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Alpha Phase Determines Successful Lexical Decision in Noise

Antje Strauf},' Molly J. Henry,' “Mathias Scharinger,' and ““Jonas Obleser!
'Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany, and
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Psychophysical target detection has been shown to be modulated by slow oscillatory brain phase. However, thus far, only low-level
sensory stimuli have been used as targets. The current human electroencephalography (EEG) study examined the influence of neural
oscillatory phase on a lexical-decision task performed for stimuli embedded in noise. Neural phase angles were compared for correct
versus incorrect lexical decisions using a phase bifurcation index (BI), which quantifies differences in mean phase angles and phase
concentrations between correct and incorrect trials. Neural phase angles in the alpha frequency range (8 -12 Hz) over right anterior
sensors were approximately antiphase in a prestimulus time window, and thus successfully distinguished between correct and incorrect
lexical decisions. Moreover, alpha-band oscillations were again approximately antiphase across participants for correct versus incorrect
trials during alater peristimulus time window (~500 ms) atleft-central electrodes. Strikingly, lexical decision accuracy was not predicted
by either event-related potentials (ERPs) or oscillatory power measures. We suggest that correct lexical decisions depend both on
successful sensory processing, which is made possible by the alignment of stimulus onset with an optimal alpha phase, as well as
integration and weighting of decisional information, which is coupled to alpha phase immediately following the critical manipulation
that differentiated words from pseudowords. The current study constitutes a first step toward characterizing the role of dynamic

oscillatory brain states for higher cognitive functions, such as spoken word recognition.
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Introduction

Human psychophysical performance for detection and discrim-
ination of low-level stimuli has been found to depend on slow
prestimulus oscillatory brain states across domains (visual: Va-
rela et al., 1981; Hanslmayr et al., 2007; van Dijk et al., 2008;
Busch et al., 2009; Schubert et al., 2009; Cravo et al., 2013; Spaak
et al., 2014; auditory: Lakatos et al., 2005; Henry and Obleser,
2012; audiovisual: Keil et al., 2014). These findings relate neural
phase to neural excitability fluctuations, such that performance is
best for targets coinciding with the excitable phase of a neural
oscillation, and worst for targets coinciding with the inhibitory
phase. Going beyond low-level perception, we ask here whether
higher cognitive functions, such as speech processing, would also
depend on neural phase. Although recently proposed models
would predict a dependence of speech processing on neural
oscillatory phase (Ghitza, 2011; Gagnepain et al., 2012; Giraud
and Poeppel, 2012), no experimental evidence has been gath-
ered so far.
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One elegant task that can bridge psychophysical aspects of
performance (detection or discrimination) with speech process-
ing is the auditory lexical decision task (Marslen-Wilson, 1980):
listeners are presented with words, as well as word-like stimuli
(i.e., pseudowords), and have to judge whether they heard a
meaningful word or not. Parallel to low-level discrimination
studies, we made the lexical decision task “near-threshold” by
embedding speech in individually titrated levels of white noise,
which increased the difficulty of the task and, purposefully, the
amount of errors. We simultaneously recorded the electroen-
cephalogram and hypothesized that a dependence of lexical-
decision accuracy on low-frequency neural oscillatory phase
should be observed.

Here, we were interested in the role of alpha (8—-12 Hz) and
theta (3—7 Hz) neural phase for lexical decision performance.
Instantaneous alpha phase has previously been linked to low-
level detection and discrimination performance not only in the
visual (Mathewson et al., 2009; Busch and VanRullen, 2010;
Romei et al., 2010), but also in the auditory domain (Rice and
Hagstrom, 1989; Neuling et al., 2012). Critically, alpha phase has
been found to modulate neuronal firing and to determine the
neural phase associated with best discrimination performance
(Haegens et al., 2011). Discrimination performance in lexical de-
cision may also depend on syllabic processing and thus poten-
tially be indexed by oscillatory activity in the theta range (~4 Hz)
with oscillation periods corresponding to the average syllable du-
ration of ~250 ms (Ng et al., 2012; Peelle and Davis, 2012; Gross
etal., 2013; Doelling et al., 2014; note that also Busch et al., 2009
reported a prestimulus phase bifurcation effect in the 7 Hz
range). Similar to alpha, theta oscillations have been linked to
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Figure1.

