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P S Y C H O L O G I C A L  S C I E N C E

Recursive sequence generation in monkeys, children, 
U.S. adults, and native Amazonians
Stephen Ferrigno1*, Samuel J. Cheyette2, Steven T. Piantadosi2, Jessica F. Cantlon3

The question of what computational capacities, if any, differ between humans and nonhuman animals has been 
at the core of foundational debates in cognitive psychology, anthropology, linguistics, and animal behavior. The 
capacity to form nested hierarchical representations is hypothesized to be essential to uniquely human thought, 
but its origins in evolution, development, and culture are controversial. We used a nonlinguistic sequence gener-
ation task to test whether subjects generalize sequential groupings of items to a center-embedded, recursive 
structure. Children (3 to 5 years old), U.S. adults, and adults from a Bolivian indigenous group spontaneously induced 
recursive structures from ambiguous training data. In contrast, monkeys did so only with additional exposure. We 
quantify these patterns using a Bayesian mixture model over logically possible strategies. Our results show that 
recursive hierarchical strategies are robust in human thought, both early in development and across cultures, but 
the capacity itself is not unique to humans.

INTRODUCTION
Recursion is a computational capacity that allows one to embed el-
ements within elements of the same kind (1). It is thought to be the 
key feature of human syntax (2, 3) and has been implicated in the 
learning of a number of uniquely human concepts such as language 
(2), complex tool use (4, 5), music (6), social cognition (5), and math-
ematics (3, 7). The universality of recursion among human languages 
is hotly debated (8–10). The capacity for recursion is hypothesized 
to be uniquely human, or even the sole difference that separates hu-
mans from nonhuman animals (1, 3, 11); however, little comparative 
empirical work supports this claim.

Representations of discrete sequential representations, a precursor 
for language-like hierarchy and recursion, have been studied in both 
humans and nonhuman animals. Extensive studies have shown that 
infants and nonhuman animals have the capacity to represent tran-
sitional probabilities (e.g., that B is likely to follow A) (12), ordinal 
sequences (e.g., A1A2A3) (13, 14), chunk sequences (i.e., group se-
quences that happen together and represent them as a whole) (15–17), 
and abstract algebraic patterns (e.g., AAA versus AAB) (11, 18–21). 
While these kinds of patterns may be important for some sequential 
processing in language, the hierarchical structures of language re-
quire richer computational capacity (2, 11).

Motivated by context-free grammars as a simple model in lin-
guistics, some empirical work has explored learning of symbol sys-
tems that are naturally captured with center-embedded recursion via 
phrase structure rules such as the language AnBn (the set of strings 
{ab, aabb, aaabbb, ...}) (22, 23). This language mirrors some of the 
dependency relations found in human language (2). Unfortunately, 
empirical tasks using AnBn fail to provide a strong test of recursive 
hierarchical structure since nonrecursive strategies exist to succeed 
in the paradigm. For example, the recursion task by Fitch and Hauser 
tested to see if adult humans and tamarin monkeys could differen-
tiate between artificial grammars that follow an AnBn pattern (22). 
They found that humans could discriminate these languages, while 
the monkeys could not, a result used to argue for species differences 

