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It is debated whether cortical responses matching the time scales of phrases and sentences mediate the mental construction of the
syntactic chunks or are simply caused by the semantic properties of words. Here, we investigate to what extent delta-band neural
responses to speech can be explained by semantic relatedness between words. To dissociate the contribution of semantic relatedness
from sentential structures, participants listened to sentence sequences and paired-word sequences in which semantically related
words repeated at 1 Hz. Semantic relatedness in the 2 types of sequences was quantified using a word2vec model that captured the
semantic relation between words without considering sentential structure. The word2vec model predicted comparable 1-Hz responses
with paired-word sequences and sentence sequences. However, empirical neural activity, recorded using magnetoencephalography,
showed a weaker 1-Hz response to paired-word sequences than sentence sequences in a word-level task that did not require sentential
processing. Furthermore, when listeners applied a task-related rule to parse paired-word sequences into multi-word chunks, 1-Hz
response was stronger than that in word-level task on the same sequences. Our results suggest that cortical activity tracks multi-word
chunks constructed by either syntactic rules or task-related rules, whereas the semantic relatedness between words contributes only
in a minor way.
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Introduction

A sensory sequence, such as sounds, words, and images, can be

represented at different levels of hierarchical structures, from

individual items to their associated structures.Chunking has been

hypothesized to be one of the sequential representation mecha-

nisms—several contiguous items in a sequence can be grouped

into a superordinate chunk that is stored and manipulated as

a single unit (Dehaene et al. 2015). In the domain of speech, it

is heavily debated how the brain integrates information across

words to formmulti-word chunks, such as phrases and sentences,

and to derive the meaning of such chunks. One viewpoint is

that the brain applies tacit syntactic rules to combine words

into larger multi-word chunks, forming a hierarchical linguistic

structure (Martin and Doumas 2017; Ding et al. 2017a; Meyer and

Gumbert 2018); another viewpoint states that the brain does not

have recourse to hierarchical syntax at all, but instead, simply

binds information across words based on semantic and statistical

analysis (Elman 1990; Frank et al. 2012; Christiansen and Chater

2016).

Recent neurophysiological studies show that the neural oscil-

lations at the delta-band frequency (< 4 Hz) are in synchrony with

multi-word chunks, e.g. phrases and sentences (Ding et al. 2016;

Meyer et al. 2016; Makov et al. 2017; Keitel et al. 2018; Henke and

Meyer 2021). Importantly, cortical activity correlates with the time

scales of phrases and sentences are independent of prosodic and

statistical word cues, which has been taken as strong evidence for

the hypothesis that the brain groups words into chunks based on

syntactic rules (Fig. 1A and B, solid curve; Ding et al. 2016, 2018).

Challenging this position, it is possible that neural tracking of

phrases and sentences can be explained by semantic relatedness

between words (Jin et al. 2020). In the following, we illustrate this

idea using the neural responses to sentences as an example; the

same principle also applies to neural responses to phrases.

The simplest form of word sequence processing is to analyze

the relations between words. It is well-established that if a word

is semantically related to its preceding context, it can be easier

to access and its N400 component of event-related potentials

(ERP) is reduced (Halgren et al. 2002; Lau et al. 2008; Kutas and

Federmeier 2011). In most instances, the words within a sen-

tence are semantically more related to their neighboring words,

compared with words in other sentences. The context-dependent

neural response, therefore, is generally expected to be high at

the beginning of a sentence and to be low at the end of a sen-

tence, forming an apparent neural tracking of sentences (Fig. 1B,

https://orcid.org/0000-0003-2684-1484
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Fig. 1. Two hypotheses for neural tracking of sentences. A) Two-word sentences (noun + verb) are used for illustration purposes. Each word lasts for
500 ms and hence words and sentences are isochronously presented at 2 and 1 Hz, respectively. B) The syntax-based chunking hypothesis assumes a
consistent change of neural activity within a mentally constructed chunk. The semantic-relatedness hypothesis assumes that the neural response to
a word is attenuated if the word is preceded by a semantically related word. In addition, it is assumed that words within a sentence are more closely
related than words across a sentence boundary. Both hypotheses can explain the neural tracking of sentences as illustrated in the response spectrum.

dotted curve). This possibility provides an alternative explanation

for neural tracking of sentences without assuming chunk-level

representation. It is crucial to investigate to what extent neural

tracking of sentences can be explained by semantic relatedness

between words so that different hypotheses about neural tracking

can be tested.

Relative to automatic syntax-based chunking processes,

sequence chunking can be implemented by more controlled

processes (Jeon and Friederici 2015). A recent study shows

that when listeners are asked to explicitly parse word lists

following given chunking rules, the delta-band cortical activity

reliably tracks multi-word chunks defined by the rules rather

than semantic relatedness between words (Jin et al. 2020). It

remains unclear, however, whether semantic relatedness could

predominantly drive delta-band neural activity when listeners

have access to the semantic properties of individual words in the

sentential context.