Trial design and behavioral measures. 4, Trial design. Lexical stimuli were presented against a white-noise background. A histogram of the critical vowel onsets is shown schematically

in relation to the timing of the two alpha phase effects below the example trial. Average word length was 0.74 = 0.08 s (M == 15D). Delayed lexical decision was prompted by a question mark.
B, Analysis scheme. Seventy percent correct was targeted with individual SNRs. For the analysis, correct trials comprised trials on which participants responded Yes to a real word or No to the
ambiguous counterpart as illustrated by the cross-tabulation. €, Behavioral results. Participants performed better for real words than for ambiguous pseudowords. However, performance for both

stimulus types was significantly above chance.

neuronal firing (Kayser et al., 2012) and can impact auditory
detection performance (Ng et al., 2013).

Our data show that the accuracy of auditory lexical decision
depends on the instantaneous phase of alpha oscillations: Stimuli
that were judged incorrectly fell into an alpha phase opposite to
that for stimuli that were later judged correctly in a prestimulus
time window, as well as in a second, peristimulus time window.

Materials and Methods

Participants

Eleven participants (25.1 = 1.6 years, M = SD; 7 females) gave informed
consent to take part in the experiment. All were native speakers of Ger-
man, right-handed, with self-reported normal hearing abilities, and no
history of neurological or language-related problems. They received fi-
nancial compensation for their participation. All procedures had ethical
approval from the Ethics Committee of the University of Leipzig.

Stimulus material

Stimuli were real words and their pseudoword counterparts (Raettig and
Kotz, 2008; Strauf} et al., 2014b). Pseudowords were created as follows:
From a list of 60 tri-syllabic concrete German nouns (‘real” words, e.g.,
/banane/, [engl. banana]) two types of pseudowords were derived, ‘am-
biguous’ pseudowords, by exchanging the nucleus vowels of the second
syllables across words (e.g., /banene/), and ‘opaque’ pseudowords by
scrambling the syllables across words while keeping the position-in-word
fixed (e.g., /bapossner/). Furthermore, 60 ‘abstract’ real words (e.g., /bot-
anik/, [engl. botany]) served as fillers to ensure a balanced word—pseu-
doword ratio and were not analyzed further. In sum, the experimental
corpus consisted of 240 lexical stimuli with a mean length of 754.2 = 83.5
ms (M = SD). For the opaque pseudowords, accuracy was very high
(89 = 8% correct, M = SD), thus there were not enough incorrect trials
to allow for a direct comparison of correct and incorrect trials. Therefore
in the following, we focused on the noise-induced vowel confusion be-
tween real words and ambiguous pseudowords that lead to decisions
about whether an item was a word or not.

All words and pseudowords were spoken by a trained female speaker
and digitized at 44.1 kHz. Postprocessing included down-sampling to
22.05 kHz, cutting at zero crossings closest to articulation on- and offsets,
and root mean square (RMS) normalization.

Materials and Methods

Before each experimental EEG session, individual signal-to-noise ratios
(SNR) were determined by means of an adaptive tracking procedure.
During adaptive tracking, participants were presented with the second
syllables extracted from the real words and their ambiguous-pseudoword
counterparts. On each trial, the participant heard two successive syllables
embedded in white noise and indicated whether the vowels in each pair
were “same” or “different.” Intensity of the syllables relative to the white
noise was adjusted according to a two-down—one-up staircase procedure

that estimated the signal-to-noise ratio (SNR) targeting 70.7% accuracy
(Levitt, 1971). Resulting average SNR was —10.22 = 1.95dB (M * SD).
That way, the identical white noise was used for all participants in each
run of the adaptive tracking procedure, as well as in all trials of the
following EEG experiment.