(11, 24). However, this experiment failed to provide a strong test of 
recursion because there was no dependency between the As and the 
Bs (25). For example, in the sentence “The cat[A1] the dog[A2] chased[B2] 
ran[B1],” each of the two “A” phrases (“The cat[A1]” and “the dog[A2]”) 
must be appropriately matched to the “B” phrases (“chased[B2]” and 
“ran[B1],” respectively). Such dependencies are not present in AnBn 
strings themselves, leaving the possibility that subjects could have 
used nonrecursive strategies to judge grammaticality or discriminate 
stimuli that satisfy the rule from those that do not (26, 27). This 
same generic flaw has been seen in other studies arguing for recur-
sive abilities in birds (23, 28, 29). Subsequent experiments have ex-
tended this task in humans to include the critical test trials for what 
most people would consider essential for having recursion. In these, 
subjects are presented with a violation of the AnBn artificial gram-
mar that is a violation not because of the number of As or Bs, or the 
order of the As versus Bs, but rather the dependency structure (e.g., 
A1A2A3B3B1B2). Such studies found that using similar methods to 
Fitch and Hauser (22), humans did not distinguish these trials as 
violations of the grammar and thus were most likely using alterna-
tive strategies like counting or tracking A-B switches (26, 27). A sep-
arate line of research has aimed at showing that recursive abilities 
could be learned from associative learning (30). However, this work 
lacks the critical comparison that allows one to differentiate be-
tween an associative learning strategy and an abstract recursive rule 
learning strategy: open-ended transfer trials (31). On a similar line 
of research, one recent study in human infants used a habituation 
task to show that there were differences in infant event-related po-
tential (ERP) signals in response to sequences that did not match 
the learned center-embedded strings (32). However, this work lacks 
the critical comparison of generalization to new, nontrained lists. 
Last, one recent study has shown that monkeys and older preschool 
children can be explicitly taught to use a mirror grammar (a gram-
mar in which at the end of the first half of the sequence, the se-
quence is repeated in reverse order) to solve a spatial sequencing 
problem (33), but it is unclear what processes underlie this ability. 
It is also unclear whether humans and nonhuman primates spon-
taneously generalize according to recursive structures over new, 
never before seen, combinations of elements when other strategies 
are available.
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Here, we test whether U.S. adults, Tsimane’ adults who lack for-
mal mathematics and reading abilities, 3- to 4-year-old children, and 
nonhuman primates can learn to produce center-embedded sequences 
and transfer this ability to novel stimuli. Our experimental design is 
motivated to address the primary shortcomings of previous work, 
namely, the lack of dependency between sequential elements, the 
existence of other possible strategies, and the need for comparison 
not only across species but across human groups to provide com-
pelling evidence of universality (34). In addition, the current study 
uses a generation task to assess subjects’ spontaneous transfer to novel 
lists and allows us to measure the sequences they generate relative 
to all other possible responses in an open-ended transfer task. This 
allows us to examine alternative strategies in subjects’ responses that 
could emerge through associative representations, such as represent-
ing transitional probabilities or ordinal sequences. Each of these 
alternative strategies predicts different response patterns compared 
with center embedding on the open-ended transfer trials. A transi-
tional probability strategy could be used to represent a trained list 
by representing which items have been presented next to each other 
in training. However, this type of strategy would break down with 
new combinations of items and would only preserve previously 
seen item-to-item transitions but would lack the overall structure of 
center-embedded lists. Similarly, an ordinal strategy could be used 
to represent center-embedded training lists, as it could with any sta-
ble sequence of random items. However, an ordinal strategy would 
be evident in subjects’ responses on novel transfer trials, particularly 
in the frequency of “crossing errors” in which subjects respond 
“A1A2B1B2.” In previous studies, these errors could not be mea-
sured because the studies lacked dependencies between the As and 
Bs in the AnBn grammar (22, 23). In the current study, each strategy 
is directly compared to the strategy of center embedding in the sub-
jects’ data. Last, we model the results of the experiment using a 
Bayesian data analysis that allows us to infer subjects’ likely strate-

gies and noise parameters while respecting the clustered structure 
of our behavioral design.

RESULTS
Center-embedded sequence generation in adults, children, 
and monkeys
Subjects were first trained on a sequence generation task (Fig. 1A 
and movie S1). Participants were presented with four brackets in 
random locations and had to touch them in a specific order to re-
ceive positive feedback (Fig. 1B). Subjects were trained on two lists 
until they reached the training criterion of 70% correct (Fig. 1C). 
These training lists were consistent with a center-embedded struc-
ture but did not require subjects to learn the center-embedded na-
ture of the lists. They could be encoded as two arbitrary lists of items 
(e.g., A -> B -> C -> D). Previous studies have shown that both chil-
dren and monkeys can represent lists or arbitrary items that do not 
contain any internal dependencies or underlying structure (35). 
Once trained to criterion, a novel list, which was composed only of 
the center two elements from each of the training lists, was randomly 
mixed into training trials (Fig. 1D). Subjects received positive feed-
back regardless of the order produced on the transfer trials. These 
transfer trials were aimed at seeing whether the underlying center-
embedded structure of the training lists was represented and then 
generalized to new combinations of items even when this was not re-
quired to represent or reproduce the training lists. Subjects from all 
groups reached criterion on the training lists and remained above 
chance on the training lists throughout testing (chance = 8%; mean: U.S. 
adults = 97%, Tsimane’ adults = 91%, children = 60%, monkeys = 68%).

The critical test trials examined how subjects generalized elements 
from separate training lists (e.g., “(“, “)” and “[“, “]”), which had not 
been observed together. These test items occupied overlapping or-
dinal positions in the training lists (both open brackets were always 

A B

C

Transfer list

Training lists

D

Fig. 1. Task design and stimuli. (A) Monkeys, children, U.S. adults, and Tsimane’ adults complete the sequence generation task. Subjects were required to touch the images 
in a center-embedded order. (B) A sample training trial is shown. Subjects were trained to order two training lists in which the pictures had to be touched in a specific 
center-embedded order (C) and were tested on a third transfer list that was rewarded regardless of the sequence generated (D). Photo credit: S.F., Harvard University.
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in the second position, and both close brackets were always in the 
third position, e.g., “{ () }” or “{ [] }”). Thus, an ordinal strategy would 
produce an equal mix of center-embedded structures (e.g., “( [] )”) 
and nonembedded, crossed structures (e.g., “( [) ]”) because it could 
just place the items near the beginning or the end based on where 
they were in training. In addition, if subjects rely on an associative 
chain strategy (i.e., ordering the stimuli in a way that maximizes the 
previous sequential orders from the training trials), then subjects 
would produce tail-embedded orders, “[ ] ( )” or “( ) [ ].” Thus, a bias 
to produce more center-embedded than crossed or tail-embedded 
responses during generalization reflects a hierarchical tendency that 
subjects bring to the task. On these transfer trials, subjects received 
positive reinforcement regardless of which sequence they generated.