To investigate these questions, we examined how sequential

structures and tasks separately modulated neural response to

speech usingmagnetoencephalography (MEG). First, to investigate

the influence of sentential structures, we used a word-level task

that directed participants’ attention to the semantic properties

of individual words. Under this task, we presented to listeners

sentence sequences, aswell as paired-word sequences designed to

frequency tag the neural responses tracking semantic relatedness

between words. We quantified the semantic relatedness of the

sequences using the word2vec model—a connectionism model

that only considers the semantic relation between words (Mikolov

et al. 2013). If measured neural responses were inconsistent with

the word2vec model predictions, it would suggest that semantic

relatedness between words was not enough to explain the neural

responses tracking sentences. Next, to assess to what extent

neural response to paired-word sequences can be modulated by

tasks, we compared neural responses in the word-level task with

those in a chunk-level task. If neural tracking responses can be

enhanced during the chunk-level task compared with the word-

level task, it would suggest again that delta-band cortical activity

was primarily related to chunk-level representations and chuck-

ing operations rather than semantic relatedness between words.

Materials and methods
Participants
Sixteen native speakers of Mandarin Chinese (19–25 years old,

mean 21 years old, 8 males) participated in this study. All listeners

were right-handed,with no self-reported hearing loss or neurolog-

ical disorders. The sample size was predetermined by a previous

MEG study on neural tracking of speech in which the post-hoc

effect size calculation indicated a powerful study given a cohort of

16 participants (Jin et al. 2020). The experimental procedures were

approved by the Research Ethics Committee of Peking University,

Zhejiang University, and New York University Shanghai, and were

in accordance with the declaration of Helsinki. The participants

provided written consent and received financial compensation.

Word sequences
The study presented 3 types of word sequences, i.e. paired-word

sequences, random-word sequences, and sentence sequences

(Fig. 2A). Each sequence was constructed by 24 disyllabic words:

These words were independently synthesized using iFLYTEK

synthesizer (http://peiyin.xunfei.cn/; Mandarin Chinese; female

voice) and were concatenated without any silence gap between

words. The synthesized words were 500 ms in duration and were

adjusted to the same intensity, following the procedure in Ding

et al. (2016). Individual words synthesized as a whole sounded

more natural compared with the speech materials in which each

syllablewas independently synthesized.Within aword,no further

http://peiyin.xunfei.cn/
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Fig. 2. Stimuli and tasks. A) Sequences of auditory words that were organized according to different rules were used as stimuli. The paired- and
random-word sequences consisted of isochronously-presented disyllabic nouns from 2 semantic categories, i.e. living (l) and nonliving (n) things. In
the paired-word sequences, the semantic category of words formed cyclic patterns repeating every 4 words. In the random-word sequences, the 2
semantic categories of words were randomly presented. In the sentence sequences, each sentence was constructed by presenting a disyllabic noun (N)
followed by a disyllabic verb (V). B) Multiple tasks were designed by inserting different outliers in the sequences to manipulate and control the level
of speech processing. During the word-level task, outlier trials were built by replacing 2 randomly selected words with 2 abstract nouns (“A” in the
illustration, e.g. honor and spirit), and listeners were asked to detect these abstract nouns while listening to paired-word, random-word, and sentence
sequences. During the chunk-level and auditory-level tasks, participants listened to paired-word sequences only. In the chunk-level task, outlier trials
were built by switching the position of a l-noun with its neighboring n-noun, therefore 2 nouns in a chunk fell into the different semantic categories
forming an illegal chunk. Listeners were asked to detect these invalid chunks. During the auditory-level task, outlier trials were built by changing the
gender of the voice of 2 randomly selected words, and listeners were asked to detect these voice changes.

control was applied to the intensity and the duration of individual

syllables. Coarticulation could exist between these syllables. Each

disyllabic word was an acoustically independent unit and was

isochronously presented at 2 Hz.

The first 2 kinds of word sequences, i.e. the paired-word

sequences and random-word sequences, were constructed by

disyllabic nouns (N=240) of living (l) and nonliving (n) things

(see Table S1 for speech materials). In each sequence, the living

things were animals (N=60; e.g. monkey and panda) and plants

(N=60; e.g. tulip and strawberry); nonliving things were small

manipulatable objects (N=60; e.g. teacup and toothbrush),

and large non-manipulatable objects (N=60; e.g. playground

and hotel). The paired-word sequences and the random-word

sequences had no syntactic structure. The sequences were

constructed using the following procedure.