Next, a short familiarization for the trial timing was provided during
which participants made lexical decisions in noise ~10 additional items
from Raettig and Kotz (2008) that were not used in the present experi-
ment. During the EEG experiment, participants heard words and pseu-
dowords embedded in white noise and indicated via button press
whether they heard a real word or not (“Yes”/“No”). Button order (left/
right for Yes/ No responses) was counterbalanced across participants. On
each trial, the white noise started 1 s before (pseudo)word onset, coinci-
dent with the appearance of a fixation cross, and lasted for 2.2 s in total
(Fig. 1A). After 2.2 s, the fixation cross-changed to a question mark that
prompted the lexical decision response. Trial timing was chosen based on
a previous study in our lab using the same paradigm without noise
(Straufd et al., 2014b) and allowed artifact-free estimations of time—fre-
quency representations (see Data analysis).

Each participant listened to 240 stimuli (120 words, 120 pseudowords)
in an individually pseudorandomized sequence. That is, each participant
heard both the “real” and the “ambiguous” versions of each word. The
order of occurrence for a given real word and its pseudoword counter-
part was counterbalanced across participants to control for potential
interfering effects of previous exposure to the respective complementary
item. For the same reason, the distance between a word and its pseudo-
word counterpart was maximized (i.e., on average 120 other items in-
between). Listeners paused after each block of 60 trials. Overall duration
of the experimental procedure was ~30 min.

Data acquisition and preprocessing

The electroencephalogram (EEG) was recorded from 64 Ag-AgCl elec-
trodes positioned according to the extended 10-20 standard system on
an elastic cap with a ground electrode mounted on the sternum. Bipolar
horizontal and vertical electrooculograms were recorded for ocular
artifact-rejection purposes. All impedances were kept at <5 kOhm. Sig-
nals were referenced online against the left mastoid, and digitized with a
sampling rate of 500 Hz and a passband of DC to 140 Hz. Individual
electrode positions were determined after EEG recording with the Pol-
hemus FASTRAK electromagnetic motion tracker.

EEG preprocessing was done off-line using the open-source Fieldtrip
toolbox (Oostenveld et al., 2011) for MATLAB (MathWorks). To avoid
edge effects at low frequencies, broad epochs were defined ranging be-
tween —700 ms [excluding event-related potentials (ERPs) due to noise
onset] and 2100 ms relative to (pseudo)word onset. Data were bandpass
filtered from 0.1 to 100 Hz using an acausal fourth-order two-pass But-
terworth filter (using the MATLAB-inbuilt filtfilt function, thus effec-
tively doubling the filter order), and for ERP analysis only, re-referenced
to combined mastoids (time—frequency analyses used re-referencing to
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average reference, see Data analyses, below). To reject systematic arti-
facts, independent component analysis (ICA) was applied and compo-
nents comprising eye movement, heartbeat, and muscle artifacts were
rejected according to definitions provided by Debener et al. (2010). After
ICA, an automatic artifact-rejection routine removed single trials for
which within-channel peak-to-peak range exceeded 120 wV. On average,
2.7 = 3.0 (M = SD) trials were rejected per participant. The resulting
clean data were used for subsequent data analyses.

Data analyses

Phase analysis. Time—frequency representations (TFRs) were estimated
from single-trial data so that we could assess the effects of phase and
power on lexical decisions. Epoched, filtered, artifact-rejected time-
domain data were re-referenced to average reference (Straufl et al.,
2014b). Subsequently, Morlet wavelets were applied to single-trial TFRs
in 20 ms steps with a frequency-specific window width to account for the
tradeoff between higher-frequency resolution for lower frequencies and
higher time resolution for higher frequencies. Therefore, TFRs for loga-
rithmically spaced frequencies from 3 to 30 Hz were convolved with
linearly increasing window widths ranging from 2 to 12 cycles. Phase and
power values were then estimated at each channel X frequency X time
point from the complex output of the wavelet convolution.