Our results (Fig. 2) show that all human groups were more likely 
to order the novel transfer stimuli in a center-embedded structure 
than chance [binomial (two tailed): U.S. adults, 224/240, P < .001; 
Tsimane’ adults, 157/251, P < .001; U.S. children, 217/500, P < .001; 
monkeys, 47/180, P < .001; chance = ~8%]. Across all trials, the only 
sequences that were produced more often than chance were center-
embedded, crossed, and tail-embedded structures (see fig. S1). 
Although the monkeys had a higher number of trials that did not 
fall in these categories, there was no systematic pattern among them 
as each structure was produced less often than chance (1/24). These 
groups all produced center-embedded responses much more sys-
tematically than chance would predict, which shows a bias to pro-
duce these structures. Moreover, to test between a center-embedded 

strategy and an ordinal strategy (or knowing the open brackets come 
first and the close brackets come after), we measured whether sub-
jects were more likely to match the close brackets in the correct order 
to form a correct center-embedded structure than to mismatch the 
close brackets to form a non–center-embedded, crossed structure. 
We found that all human groups were more likely to produce cor-
rectly center-embedded structures [binomial (two tailed): U.S. adults, 
224/240, P < .001; Tsimane’ adults, 157/213, P < .001; U.S. children, 
217/301, P <  .001]. This bias to generalize the center-embedded 
structure suggests that subjects induced from the training data that 
the sequences were hierarchically/recursively structured, rather than 
just extracting the ordinal positions. In contrast, although monkeys 
had more center-embedded responses than chance, the number of 
center-embedded responses was not significantly greater than the 
number of crossed responses [binomial (two tailed): 47/97, P = .66]. 
This suggests that the first strategy monkeys used was a nonrecursive 
ordinal strategy (i.e., using the average position from the training 
lists). Thus, exposure to only two sample center-embedded lists did 
not lead to the spontaneous transfer of a recursive strategy to novel 
stimuli in monkeys. Monkeys performed better than human children 
on the training trials that were mixed in during the testing session 
(68 versus 60%), so their failure to spontaneously generalize the 
recursive rule was not due to low training acquisition or to mis-
understanding the general task. However, the question of whether 
monkeys can represent and transfer a hierarchical recursive struc-
ture remained open.
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Fig. 2. The proportion of center-embedded, crossed, and tail-embedded responses on transfer trials for monkeys, children, U.S. adults, and Tsimane’ adults. Error 
bars represent the SE of the proportion. ns, not significant. * represents a significant difference (P < 0.05) between center-embedded responses and crossed responses 
using a two-tailed binomial test.
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Center-embedded sequence generation in monkeys 
with additional exposure
The failure of monkeys in experiment 1 could be due to a capacity 
difference between humans and monkeys, or it could also be due to 
differences in the amount of evidence each group needs to infer these 
types of complex center-embedded structures. To test if this is truly 
a capacity difference as some have suggested (2, 22), we gave mon-
keys additional exposure to center-embedded lists and retested their 
ability to transfer to a novel list. If it is truly a capacity difference, 
then no amount of exposure to center-embedded lists should lead to 
transfer to a novel list. This training and testing procedure followed 
the same general design as experiment 1. The same monkeys from 
experiment 1 were exposed to two additional novel center-embedded 
training lists. Once trained on these lists, we introduced a novel transfer 
list to test what strategy was learned and applied to the novel list. 
With these additional data, monkeys ordered the novel transfer list 
in a center-embedded fashion more than chance [binomial (two tailed): 
49/200, P < .001; see Fig. 3A] and more than crossed responses 
(binomial: 49/68, P < .001), suggesting that monkeys did not use a 
purely ordinal strategy.

To further investigate the strategies used by individual monkeys, 
we looked at the responses of each animal individually. Two of three 
monkeys had significantly more center-embedded response structures 
than crossed, suggesting they used a center-embedded strategy 
[binomial (two tailed): Horatio, 26/35, P <  .01; Beyoncé, 22/28, 
P < .01]. The third monkey, Coltrane, had at or below chance levels 
of responding in both center-embedded and crossed responses (center 
embedded, 2%; crossed, 8%). Instead, he was more likely to order 
them in a tail-embedded way, suggesting that he used an associative 
chain strategy (e.g., “( ) [ ]” ; binomial: 33/50, P < .001). When com-
pared with the performance of children, both monkeys who produced 
center-embedded sequences were within the range (<2 SDs) of hu-
man children (Fig. 3B).

Generalization to novel stimuli in monkeys
We next tested whether monkeys could generalize the recursive rule 
to completely novel stimuli. Although the previous experiment showed 
that two of the monkeys did not just use an associative chain solu-

tion to order the novel list, it is possible that they could have used a 
combination of associative chain solution paired with an associative 
ordinal solution to keep open brackets at the beginning and close 
brackets at the end of the list (e.g., the first and second choices are 
based on an ordinal strategy because open brackets were rewarded 
for being early in the lists; the third choice switches to an associative 
strategy between two of the trained base pairs, which would create a 
paired center; and then, the last item is again selected because of an 
ordinal strategy). To examine this, we tested subjects using novel 
bracket stimuli that they had never been exposed to and, thus, could 
not have used an associative chain process (the items were never 
shown together before so there is no chance to extract the transi-
tional probabilities). In this task, monkeys were given two novel sets 
of brackets and were rewarded regardless of their response for the 
first five trials of a novel list. After the first five transfer test trials, 
monkeys were rewarded only for center-embedded responses (e.g., 
“{ < > }” or “< { } >”). Once a subject reached 7 of 10 correct, they 
immediately were shown a new transfer list and rewarded regard-
less of the response for the first five trials. Critically, these training 
lists were structured analogously to experiment 1 so that training 
reinforced the overall structure, but not the way to generalize 
on novel combinations of items. This process repeated for 30 lists 
per monkey.