In each paired-word sequence, the semantic category of words

changed periodically with a cycle of 4 words, i.e. “nnll,” with 2

nouns of nonliving things followed by 2 nouns of living things

(Fig. 2A). In “nn” or “ll,” 2 nouns were randomly selected from the

same or different narrow categories. For instance, 2 nouns of living

things, i.e. “ll,” can be 2 animals or 2 plants together, or a mixture

of 1 animal and 1 plant. Based on the position of each noun,

semantic relatedness between 2 living or nonliving nouns was

high, whereas semantic relatedness between 1 living noun and 1

nonliving noun was low. Therefore, semantic relatedness between

words alternated periodically at 1 Hz. Consequently, neural activ-

ity tracking semantic relatedness was expected to show period-

icity at 1 Hz, which was further illustrated using a word2vec-

based semantic relatedness model (see section “Results”). In the

random-word sequences, each word was randomly selected from

all disyllabic nouns.

In the sentence sequences, 80 four-syllable sentences were

constructed, in which the first 2 syllables formed a noun (or a

common noun phrase) and the last 2 syllables formed a verb

(or a common verb phrase; see Table S1 for speech materials).

Since the distinction between words and short phrases was often

ambiguous in Chinese, to simplify the discussion, we always

referred to the first 2 syllables in a sentence as a disyllabic noun

(N) and the last 2 syllables as a disyllabic verb (V). Each sentence

was isochronously presented at 1 Hz; Therefore, neural tracking

of sentences was expected to show periodicity at 1 Hz.

In the 3 types of sequences, no word was repeated within a

sequence. In some conditions, outlier sequenceswere constructed

by replacing words with abstract nouns (e.g. honor and spirit;

see Table S1 for speech materials). The abstract noun was chosen

from a pool of 30 abstract nouns, and each abstract noun only

appeared once in the experiment. The participants were familiar-

ized with these abstract nouns before the experiment.

Procedures and tasks
At the beginning of the experiment, participants were required to

familiarize all synthesized words used in this experiment in case

they were not used to the synthesized sound. In this session, all

words were presented to participants in random order.When par-

ticipants heard a word, they pressed a key to see the written word

on the computer screen. Then, they could choose to listen to the

word again or proceed to the next word by pressing different keys.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
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We first preview the experimental procedures. In the experi-

ment, neural responses were recorded by MEG. The experiment

consisted of 5 conditions that were presented in 5 separate

blocks. Three blocks separately presented paired-word sequences,

random-word sequences, and sentence sequences, and partici-

pants were asked to perform the same word-level task. In the

other 2 blocks, we only presented paired-word sequences while

participants were asked to separately perform a chunk-level task

and an auditory-level task. In each block, 20 normal sequences

and 5 outlier sequences were mixed and presented in a random

order. After listening to a sequence, participants pressed key 0 or

key 1 to indicate normal and outlier trials, respectively. After

the keypress, the next sequence was presented after a silent

interval randomized between 1 and 2 s (uniform distribution).

All 5 blocks of conditions were presented in a random order, with

the constraint that the 3 blocks using paired-word sequences

were following each other and 2 blocks using the random-word

sequences and sentence sequences were also next to each other.

We applied such constrain so that we could directly compare the

task effect and sequential structure effect on neural response

without interference. Participants were informed of the task

before each condition block and had a 2-min rest between blocks.

The detailed procedures are as follows. In the first 3 blocks,

paired-word sequences, random-word sequences, and sentence

sequences were presented, respectively, and participants were

asked to perform the word-level tasks. In this task, participants

were instructed to detect occasionally presented abstract nouns

(Fig. 2B, upper panel). An outlier trial had the same design as a

normal sequence did, except that 2 randomly selected words in

non-adjacent sites were replaced with 2 abstract nouns.

In the other 2 blocks,we only presented paired-word sequences

while participants were asked to perform a chunk-level task and

an auditory-level task, respectively. In the chunk-level task, par-

ticipants were instructed that 2 neighboring words in the paired-

word sequence could construct a chunk and those 2words fell into

the same semantic category, i.e. 2wordswere all living nouns or all

nonliving nouns. They had to detect if any chunk contained words

fromdifferent semantic categories (Fig. 2B,middle panel). To build

such invalid chunks in an outlier trial, a living noun was switched

with its neighboring nonliving noun, and therefore 2 nouns in a

chunk fell into different semantic categories, violating the chunk

construction rule. In addition, In the auditory-level task, par-

ticipants were instructed to detect occasionally presented voice

changes (Fig. 2B, lower panel). An outlier trial was constructed by

changing the voice of 2 randomly selected words in non-adjacent

sites using the change-gender function in Praat (Boersma 2006).

Before MEG recording, instructions were given about all 3 tasks.

Therefore, the sequence structure of word sequences was dis-

closed to participants. Following the instruction of each task,

participants were also familiarized with the task by listening to 1

normal sequence and 2 outlier sequences, which were presented

randomly. After each sequence, they had to verbally report to

the experimenter whether it was a normal or outlier sequence

and which words were the outlier, e.g. words with a changed

voice, abstract nouns, or 2 words in a chunk falling into different

semantic categories. The sequences could be replayed until the

participants understood the experimental tasks and correctly

reported the outliers.