For the analysis of phase data, we calculated a phase bifurcation index
(BI), ¢, suggested by Busch et al. (2009). First, trials were split based on
accuracy (i.e., correct vs incorrect responses) for each participant. Then,
we calculated intertrial phase coherence (ITPC; 0 =< ITPC = 1) separately
for correct trials, for incorrect trials, and for all trials taken together. Last,
to compute the phase bifurcation index, ¢, ITPC for correct, incorrect,
and all trials were combined according to the following formula:

¢ = (ITPC — ITPC,,) X (ITPC,

incorrect

~ITPC,y)

correct

BIs were calculated separately for each channel X frequency X time bin.
A positive BI indicates that two conditions have similar intertrial phase
coherence values but differ in their mean phases (>/2 radians). A neg-
ative BI, by contrast, indicates that one condition is more phase-locked
than the other; i.e., angles of one condition are randomly distributed,
whereas angles of the other condition concentrate toward a certain direction.
Further details on the BI can be found in the study by Busch et al. (2009).

As expected, the number of trials was not balanced between correct
(number of trials per subject = 75.36 = 8.87) and incorrect trials (num-
ber of trials per subject = 39 * 8.28; Fig. 1B, see analysis scheme). To
account for this inequality, which can bias estimates of ITPC (Lachaux et
al., 1999; Ding and Simon, 2013), we performed a randomization test
analogous to the Monte Carlo method described by Maris and Oosten-
veld (2007) to obtain a robust measure of the BI in each participant. For
each participant, the number of trials to be selected was equal to 75% of
the amount of incorrect trials (the category with the smallest number of
trials) resulting in 29.45 * 6.25 trials per condition. On each of 1000
iterations, trials were randomly selected without replacement from the
set of correct and incorrect trials. From ITPC estimates for correct, in-
correct, and all selected trials, a single BI was calculated. The mean bifur-
cation index over these 1000 repetitions was used per participant for
further statistical analyses.

On the group level, we tested Bls against zero separately for the alpha
(812 Hz) and the theta (3-5 Hz) frequency bands for each time point in
the range between —0.35 and 1.1 s with respect to (pseudo)word onset
using the Monte Carlo randomization method (1000 repetitions) with
cluster correction as implemented in FieldTrip. The time window was
chosen such that edge effects of TFR estimation for lowest frequencies
were avoided and stimulus offset responses at 1.2 s post-(pseudo)word
onset (i.e., the end of the masking noise) were excluded.

Further analyses. To further characterize the phase effects found via the
test of the Bl and to test for potential confounds, we also evaluated alpha
and theta ITPC, absolute alpha and theta power, and ERPs. For the ITPC
analysis, the differences between ITPC_,, .. and ITPC,, e trials
(8—=12 Hz and 3-5 Hz; from —0.35 to 1.1 s) as estimated for the BI
calculation (i.e., 1000 iterations) were averaged per participant and submit-
ted to a two-tailed single-sample ¢ test against zero with cluster correction
using the Monte Carlo randomization method (1000 repetitions).

StrauB et al. @ Alpha Phase Predicts Speech-in-Noise Recognition

For power estimates, we squared the magnitude (complex modulus)
of single-trial Fourier data. Analogous to the phase analysis, the same
amount of trials for correct and incorrect trials were selected as described
in the previous paragraph. Subsequently, their power difference was cal-
culated, and the mean >1000 of such differences was taken per subject.
The group-level analysis on power was the same as described in the
previous paragraph for BI and ITPC analyses.

For analysis of ERPs, the epoched, filtered, and artifact-rejected time-
domain data were filtered with an acausal sixth-order two-pass Butter-
worth low-pass filter at 15 Hz. For baseline correction, a time window
from —200 to 0 ms pre-(pseudo)word onset (i.e., during the masking
noise) was chosen. Amplitudes were then averaged in selected time win-
dows over selected channels. Time window and channel selection were
based on the peristimulus BI cluster. A pairwise ¢ test compared ERP
amplitudes of correct versus incorrect trials across subjects.

Effect sizes. For simple ¢ statistics (dependent and independent samples
¢ tests), we estimated the effect size measure 7ivaten» here denoted r,
which is bound between 0 and 1 (Rosenthal, 1994; Rosenthal and Rubin,
2003). Effect sizes for multiple ¢ tests (e.g., for all channel X frequency X
time bins belonging to a significant cluster) were estimated by averaging
r values across individual tests constituting the cluster (denoted R).