Overall, monkeys made more center-embedded responses than 
crossed responses on transfer trials [Fig. 4; binomial (two tailed); 
overall, 135/244, P = .05). This effect was largely driven by one monkey 
who was significantly above chance on the generalization trials 
(Beyoncé: 34/50, P < .01; Horatio: 45/88, P = .46; Coltrane: 56/106, 
P = .31), which is an existence proof that it is at least within the ca-
pacity of a monkey to deploy a recursive hierarchical sequencing 
strategy and generalize it to stimuli that it had never seen before. In 
addition, our Bayesian analysis of these data revealed that the recur-
sive strategy was higher than the prior in all three monkeys, which 
further supports this conclusion (see Supplemental Results and fig. 
S4 for the Bayesian analysis of these data). Previous studies have 
suggested that center-embedded sequencing could be a by-product 
of associative learning mechanism (30). However, the transfer of the 
abstract center-embedded structure without prior exposure to the 
stimuli used further suggests that the transfer is not due to an asso-
ciative mechanism, but rather a representation of the recursive struc-
ture required by the task. Furthermore, this suggests that it is possible 
for a monkey to learn to abstract and generalize this structure to 
completely novel instances using new, never before seen items.

Bayesian analysis of strategies
Many responses cannot be classified as center embedded, tail re-
cursive, or crossing. Three percent of the responses from U.S. 
adults, 12% from Tsimane’ adults, 25% from U.S. children, and 
about half of monkeys’ responses do not fall cleanly into one of 
those categories (e.g., the bars in Figs. 2 and 3 do not add up to one). 
The previous analyses focused on the relative proportion of cross-
ing and center-embedded responses as a gauge of a participant’s 
learning and did not examine these other responses. To better un-
derstand the entire set of responses, we implemented a model that 
formalized the space of all logically possible responses under a sim-
ple noise process. Using this model, we performed a Bayesian data 
analysis (36) to jointly infer the strategies used by each participant 
in the task to make each response, as well as their noisiness (e.g., 
miss-presses, memory error) in implementing those strategies, and 
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Fig. 3. With additional exposure, monkeys show generalization performance 
similar to that of children. (A) The proportion of center-embedded, crossed, 
and tail-embedded responses for monkeys on transfer trials after training on two 
additional lists. (B) A comparison between the average performance of children on 
the first exposure and individual monkeys tested after the additional training. Error 
bars represent the SE of the proportion. * represents a significant difference (P < 0.05) 
between center-embedded responses and crossed responses using a two-tailed 
binomial test.
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group-level parameters quantifying the distribution of responses in 
each species and population. This permits us to test a large variety 
of different response patterns and processes and to quantify the 
degree to which subjects respond recursively while incorporating 
these other factors. Previous works investigating the strategies used 
by participants (both human and nonhuman) have often failed to 
test for the possibility of other nonrecursive strategies (22, 23), 
and when other strategies are systematically tested, these alternative 
nonrecursive strategies are shown to be used (37). Thus, this analysis 
is aimed at understanding the underlying processes that produced 
the center-embedded structures in our task (see Supplementary 
Materials and Methods and fig. S2 for the complete model details). 
For this analysis, we used the results from experiment 2 for the 
monkeys and those from experiment 1 for the human subjects. We 
chose this set of data because in experiment 1, the monkeys showed 
a clear failure to transfer the overall structure to the transfer list, and 
experiment 2 was the most closely matched to experiment 1 in 
human subjects. We also ran the full Bayesian models on experi-
ments 1 and 3 (see figs. S3 and S4)

Figure 5 shows the probability that individuals in each group were 
using a recursive strategy, both at the group level and for each indi-
vidual in a group. The prior probability of using a strategy on a given 
trial was 1 of 12 (≈0.08) for each of the 12 strategies. Each group 
was inferred to be more likely using a recursive strategy than was a 
priori expected, as each group’s probability of using a recursive 
strategy was inferred to be very likely greater than 1 of 12. The max-
imum a posteriori estimates for each group’s probability of using 
a recursive strategy rank in order from U.S. adults as the highest 
[mean = 0.82, Credible Interval (CI) = 0.72 to 0.89], followed by 
Tsimane’ adults (mean = 0.41, CI = 0.31 to 0.52), U.S. kids (mean = 0.27, 
CI = 0.19 to 0.34), and then monkeys (mean = 0.22, CI = 0.12 to 
0.34). The individual probabilities of using a recursive strategy, 
however, tell a more subtle story: The relatively low-average recursive 
strategy use by monkeys is heavily driven by a single monkey who 
had near-zero probability mass on the correct recursive strategy and 
was instead inferred to have been using an “open, matched-close, open, 
matched-close” strategy. However, the monkey inferred to use a 
recursive strategy most often (Beyoncé) had a mean probability of 
recursive strategy use of 0.48 (CI = 0.21 to 0.70), higher than 67% of 
human participants (76% of U.S. kids and 52% of Tsimane’ adults).