Data acquisition
Neuromagnetic responses were recorded using a 306-sensor

whole-head MEG system (Elekta-Neuromag, Helsinki, Finland)

at Peking University, sampled at 1 kHz. The system had

102 magnetometers and 204 planar gradiometers. Four MEG-

compatible electrodes were used to record electrooculogram

(EOG). For MEG source localization purposes, structural magnetic AQ7

resonance imaging (MRI) data were collected from all participants

using a Siemens Magnetom Prisma 3-T MRI system (Siemens

Medical Solutions, Erlangen, Germany) at Peking University. A

3-D magnetization-prepared rapid gradient-echo T1-weighted

sequence was used to obtain 1×1×1 mm3 resolution anatomical

images.

Data preprocessing
Only the neural responses to normal sequences were analyzed.

The temporal signal-space separation (tSSS) was used to remove

the external interference fromMEG signals (Taulu and Hari 2009).

To remove ocular artifacts both in MEG signals, the horizontal

and vertical EOG were regressed out using the least-squares

method (Ding et al. 2017b). Since the current study only focused

on responses at 1 and 2 Hz, the MEG signals were bandpass

filtered between 0.3 and 2.7 Hz using a linear-phase finite impulse

response (FIR) filter (−6 dB attenuation at the cut-off frequen-

cies, 10-s Hamming window), and down-sampled at 20 Hz. The

response during each trial was extracted.

The 306-channel MEG signals were further denoised using

a semi-blind source separation technique, the denoising source

separation (DSS). The DSS was a linear transform that decom-

posed multi-sensor MEG signals into components (de Cheveigné

and Simon 2008). The bias function of the DSS was chosen as

the response averaged over trials within each condition. A com-

mon DSS for all conditions was derived based on the response

covariance matrices averaged over conditions. The first 6 DSS

components were retained and transformed back to the sensor

space for further analysis. This DSS procedure was commonly

used to extract cortical responses entrained to speech (Zhang and

Ding 2017; Jin et al. 2020).

Frequency-domain analysis
In the frequency-domain analysis, to avoid the response to the

sound onset, the responses during the first 2 s of each trial were

removed. Consequently, the neural response was 10 s in duration

for each trial. The average of all trials was transformed into

the frequency domain using the discrete fourier transform (DFT)

without any additional smoothing window. The frequency reso-

lution of the DFT analysis was 1/10 Hz. The complex-valued DFT

coefficient at frequency f was denoted as X(f ), and the response

power was |X(f )|2. The DFT was separately applied to each MEG

channel. For the MEG response power analysis, responses from

the 2 collocated gradiometers were averaged. When the left and

right hemispheres were separately analyzed, each hemisphere

included 96 gradiometers.

Source localization
The MEG responses averaged over trials were mapped into source

space using cortex constrained minimum norm estimate (MNE;

Hämäläinen and Ilmoniemi 1994), implemented in the Brainstorm

software (Tadel et al. 2011). The T1-weighted MRI images were

used to extract the brain volume, cortex surface, and innermost

skull surface using Freesurfer (http://surfer.nmr.mgh.harvard.

edu/; Dale et al. 1999). Three anatomical landmarks in the MRI

images, i.e. nasion, left, and right preauricular points weremarked

manually. The 3 anatomical landmarks and digitized head points

were used to align the MRI images with the MEG sensor array.

The forward MEG model was derived based on the overlapping-

sphere model (Huang et al. 1999). The identity matrix was used

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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as noise covariance. Source-space activation was measured

by the dynamic statistical parametric map (dSPM; Dale et al.

2000). Individual source-space responses, consisting of 15,002

elementary dipoles over the cortex, were rescaled to the ICBM 152

brain template (Fonov et al. 2011) for source-space analyses.

Modeling
Semantic relatedness model

The study was designed to test to what extent neural responses

to sentences can be explained by semantic relatedness between

words. To quantify the semantic relatedness in word sequences,

we used a word2vec model to convert lexical semantics into high-

dimensional vectors. The vector representations of semantics

have been widely used to account for psycholinguistic and neu-

roscientific findings (Mitchell et al. 2008; Frank and Yang 2018).

Previous studies show that the semantic distance or correlation

coefficient between word vectors can predict neural activations

during speech comprehension (Frank andWillems 2017; Broderick

et al. 2018). Here, we constructed a word2vec-based semantic

relatedness model using similar procedures (Fig. S1, see online

supplementary material for a color version of this figure) and

assumed that simulated neural activity only encoded semantic

relatedness in word sequences.

Pulse response

We constructed a semantic relatedness model to simulate how

the semantic relatedness contributed to each word sequence. In

themodel, the smallest unit was aword. Eachwordwas converted

to 300-dimensional vectors using the word2vec algorithm learned

from a large corpus (the “combination” corpora in Li et al., 2018).AQ8

Each of the 300-feature dimensions was coded by a real number.

