz electrodes, showing time (ms) on
the x-axis, with 0 indicating the onset of the auditory phoneme, and voltage
(uV) on the y-axis, with negative voltages plotted upwards. The grey bar
shows the P2 time-window (160—-200 ms), which we used to be consistent
with Experiment 1. (b) The bar graph shows the mean amplitudes for the P2
time-window for the listen and inner speech conditions across the different
time delays: before (B), precise (P), and late (L). Error bars show the SEM.
(c) The voltage maps show the distribution of voltages over the scalp during
the P2 time-window.

Finally, we analysed the mean amplitude of theMR8i¢h, 2007) averaged
over Cz, CPz, and Pz electrodes in the time-windb260 to 350 ms. We chose
these electrodes and this time-window to be cagrsistith Experiment 1. Figure
S4a shows the ERPs, Figure S4b shows the meantadaslifor the P3 time-
window, and Figure S4c shows the voltage mapdi®iP3 time-window.
Repeated-measures ANOVA found that the main effetask was not
significant,F(1, 54) = 3.57p = .064,11'02 = .06, that the main effect of time was
not significantF(2, 108) = 0.85p = .432,1]p2 = .02, and that the interaction
between task and time was not signific&{g, 108) = 1.54p = .218,11'02 =.03.
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Analysis of the P3. (a) The graph shows the grand-averaged ERPs for each
condition averaged over Cz, CPz, and Pz electrodes, showing time (ms) on
the x-axis, with 0 indicating the onset of the auditory phoneme, and voltage
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(UV) on the y-axis, with negative voltages plotted upwards. The grey bar
shows the P3 time-window (250-350 ms), which we used to be consistent
with Experiment 1. (b) The bar graph shows the mean amplitudes for the P3
time-window for the listen and inner speech conditions across the different
time delays: before (B), precise (P), and late (L). Error bars show the SEM.
(c) The voltage maps show the distribution of voltages over the scalp during
the P3 time-window.
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