Results

Accuracy of lexical decisions

As shown in Figure 1C, participants achieved an average accuracy
near that targeted by the adaptive tracking procedure for real
words (71.4 = 1.02%). Although slightly worse, accuracy for the
ambiguous pseudowords was still better than chance (60.3 =
0.61%s; ¢ test against 50%: p = 0.0005, t,5, = 5.1, r = 0.85).

Neural phase in the alpha band predicts lexical-decision
accuracy
To evaluate differences in neural phase, the bifurcation index
(BI) suggested by Busch et al. (2009) was calculated for each
channel-time—frequency bin. A positive BI indicates that two
conditions exhibit similar phase concentration but differ in their
mean phases (>/2 radians). Nonparametric permutation tests
of the BI against zero revealed two positive clusters (i.e., similar
phase concentration but opposite mean phases for correct vs incor-
rect trials) in the alpha frequency range from 8 to 12 Hz. The first
positive cluster was found in a time window ranging from —120 to
40 ms pre-(pseudo)word onset, and had a right anterior scalp distri-
bution (p = 0.036; T, = 124.93, r = 0.71; Fig. 2A). The second
positive cluster was found in a time window ranging from 420 to
580 ms post-(pseudo)word onset, and had a central-left ante-
rior distribution (p = 0.011; T, = 168.95,r = 0.61; Fig. 2B).
Please note that the response was given at the end of the trial
after the prompt occurred at 1200 ms post-(pseudo)word onset.
To illustrate the nature of the phase effects underlying the signif-
icant BI results, we extracted the single-participant phase angles for
both positive clusters, and plotted the circular distance between
mean phase angles for correct versus incorrect trials (Fig. 2 A, B, bot-
tom). For example, at electrode F6, 9 of 11 participants have a mean
prestimulus phase distance >7/2 rad (90°) leading to a consistently
positive BI.

Lexical-decision accuracy was not predictable from phase
coherence, power, or ERP amplitude

Accuracy of lexical decision could not be predicted based on any of
the other neural measures (Fig. 3). First, no ITPC differences were
observed in a nonparametric permutation test using the same time
and frequency parameters as for the BI analysis (Fig. 3A; cluster
closest to statistical significance with p = 0.81; Ty, = 73.96, r =
0.68). Second, one cluster was observed in which absolute alpha
power was higher for incorrect than for correct trials (p = 0.037;
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Tom = —3619.8, r = 0.60). However, the cluster comprised only
lower alpha frequencies (peak at 8.3 Hz) in a later poststimulus time
window (peak at 0.98 s post-(pseudo)word onset) and over more
posterior electrodes (peak at CP1; Fig. 3B). Third, evoked potentials
did not show any difference for the accuracy contrast during the
same time interval and over the same electrodes as the peristimulus

alpha phase effect (p = 0.13; t,5) = —1.65, r = 0.46; Fig. 3C). In

sum, these results support the notion that neural phase in the alpha
frequency range was the best predictor for lexical decisions in noise.

Phase effects in the theta band

Nonparametric permutation tests of the BI against zero also re-
vealed a negative cluster in the theta frequency range from 3 to 5
Hz. The negative cluster ranged between 120 and 580 ms post-
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(pseudo)word onset, and was broadly distributed over electrodes
(p < 0.001, T,y = —1987.8, r = 0.69; Fig. 4A).

Generally, a negative BI emerges in cases where neural oscil-
lations in one condition are more phase-locked than in another
condition (Busch et al., 2009). Therefore, a negative BI should be
followed-up by a comparison of ITPC. In our case, it was surpris-
ing at first glance that a whole-brain cluster-based permutation
test did not reveal any ITPC differences for the accuracy con-
trast. On closer inspection, however, the theta effect resulted
from some participants showing stronger phase locking for
correct than for incorrect trials and other participants show-
ing the opposite pattern (Fig. 4B). This, somewhat mislead-
ingly, led to a negative BI that survives statistical testing across
participants.