The semantic-relatedness feature of a word sequence was first

simulated using a pulse sequence, in which a pulse was placed

at the onset of each word. The pulse amplitude of each word was

defined by comparing (via Pearson’s linear correlation coefficient)

the current word vector representations with the preceding ones

(Frank and Willems 2017; Broderick et al. 2018). The correlation

coefficient was a scalar. In addition, because the neural responses

to a stimulus were usually weaker if the stimulus was preceded by

a similar stimulus, we used one minus the correlation coefficient

to modulate the pulse sequences. This measure has proved effec-

tive to index the neural semantic processing of speech (Broderick

et al. 2018).

Simulation of neural waveform responses

The neural responses in noninvasive electrophysiological record-

ings were smooth waveforms rather than sharp pulses. Therefore,

neural response waveforms were further simulated by convolv-

ing the pulse sequences with a response function, which was

a 500-ms duration Gaussian window (Jin et al. 2020; Lu et al.

2022). Note that the model assumed a phase-locked response to

the onset of each word and the consistent response waveforms

were repetitive across all words. The power spectrum of tracking

responses cannot be affected by the shape of responsewaveforms.

In other words, using the Gaussian window or other response

functions would not change the model predictions of neural

tracking results. We chose the Gaussian function to perform the

simulation because it was a simple and widely-used approach

to simulate neuronal response (Meyer et al. 2017; Lebedev et al.

2019). Lastly, the neural responses to word sequences were trans-

formed into the frequency domain.

Word frequency model

Although the current study aimed to test to what extent semantic

relatedness between words can explain the neural responses to

speech, we also simulated the properties of neural responses

tracking word frequency (Fig. S2, see online supplementary mate-

rial for a color version of this figure). We retrieved the word

frequency in our materials based on a large Chinese corpus (Zhan

et al. 2019). Carrying out the same procedure as building the

semantic relatedness model, the amplitude of the pulse to each

word was set to its value of word frequency and then convolved a

response function to derive simulated neural activity responding

to word frequency.

Statistical tests
All tests were based on bias-corrected and accelerated boot-

strap (Efron and Tibshirani 1994). In the bootstrap procedure,

all participants were resampled 10,000 times with replacement.

All comparisons in this study were paired comparisons. For a 1-

sided comparison of response power, if the data population in 1

condition was greater than A% of the data population in the other

condition, the significance level was (100A+1)/10,001. For 2-sided

comparisons, the significance level was (200A+1)/10,001. A false

discovery rate (FDR) correction was applied.

Spectral peak

The statistical significance of a spectral peak at frequency f was

tested by comparing the response power at f with the response

power in the frequency bin just below f using bootstrap (Jin et al.

2018). The comparison was 1-sided. The comparison only consid-

ered the frequency bin below f since spontaneous neural activity

had a 1/f spectrum and the response power in the frequency bin

above f tended to be weaker than the power at f even without

stimulus-evoked activity. This significance test was only applied

to the response power at 1 and 2 Hz.

Power difference

A 2-sided test was used to compare the normalized power

between conditions. The normalized response power was

calculated as the power at f minus the power at the frequency

bin just below f . This significance test was only applied to the

response power at 1 and 2 Hz.

Results
Word2vec model quantified semantic
relatedness and predicted the neural tracking of
sequences
We used paired-word sequences, sentence sequences, and

random-word sequences to investigate to what extent semantic

relatedness was involved in the neural tracking of sentences. We

used a word2vec-based model to predict the neural responses to

semantic relatedness based on the word-level semantic features

captured by word2vec. The word2vec algorithm statistically

learned from a large corpus constructed 300-dimensional

vectorial representations for each word that characterized the

semantic features of theword.Wordswith similarmeanings had a

higher correlation between their word2vec-based representations.

For the paired-word sequences, since every 2 words, i.e. “nn” or

“ll,” fell into the same semantic category, the semantic similarity

was high within the word pairs (Fig. 3A, left 2 plots); and for the

sentence sequences, a noun and the following verb constructing

a sentence established a predictable semantic and syntactic

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
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relations, the semantic correlation was also high within the

sentences (Fig. 3A, most right plot, see the bright diagonal line

between nouns and verbs).

Based on the word2vec representation, the semantic related-

ness model predicted a 1-Hz response to paired-word sequences

and sentence sequences (Ps=0.0001 for both sequences, paired

1-sided bootstrap; Fig. 3B). The predicted 1-Hz responses to

the sentence sequences and paired-word sequences were not

significantly different (P=0.251, paired 2-sided bootstrap; Fig. 3C),

suggesting that semantic-relatedness features in the 2 sequences

were similar. Furthermore, the semantic relatedness model

predicted 2-Hz responses to all 3 sequences, i.e. paired-word

sequences, sentence sequences, and random-word sequences

(Ps=0.0001 for all sequences, paired 1-sided bootstrap; Fig. 3C);

The predicted 2-Hz power was comparable among sequences.