Inferred noisiness in responding
The Bayesian model included a by-participant noise parameter that 
specified the probability that any given bracket choice a participant 
made was unintended. We made the simplifying assumptions that 
(i) a mistake changes the intended bracket to one of the other three 
brackets at random and (ii) that each mistake is independent of other 
mistakes. Although memory capacity could be one source of this 
noisiness, this noise model is not designed to account for every possible 
source of error separately, of which there are many (e.g., inattention, 
memory failure, mis-presses). Rather, this model was designed to be 
a general catch for responses that were unlikely to have been gener-
ated intentionally, without respect to their exact causes.

The analysis also revealed large differences between groups in 
the inferred error rate over trials, where the error rate is defined as 
the probability of making an error on one or more bracket choices 
in a trial. Monkeys were inferred to have the highest levels of error, 
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followed by U.S. kids, Tsimane’ adults, and then U.S. adults. These 
differences are substantial: Monkeys had an error rate of 0.075 on 
any given bracket choice, which corresponds to an error rate over 
trials of 0.24 (CI = 0.19 to 0.28). This is over 70% higher than the 
error rate of U.S. kids (mean = 0.14, CI = 0.12 to 0.16), 80% higher 
than Tsimane’ adults (mean = 0.13, CI = 0.09 to 0.17), and 260% 
higher than U.S. adults (mean = 0.09, CI = 0.06 to 0.13). Figure 6A 
shows the probability that individuals in each group made an error 
on a given trial (see the Supplementary Materials for complete model 
results).

The differing levels of noise between groups can explain some of 
the difference in their ability to correctly and consistently center embed. 
We compared the model’s predictions with and without the noise 
parameters, holding the other inferred parameters constant, to de-
termine the effect of noise on each group’s performance. The results, 
displayed in Fig. 6B, show that monkeys would center embed with 
probability of 0.38 (CI = 0.30 to 0.47) if they implemented their in-
tended strategies correctly, compared with their previous rate of 0.26. 
This 46% increase in the rate of center-embedded responses is sub-
stantially higher than the increase for kids (13%), Tsimane’ adults 

(22%), and U.S. adults (10%). The absolute differences in center 
embedding between monkeys and the other groups would also di-
minish. For instance, the difference in rates of center embedding be-
tween monkeys and U.S. kids (removing U.S. kids’ errors as well) would 
drop 41% from 0.17 (CI = 0.14 to 0.19) to 0.10 (CI = 0.06 to 0.13).

Memory constraints on recursive processing
We also looked at individual differences in the children’s sequence 
generation on the transfer list. Children were given a forwards-digit-
span memory task where the experimenter would say a sequence of 
numbers and the participant would then repeat the sequence back 
to the experimenter. Only children who had a significantly higher 
than chance number of center-embedded and crossed responses 
were included in the correlation (n = 25). In addition, two subjects 
were excluded from this working memory correlation because they 
did not complete the memory task. We found a strong correlation 
between working memory and the proportion of center-embedded 
responses compared with crossed responses, such that children who 
performed better on the working memory task were more likely to 
produce center-embedded sequences (R2 = 0.17, P = 0.05; see Fig. 6C). 
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Fig. 6. The effects of noise and memory errors on generating center-embedded structures. (A) The probability each group made an error implementing their strategy 
at least once in a trial, according to the results of the Bayesian analysis. (B) The probability each group generates center-embedded responses, with noise included in the 
model (light gray) and excluded from it (dark gray). The red bars represent the difference in center-embedding rates with and without noise for each group (i.e., the 
difference in the height of the bars). The error bars around the means in both (A) and (B) represent the 95% credible intervals. (C) Working memory performance, as mea-
sured by a forwards-digit task, was correlated with the proportion of center-embedded responses. (D) Age was not correlated with the proportion of center-embedded 
responses. The shaded regions represent 95% confidence intervals in (C) and (D).
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In contrast, we found little to no relation between the proportion of 
center-embedded sequences and age (R2 = 0.008, P = 0.68; see Fig. 6D). 
In a multiple regression including centered and scaled age and work-
ing memory score, we found that working memory had a marginally 
significant effect over and above age (working memory score:  = 0.11, 
P = 0.058; age:  = −0.03, P = 0.62). When the outlier (>2 SDs away 
from the mean proportion of center-embedded responses) is ex-
cluded, the significance of the correlation between the proportion 
of center-embedded responses and working memory score (but not 
age) is increased (working memory:  = 0.09, P = 0.04; age:  = −0.004, 
P = 0.91). This suggests that the differences among children may be 
due in part to differences in working memory, which supports the 
hypothesis that subjects used a memory taxing recursive strategy (e.g., 
a pushdown stack). In addition, in U.S. children, we found that the 
inferred probability of making an error in the Bayesian analysis was 
correlated with their memory performance (Spearman  = −0.36, 
P < 0.05; see fig. S5). These data provide evidence that one of the 
limiting factors in representing recursive structures is working 
memory capacity.