Discussion

The current experiment examined the impact of slow neural os-
cillatory phase on word recognition. Going beyond previous
work on neural phase effects in low-level perceptual tasks, we
show that alpha (8-12 Hz) phase determines the accuracy of
lexical decisions in perceptually uncertain situations (i.e., when
stimuli are embedded in noise). The alpha phase bifurcation
emerged firstin a prestimulus (—75 ms pre-(pseudo)word onset)
time window, but attained significance also in a peristimulus (500
ms post-(pseudo)word onset) time window.

StrauB et al. @ Alpha Phase Predicts Speech-in-Noise Recognition

Alpha phase reflects fluctuations in the probability of
attentional selection

For near-threshold stimulation, prestimulus alpha phase has
been found to determine psychophysical detection performance
(Mathewson et al., 2009; Dugué et al., 2011; Neuling et al., 2012).
Consistent with and extending these results, we found a pre-
stimulus alpha phase effect for a lexical decision task in noise,
whereby stimuli that were judged correctly versus incorrectly co-
incided with opposite prestimulus phases of the ongoing alpha
oscillation, respectively. On incorrect trials, the initial phonemes
of the stimulus would thus coincide with suboptimal “windows”
for sensory input (Dugué et al., 2011); that is, the inhibitory phase
of an ongoing alpha oscillation.

We observed the prestimulus alpha bifurcation effect over
right anterior electrodes. Although the nature of this index as a
first-level statistic prevents an informed interpretation of underlying
neural sources (Busch et al., 2009), this location is nevertheless
consistent with previous studies that have observed the recruit-
ment of a right frontal network (for review, see Corbetta et al.,
2008). Most notably, right middle frontal gyrus, frontal eye fields
(Leeetal.,2014), and the right anterior insula (Eckert et al., 2009; Erb
et al., 2013; Wilsch et al., 2014) have been found to be activated in
particular during challenging auditory tasks. Potentially, involve-
ment of these structures, also associated with selective attention,
would have been necessary here to isolate speech from the noise
background. Importantly, alpha activity has been argued to be a
neural means of selecting a relevant sensory object (for more detailed
discussion, see Mathewson et al., 2011; Strauf3 et al., 2014a). More-
over, the current alpha phase results are in line with the idea of
Schroeder and Lakatos (2009) that low-frequency neural oscillatory
phase correlates with the fluctuations of the probability that a stim-
ulus is “selected” by attention. On this view, stimuli arriving in the
optimal (excitatory) phase of the alpha oscillation are selected by
attention and are thus more likely to be thoroughly processed and
correctly judged than stimuli arriving in the suboptimal phase.

In case of word recognition, the word-initial phonemes are
crucial for lexical access (Greenberg, 1999), and therefore have
been emphasized in models of auditory word recognition (Taft
and Forster, 1976; Marslen-Wilson, 1987). The initial phonemes
are required to initiate lexical search, that is, to recruit top-down
information from the mental lexicon, which is helpful to perform
the lexical decision task in noise accurately. Thus, we tentatively
suggest that the optimal alpha phase reflects successful atten-
tional selection of word-initial phonemes, which led ultimately to
more accurate lexical-decision performance.

Alpha phase reflects decision weighting
In the current study, we also observed an additional peristimulus
alpha phase bifurcation over left frontotemporal regions. Inter-
estingly, this peristimulus alpha phase effect occurred directly
after the crucial vowel manipulation, but was not phase-locked to
the onset of the vowel. (Note that a repetition of the bifurcation-
index analysis time-locked to vowel onsets did not reveal any signif-
icant clusters). This favors a decision-related interpretation of the
observed phase effect over a more stimulus-related interpretation.
Please note, however, that the response of the lexical decision was
prompted and thus was given only at the end of the trial such that
reaction times could not be related to the current alpha phase effects.
The dissociation of perceptual from decisional stages and their
dependence on slow neural phase is difficult in low-level detec-
tion paradigms, but has been demonstrated recently by Wyart et
al. (2012) in a visual discrimination task that involved integrating
visual information over ~2 s to discriminate the mean orienta-
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tion of a series of Gabor patches. They found that the accumula-
tion of perceptual evidence is not linear (for review, see Ratcliff
and McKoon, 2008; Mulder et al., 2014; as assumed previously by
a number of prominent models of decision making), but proceeds
rhythmically. Moreover, integration and weighting of decisional in-
formation were also found to be coupled to low-frequency neural
phase, but were critically dissociated from (earlier) accumulation of
perceptual evidence.