Although the current study aimed to test to what extent the

semantic relatedness between words can explain the neural

response to speech, we also considered a basic lexical property—

word frequency—and analyzed how the word frequency might

differ between word sequences. The word frequency model only

predicts a 1-Hz response to sentence sequences (P=0.0001; paired

2-sided bootstrap; Fig. S2, see online supplementary material for

a color version of this figure), but not to paired-word sequences

and random-word sequences.

Next, we tested whether the measured neural responses were

consistent with the predictions of the semantic relatednessmodel

and word frequency model using a MEG experiment. Specifi-

cally, the experiment tested whether the 1-Hz response to paired-

word sequences was similar to the 1-Hz response to sentence

sequences, as predicted by the word2vec-based semantic relat-

edness model. If the measured 1-Hz response to the 2 sequences

were statistically similar, it suggests that delta-band neural track-

ing of sentences can be sufficiently explained by semantic relat-

edness between words; Otherwise, the neural tracking response

cannot be explained by the semantic relatedness.

Neural tracking of semantic relatedness
in sequences
In 3 separate blocks, participants listened to the paired-word

sequences, sentence sequences, and random-word sequences,

whereas they were asked to perform the word-level task—

monitoring occasionally presented abstract nouns. The behav-

ioral accuracy was 91±2%, 88±2%, and 95±1%, for the

paired-word sequences, sentence sequences, and random-

word sequences, respectively (Fig. S3, see online supplementary

material for a color version of this figure). In the MEG spectrum

shown in Fig. 3D, a significant 1-Hz peak was observed, bilaterally

distributed (Fig. 3EF), for the paired-word sequences and the

sentence sequences (Ps=0.0006 and 0.0001 for paired-word and

sentence sequences, respectively, paired 1-sided bootstrap), but

not for the random-word sequences (P=0.468). The significant

1-Hz response to the paired-word sequence was consistent

with the prediction of the word frequency model. However, it

was significantly weaker than the 1-Hz response to sentence

sequences in both left and right hemispheres (Ps=0.0003 for

both hemispheres, paired 2-sided bootstrap; Fig. 3G), including

left inferior frontal gyrus (IFG), left middle temporal gyrus (MTG),

and bilateral superior temporal sulcus (STS; Fig. S4A, see online

supplementary material for a color version of this figure). The

weaker 1-Hz response to paired-word sequences relative to sen-

tence sequences was inconsistent with the semantic relatedness

model, which predicted a comparable 1-Hz response power

between paired-word sequences and sentence sequences (Fig. 3C,

upper panel). Furthermore, significant bilaterally distributed 2-

Hz responses were observed in all sequences (Ps<0.0003, paired

1-sided bootstrap; Fig. 3DEF) and were not significantly different

among sequences (Fig. 3H), which were consistent with themodel

prediction showing that neural tracking of individual words was

equally strong regardless of sequential structures. These results

suggested that neural tracking of semantic relatedness between

words was rather weak and cannot sufficiently explain neural

tracking of sentences.

Task-dependent neural tracking of semantic
relatedness
Next, we further tested whether neural tracking could be

enhanced during explicit sequence chunking in the chunk-level

task compared with the responses in the word-level task. In

addition to the word-level task, listeners were asked to perform

another 2 tasks, i.e. chunk-level task and auditory task, in separate

blocks while listening to the paired-word sequences. The behav-

ioral accuracy was 91±2%, 80±5%, and 96± 2% (mean±SEM

across subjects) for the word-level, chunking-level, and auditory-

level tasks, respectively (Fig. S3, see online supplementary

material for a color version of this figure). In the MEG spectrum

shown in Fig. 4A, 1-Hz responses to paired-word sequence were

observed during chunk-level tasks (P=0.0001, paired 2-sided

bootstrap) but not during the auditory task (P=0.456). To compare

neural responses between tasks, we replicated the results of

the word-level task from Fig. 3. The response topography of

significant 1-Hz responses showed a bilateral activation for the

chunk-level task, and the neural sources were mainly located

in bilateral temporal and frontal lobes for chunk-level tasks

(Fig. 4BC). Importantly, the 1-Hz response to the paired-word

sequences was significantly stronger during the chunk-level

task than the word-level task (Ps=0.0003 for both hemispheres,

paired 1-sided bootstrap; Fig. 4D), including left IFG, left MTG, and

bilateral STS (Fig. S4B, see online supplementary material for a

color version of this figure). Furthermore, significant bilaterally

distributed 2-Hz responses were observed in all tasks (Ps< 0.0003,

paired 1-sided bootstrap; Fig. 4ABC) and were not significantly

different (Fig. 4E). These results suggest that the chunk-level task,

i.e. explicit sequence chunking, can drive cortical responses more

effectively than semantic relations between words, even when

semantic relatedness was identical in the same paired-word

sequences.