DISCUSSION
Our results show the natural tendency of humans to spontaneously 
infer an abstract hierarchical structure when representing sequences. 
Subjects were exposed to two sequences, which contained an under-
lying center-embedded structure. These lists were ambiguous in 
how they should be represented. One could represent them as two 
arbitrary lists, a capacity that has been attested in both human chil-
dren and monkeys (35), or they could spontaneously extract the 
underlying hierarchical structure of the training stimuli. We found 
that all human groups tested regardless of age, cultural, or educational 
experiences extracted and then generalized the internal center-
embedded structure of the training lists to generate a novel instance 
of a center-embedded structure. This was not due to previous expo-
sure to bracket-like stimuli because the Tsimane’ adults, preschool 
children, and monkeys, who lack formal mathematics and reading 
training, had never been exposed to such stimuli before testing. The 
Tsimane’ adults’ performance shows that formal education is not 
needed to represent and generate recursive sequences. In addition, 
by the age of 3.5 years old, human children already have the ability 
to represent the abstract rule and spontaneously generate novel re-
cursive sequences. These data support the theory that humans have 
a bias to infer hierarchical structures from sequential data, also known 
as “dendrophilia” (25).

Our data also provide evidence that nonhuman animals can rep-
resent and generate novel sequences with a recursive, hierarchical, 
and center-embedded structure. Although, the abstract hierarchical 
structure was not the first strategy used, with additional exposure, 
two of three monkeys learned to generalize and create novel center-
embedded sequences. These results are convergent with prior results 
showing that monkeys and preschool children can be taught to use 
a mirror grammar (33), one part of the center-embedded data struc-
ture (a unit consisting of two pairs embedded inside of another like 
unit) shown to be represented here. In addition, some research has 
suggested that center-embedded recursion could come about through 
ordinal position or associative chain learning (30). However, each 
of these strategies predicted a pattern of results that was disconfirmed 
by our analyses. Instead, our data suggest that monkeys have the 
capacity to come to understand an abstract hierarchical grouping. 

The ability of monkeys to generate center-embedded recursive se-
quences suggests that recursive processing may not be limited to 
humans, as has been claimed (3). Instead, our results provide evi-
dence that working memory constraints may be one cause of differ-
ences in recursive abilities between monkeys, human children, and 
human adults. Although our results show that monkeys can generate 
recursive sequences, it is still unknown how widespread this capacity 
is at the population level. To measure the generalizability of this 
capacity to populations, future research would need to measure the 
heterogeneity of this capacity across many nonhuman subjects. 
Last, it is still an open question whether this ability to represent center-
embedded sequences could generalize to larger sequences with mul-
tiple center embeddings and possibly enable the type of theoretically 
infinite combinatorial capacity in language. However, because of the 
high memory demands that multiple embeddings require, even hu-
man adults have difficulty representing multiple center embeddings 
in language (38). It is possible that the same computations used to 
represent one embedding could be used for multiple embeddings if 
the memory demands are decreased. Future work should test for 
this possibility in both human and nonhuman populations.

MATERIALS AND METHODS
Participants
Sample sizes for human subjects were designed to match the amount 
of data collected between groups based on the number of task trials 
that subjects from each group could reasonably complete.

U.S. adult participants were 10 adults (mean age = 22.6, SD = 1.0, 
1 male). Participants were undergraduate students recruited from 
the University of Rochester River Campus. All guidelines and require-
ments of the University of Rochester’s Research Subjects Review Board 
were followed for participant recruitment and experimental procedures.

U.S. children participants were 50 children (mean age = 4.1 years, 
SD = 0.51 years, age range = 3.1 to 5.0 years, 22 male). Participants were 
recruited through the Kid Neuro Lab at the University of Rochester. 
All guidelines and requirements of the University of Rochester’s 
Research Subjects Review Board were followed for participant recruit-
ment and experimental procedures. U.S. children completed the Test 
of Early Mathematics Ability (TEMA-3) (39), the Test of Auditory 
Comprehension of Language (TACL-4) (40), and a memory task in 
which they repeated a set of one to four numbers back to the experi-
menter. Note that data from children who did not reach high perform
ance on the training lists are not informative because failures on 
training trials signal that they did not understand the task. Children 
were excluded because performance on the training trials did not meet 
the criteria of 3 of 5 trials correct on the training lists after 20 trials per 
training list (n = 15), failure to remain significantly above chance (at 
least 15% accuracy, chance = 4%) on the check trials in the testing 
session (n = 1), or experimenter error (n = 1). This exclusion rate is 
well within the normal range for tasks of this difficulty with children 
of this age range.