The left anterior distribution of the later, peristimulus alpha
bifurcation is compatible with the common finding of left infe-
rior frontal gyrus involvement in visual and auditory lexical de-
cision tasks (Fiebach et al., 2002; Xiao et al., 2005). Especially BA
45 (i.e., pars triangularis) has been suggested to receive informa-
tion from inferior temporal gyrus (Heim et al., 2009) via the
ventral stream (Hickok and Poeppel, 2007) presumably to sup-
portlexical selection when lexical access is difficult (Fiebach et al.,
2002). Importantly, our data suggest that this selection process in
left anterior cortical structures might in part be mediated via
alpha-band oscillatory activity.

One remaining question concerns the relationship between
prestimulus and peristimulus alpha phase in our data. We
suggest that our prestimulus and peristimulus alpha phase
effects reflect dissociable perceptual and decisional processes,
respectively. Prestimulus and peristimulus bifurcation indices
were not directly correlated (Spearman’s p = 0.2; p > 0.5),
suggesting at least partially independent mechanisms. Their
independence is also supported by the observed difference in
topographical distribution and would be in line with the inter-
pretation of dissociable earlier perceptual and later decisional
weighting (Wyart et al., 2012). In particular, our data are consis-
tent with the necessity of achieving an optimal neural state not
only during anticipation of a stimulus (for optimizing accumu-
lation of perceptual evidence) but also during preparation of lex-
ical decisions during and after the stimulus (for optimizing
decisional weighting and integration).

Accuracy is not predicted by other neurophysiological
measures

Strikingly, lexical decision accuracy was not predictable from
other measures of neural activity, such as the amplitude of the
ERP, absolute alpha power, or ITPC in the alpha band in our data
(Fig. 3). That is, differences in instantaneous alpha phase seem to
exhibit an independent effect on lexical decision processes and
might index mechanisms that have so far not been subject to
closer electrophysiological examination.

Theta versus alpha phase effects on lexical decision
Last, even though recent models of speech processing have
provided good arguments to assign a crucial role to theta band
oscillations (Ghitza, 2011; Gagnepain et al., 2012; Giraud and
Poeppel, 2012), theta phase here was not predictive of accuracy.
As a more technical aside, the multiplicative nature of the phase
bifurcation index makes it insensitive to which condition is caus-
ing the negative sign of the bifurcation index. In our case, this
feature could have led to the unwarranted conclusion of consis-
tent theta-phase effects based on bifurcation statistics only. Our
analysis shows that ITPC analyses are important to control for
false positives when using the phase bifurcation index, specifi-
cally when the observed bifurcation index is negative.
Speculatively, the current finding (i.e., consistent predictabil-
ity of response accuracy by alpha, but not by theta phase) might
be due in part to the type of manipulation (short-lived vowel manip-
ulations in isolated words) or to embedding of (pseudo) words in
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noise, prompting an alpha- rather than theta-driven neural process-
ing strategy (for the functional dissociation of alpha and theta ac-
tivity during word recognition, see Straufl et al., 2014b). In sum,
the available evidence from this study renders alpha but not theta
phase at two separate points in time and in space a good predictor
of accurate lexical decisions in noise.

Conclusion

This study constitutes a first step toward characterizing neural
phase signatures of higher cognitive processes, such as the ones
that enable spoken word recognition in noise. Our data demon-
strate that alpha phase (both before and during the presentation
of word or word-like stimuli) predicts the accuracy of lexical
decisions in noise. The data suggest that alpha phase acts not only
to select stimuli for perceptual processing, but might also under-
lie rhythmic fluctuations in decisional weighting. We suggest that
dependence on rhythmic fluctuations in neural excitability is en-
couraged in particular when perceptual evidence is limited (due
for example to the presence of background noise) as is often the
case in naturalistic listening conditions. Therefore, both sensory
processing, as well as decision-making, proceeds coupled to on-
going internal alpha rhythms that in turn modulate performance.
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