Discussion

How the brain groups words into multi-word chunks, e.g. phrases

and sentences, has been heavily debated. Numerous studies sup-

port that the neural tracking of phrases and sentencesmore likely

reflects mental representations of multi-word chunks (Ding et al.

2016, 2017b; Jin et al. 2020) and cannot be fully explained by

lexical properties of individual words (Jin et al. 2020; Burroughs

et al. 2021; Lu et al. 2022). However, it remains unclear whether

the neural tracking of speech can be explained by semantic

relatedness between words. The study compared neural activ-

ity tracking semantic relatedness with neural activity tracking

2 types of multi-word chunks, i.e. sentences defined by tactic

syntactic knowledge and chunks defined by artificial chunking

rule. Our findings showed that delta-band neural activity was

predominately driven by either syntax-defined sentences (Fig. 3G)

or artificial rule-defined chunks (Fig. 4D), rather than semantic

relatedness between words.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac354#supplementary-data
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Fig. 3.Word2vec model predictions and measured MEG responses regarding differences in neural tracking among conditions. A) Correlation coefficient
between the word2vec representations of words. Words in each subcategory, e.g. animals and plants, were correlated, and nouns and verbs in the
same sentence also showed correlation. B) Predicted response spectrum. The semantic relatedness model predicted 1-Hz responses to the paired-
word sequences and sentence sequences and 2-Hz responses to all 3 sequences. C) Predicted response power at 1 and 2 Hz. The semantic relatedness
models predicted comparable 1-Hz responses to the paired-word sequences and the sentence sequences. D) Measured MEG responses to paired-word
sequences, sentence sequences, and random-word sequences. The response spectrum was averaged over participants and MEG gradiometers. E and F)
For the topography (E) and source localization (F) results, only statistically significant sensors (shown by black dots) and vertices (Ps< 0.05; bootstrap,
FDR corrected) were shown.G and H),Normalized power at 1 Hz (G) and 2 Hz (H) in the left and right hemispheres. The 1- and 2-Hz power was normalized
by subtracting the power in a neighboring frequency bin. The 1-Hz response to sentence sequences was significantly stronger than that to paired-word
sequences in both hemispheres. The shaded areas and error bars represent 1 standard error of the mean (SEM) across subjects. ∗∗ P<0.005.
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Fig. 4. MEG responses to paired-word sequences in word-level, chunk-level, and auditory-level tasks. A) The response spectrum was averaged over
participants andMEG gradiometers.The shaded area covered 1 SEMover participants on each side. B andC) For the topography (B) and source localization
(C) results, only statistically significant sensors (shown by black dots) and vertices (P<0.05; bootstrap, FDR corrected) were shown. D and E) Normalized
power at 1 Hz (D) and 2 Hz (E) in the left and right hemispheres. The 1-Hz power was normalized by subtracting the power in a neighboring frequency
bin. The 1-Hz response was stronger during the chunk-level task than that during the word-level task in both hemispheres. Error bars represent 1 SEM
across subjects. ∗∗ P<0.005.

Neural encoding of semantic relatedness of
words
Beyond single word analysis, the simplest form of word-level

analysis is to analyze the semantic relations between adjacent

words.Here, semantic relatedness refers to both semantic similar-

ity (e.g. “travel”–“journey”) and semantic associations (e.g. travel–

plan). The semantic relatedness hypothesis is explainable for the

neural representation of sentence structures, which is built on

the priming effect in the psychological literature (Tulving and

Schacter 1990) and the neural adaptation in neuroscience litera-

ture (Grill-Spector et al. 2006). The semantic relatedness between

words can strongly affect single-sensor MEG/EEG responses and

the global field power. For example, the classic N400 response

is sensitive to semantic relatedness between words and can be

observed in single MEG/EEG sensors (Kutas and Federmeier 2011).

In the current study, we show that neural tracking of semantic

relatedness between words is rather weaker than that of sen-

tences during the same word-level task, which is inconsistent

with predictions of the semantic relatedness model. Since the

N400 is a robust neural marker of the semantic relatedness

between words, it may seem surprising why it does not drive a

strong 1-Hz response to the paired-word sequences. One potential

reason is that the semantic categories used here are broad (e.g.

animals and plants) and therefore the words within each category

are generally not strongly related, which attenuates the N400

effect (Federmeier et al. 2003). Furthermore, the localization of

the N400 effect has been found a strong left lateralization in

neuroimaging and neurophysiological studies, e.g. left superior

temporal areas (see a review, see Lau et al. 2008). The N400

effects have been hypothesized either as the results of integration

(Hagoort et al. 2004) or semantic retrieval (Kutas and Hillyard

1980; Kutas and Federmeier 2011), similar to the current study of

integration based on semantic relatedness. Therefore, the obser-

vations of left-lateralized neural tracking shown in the topog-

raphy (Fig. 4B), are consistent with previous studies, suggesting

possible left dominant neural structures that mediate semantic

processing.