Tsimane’ adult participants were 37 adults (mean age = 32.4 years, 
SD = 15 years, 10 male). Participants were recruited from Tsimane’ 
communities near San Borja, Bolivia. All guidelines and requirements 
of the University of Rochester’s Research Subjects Review Board were 
followed for participant recruitment and experimental procedures. 
Interpreters were provided by the Centro Boliviano de Investigación 
y de Desarrollo Socio Integral. Subjects had a range between 0 and 12 years 
of formal education taught at the local village (mean = 4.2 years). 
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As with other populations, we excluded Tsimane’ adults who did 
not reach performance of three correct in any five-trial period 
during the training lists on training trials (n = 16). Exclusions are 
expected for populations with little or no formal education and for 
whom psychology experiments with outsiders are extremely unusual.

Nonhuman primate subjects were three adult rhesus macaques 
(two males), who were socially housed. This sample size was chosen 
because it was the maximum number of animals that were available 
for testing. This number of subjects is sufficient for the purpose of 
the study because it allowed us to collect a large number of trials per 
subject and because each trial consisted of an open-ended response. 
Although this small number of subjects cannot measure the preva-
lence on a population level, it is sufficient to test for an existence 
proof of whether the capacity to represent recursive sequences is 
possible in a nonhuman animal. Two animals received food and 
water ad libitum as approved by the University of Rochester Com-
mittee on Animal Resources and veterinary staff. One animal was 
kept on an ad libitum food and water-restricted diet as approved by 
the University of Rochester Committee on Animal Resources and 
veterinary staff. All animal care procedures were in accordance with 
an Institutional Animal Care and Use Committee protocol. All 
monkeys had prior experience with sequencing tasks using photo-
graphs and geometric shapes.

Procedure
The procedure was designed to accommodate a wide variety of sub-
jects. Sample sizes and the number of trials per subject were chosen 
to match the total amount of usable transfer trial data collected 
on the basis of the number of task trials subjects in each popula-
tion could complete. More U.S. children and Tsimane’ adults were 
tested using a smaller number of trials compared with U.S. adults 
and monkeys who can complete many more trials in any given 
session.

U.S. adults, children, and monkeys all completed the task on touch 
screen monitors. To begin a trial, subjects would start a trial by 
touching the start stimulus, a white box. Then, the four stimuli pic-
tures would be randomly placed on the monitor. Subjects were re-
quired to touch the stimuli in the correct order. When an item was 
pressed, it flashed and gave auditory feedback to cue that the touch 
was registered. Items remained on the screen after being touched 
but were unable to be activated again for 2 s to help decrease acci-
dental double clicking. During training trials, if the first choice of a 
trial was correct, the subject heard positive auditory feedback (a ding) 
and continued onto the next choice until either the trial was com-
pleted correctly or an incorrect item was selected. If an incorrect 
item was selected during a training trial, subjects immediately re-
ceived auditory feedback (a buzzer) and a 2-s time-out screen. If a 
training trial was correctly completed, subjects received positive au-
ditory feedback (a chime). For the Tsimane’ adults, verbal feedback 
was given (“OK” for a correct touch, “wrong” for an incorrect touch, 
and “good” for a correct trial). In addition, monkeys received a small 
food or juice reward for correct trials. There was a 2-s intertrial in-
terval before the start of the next trial regardless of accuracy. During 
transfer trials, each trial continued until the end of the trial, and 
subjects received positive feedback regardless of the response.

Prior research has shown that nonindustrialized populations in-
cluding the Tsimane’ group show a disadvantage with computerized 
testing procedures compared with manual presentations (41). To 
eliminate these issues, Tsimane’ adults were presented with stimuli 

printed on laminated 4″ by 4″ index cards. At the start of each trial, 
the stimuli were shuffled and randomly placed in front of the subject. 
Subjects would respond by touching the index cards. On training 
trials, verbal feedback was given (“OK” for a correct touch, “wrong” 
for an incorrect touch, and “good” for a correct complete trial). For 
transfer trials, only the “OK” verbal cue was used to indicate they 
had touched a picture and no verbal feedback was given at the end 
of the trial regardless of a response. The testing sessions were video 
recorded and coded by two researchers for reliability. The stimuli, 
instructions, and randomization were the same as all U.S. subjects.

Training phase
To keep the task consistent across subject groups, verbal instruction 
was kept to a minimum. At the start of the training session, subjects 
were told, “You will see four images. You will need to touch them in 
order.” U.S. adults received no additional instruction. For each train-
ing list, Tsimane’ adults and U.S. children were shown an example 
of how a trial works with the experimenter touching the training list 
in the correct order while saying, “It goes, this one, this one, this 
one, and then this one.” Although this procedure could not be used 
for monkeys, they had previously been trained to order sets of ran-
dom images and, thus, were used to the structure of the task before 
testing.

All subjects received training on two center-embedded lists (see 
Fig. 1C) before the testing session began. Each list consisted of four 
bracket images, “{ ( ) }” and “{ [ ] }”, respectively. These training 
images were selected to give cues to link the base pairs (type/color 
of the brackets) and the order within the base pairs (left/right facing 
brackets and a colored box around the close brackets). Previous re-
search has shown that in order for adults to represent true center-
embedded sequences (and differentiate between center-embedded 
and “crossed” errors), they first need to learn what the base pairs 
are. In the past, this has been accomplished via both having a per-
ceptual cue to the base pairs (phonetic features) and training on two-
item lists in order for subjects to learn the base pairs (42). To eliminate 
the two-item training phase, we chose to just use perceptual cues to 
indicate the base pairs. In addition, there needs to be a cue to the 
order within the pairs or which falls in the “A” set and in the “B” set 
in the AnBn grammar. As with the base pairs, in the past, this has 
been indicated with both perceptual features (22, 42) and two-item 
training. We used the perceptual features of the direction of the 
bracket and a border around the close brackets to eliminate the 
need for two-item training, which would increase the possibility of 
using associative strategies (30). A border was used around the close 
brackets as an extra indicator to the order within a pair as to elimi-
nate the need to differentiate stimuli just based on the direction they 
were rotated.

Subjects were trained on one training list until they met the cri-
terion [U.S. adults: 7 of 10 correct; Tsimane’ adults and U.S. children: 
3 of 5 correct; monkeys: 7 of 10 correct (1 monkey) and 70% correct 
for two consecutive, 200 trial training sessions (2 monkeys)]. The 
goal of testing monkeys was to test if it was within the capacity of a 
nonhuman animal to transfer the recursive structures to novel lists. 
It is possible that failure could be due to undertraining of the training 
sequences or overtraining of the sequences (which could push mon-
keys to rely on less computationally complex ordinal rules). Thus, 
we wanted to be sure that failure (or success) was not due to one 
specific training procedure. Subjects were then trained on the second 
list to the same criterion before moving onto testing sessions. Monkeys 
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took on average 1368 trials per training list (Horatio: 800 per list, 
Coltrane: 800 per list, Beyoncé: 2504 per list).

Experiment 1
After completion of the training phase, a percentage of transfer trials 
were randomly intermixed within the training trials (U.S. adults, 
Tsimane’ adults, U.S. children, and one monkey: 50%, two monkeys; 
5%). Because this type of procedure has never been used to test non-
human primates, we varied the percentage of transfer trials to make 
sure that the percentage of transfer trials did not affect the results. 
All monkeys in experiment 1 showed similar, nonsignificant results 
on the transfer trials regardless of the percentage of transfer trials. 
These transfer trials were nondifferentially reinforced such that sub-
jects received positive feedback regardless of response or no feedback 
for the Tsimane’ adults. The transfer trials consisted of the inner 
brackets from each of the two training lists. They had never been 
presented together before in a single trial. Transfer responses that 
contained a repeated touch of the same image were allowed but ex-
cluded from analysis because they were rare and no individual repeat 
error happened more often than 1% of the time in any group.

Experiment 2: Additional exposure
To test if monkeys could use a recursive strategy with additional 
exposure, after the initial testing phase, monkeys received training 
on two additional center-embedded lists. These lists were composed 
of completely novel sets of bracket images, which were different colors 
and shapes than the brackets in experiment 1. The structure of these 
additional training lists matched the initial training such that the 
first list was two sets of two bracket images (total of four). The sec-
ond list consisted of the same outside bracket images and two novel 
bracket images for the center. As in the initial training phase, subjects 
were first trained to 70% correct on each training list (one monkey: 
70% correct for two sessions, two monkeys: 7 of 10 correct). This 
took an average of 1795 trials per list. We chose to vary the training 
criteria between monkeys as to balance any possibility of over- or 
undertraining the training lists.

After training, subjects were shown transfer trials (one monkey: 
50%, one monkey: 7%, one monkey: 100% transfer trials) that con-
sisted of the two sets of center brackets presented in the training 
lists. Again, the percentage of transfer trials was varied to make sure 
there was no effect of the percentage of transfer trials. Because of the 
novelty of the task, there was no strong a priori reason to choose a 
specific percentage of probe trials. Instead of limiting the type of 
testing, we chose to vary the percentage of probe trials between the 
monkeys. We saw no systematic evidence of transfer trial percent-
age, such that the two monkeys who had a significant number of 
center-embedded responses received the smallest and largest per-
centage of transfer trials. These transfer list brackets had never been 
presented together before the transfer trials. Subjects received posi-
tive feedback regardless of the order chosen in transfer trials.

Experiment 3: Generalization to novel stimuli
To test if monkeys could generalize the recursive rule to completely 
novel stimuli, we tested their transfer to four item lists that they had 
never seen in training. To do this, we created 30 novel transfer lists. 
Monkeys were presented with one of the novel lists at a time. The 
first five trials the monkey received of a novel list were nondifferentially 
reinforced. Monkeys received positive feedback regardless of their 
response. This allowed us to see what strategy they used for lists in 

which they had never seen any of the items before. After five trans-
fer trials, monkeys received differential reinforcement such that they 
received positive feedback only for center-embedded responses 
(e.g., either “{ < > }” or “< { } >”). Once subjects correctly ordered 8 
of 10 trials in a row, subjects immediately moved onto another nov-
el transfer list and repeated this procedure—5 nondifferentially re-
inforced transfer trials, followed by training to 8 of 10 correct. This 
procedure was repeated for a total of 30 novel transfer lists. The sub-
jects averaged 157 trials to reach criterion for each list. The data 
presented in Fig. 4 only included the first five nondifferentially re-
inforced transfer trials from each of the novel lists.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/26/eaaz1002/DC1
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