Besides the semantic relatedness hypothesis, it has been

argued that other word properties, such as part-of-speech and

lexical semantic information, can potentially explain neural

tracking of phrases and sentences, without inferring phrase and

sentence processing (Frank and Yang 2018). However, recent

studies provide negative evidence for neural tracking of lexical

semantics and part-of-speech information (Jin et al. 2020;

Burroughs et al. 2021; Lo et al. 2022; Lu et al. 2022). For example,

neural tracking of lexical semantics was weaker than that of

sentences (Lu et al. 2022). After shuffling the order of words in

sentences (e.g. “cotton sheep eat grass” to “sheep cotton grass

eat”), the new stimuli that contain identical periodical part-of-

speech information as the sentence but without correct syntactic

structures did not induce neural responses at the rate of part-

of-speech information (Lo et al. 2022). Taken together with the
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current study, it suggests that word-level features cannot fully

explain neural tracking of phrases and sentences.

Mental construction of multi-word chunks
Neural tracking of multi-word chunks, e.g. phrases and sentences,

is a widely-observed phenomenon. Functional MRI and stereo-

EEG studies show that the mental construction of speech chunks

is represented in bilateral temporal and frontal lobes (Ding et al.

2016; Bulut et al. 2017; Nelson et al. 2017; Keitel et al. 2018).

Consistent with previous evidence, the current study shows that

bilaterally distributed neural responses reliably track multi-word

chunks defined by an explicit chunking rule (Fig. 4D) or implicit

grammatic knowledge (Fig. 3G). Although the 2 kinds of multi-

word chunks can both drive strong large-scale neural activity, it

remains to be established whether they involve a similar neural

mechanism. It has been hypothesized that the brain is sensitive

to and encodes chunk boundaries following a domain-general

computation principle. Electrophysiological studies have provided

preliminary evidence supporting this hypothesis. For example, a

closure positive shift response was observed at phrasal bound-

aries in speech (Steinhauer et al. 1999; Li and Yang 2009) and

structural boundaries in music (Zhang et al. 2016). Transient

neural activities are observed at event boundaries in speech (Ding

et al. 2016), nonspeech sounds (Chait et al. 2007; Sohoglu and

Chait 2016), and movies (Zacks et al. 2001).

Although a domain-general computation principle for chunk

processing has been proposed, it is elusive whether the imple-

mentation of the principle in different contexts is mediated by

a similar neural mechanism. First, neural tracking of sentences

can be observed when listeners focus on semantic features of

individual words, suggesting that sentential analysis is to some

extent automatic, similar to what has been found for word-

level processing (Ding et al. 2018). In contrast, a chunk-level task

that requires listeners to explicitly parse sequences reflects a

more controlled process that may engage sequential decision-

making (O’Connell and Hofmann 2012; Barascud et al. 2016).

Second, neuroimaging studies show that different brain regions

are involved in language processing with different rule complex-

ities. For instance, newly-learned artificial rules with simple-to-

superordinate complexities activate posterior-to-anterior gradi-

ents in the frontal lobe (Koechlin and Summerfield 2007; Badre

and Nee 2018), whereas syntactic rules with different complexi-

ties consistently activate Broca’s area (Jeon and Friederici 2015).

Taken together, these evidence suggests that explicit sequences

chunking is likely to engage executive control processes that are

not required for natural speech comprehension (Koechlin and

Summerfield 2007). Therefore, it is possible that the conclusion

based on the explicit sequences chunking task cannot generalize

to other speech processing tasks that only implicitly or do not

require sequences chunking.

Recent work has shown that syllabic rates across languages are

generally within the range of 2–8 Hz (Ding et al. 2017c; Poeppel

and Assaneo 2020),whereas neural responses to higher structures

than syllables tend to occur below 4 Hz, falling in the delta-band

range (usually defined as 1–3 Hz). It is still under debated whether

the neural entrainment at a chunk rate is related to intrinsic neu-

ral oscillations. Neurophysiological studies show that the phrase

of slow neural oscillations can mediate temporal attention and

prediction (Arnal and Giraud 2012; Morillon et al. 2014), which

associate with the neurolinguistic interpretation that attention

is applied to the onset of each multi-word chunk (Astheimer

and Sanders 2009). Therefore, the cortical dynamics on the delta-

band provide a suitable timescale for multi-word chunk analysis

(Keitel et al. 2018; Lo et al. 2022; Lu et al. 2022). Furthermore,

within a multi-word chunk, the power of neural activity has

been found a sustained increase or build upon other frequency

scales, for example, beta (Bastiaansen et al. 2010; Bastiaansen and

Hagoort 2015), gamma (Peña and Melloni 2012), and high gamma

(Ding et al. 2016; Nelson et al. 2017). Neural tracking in different

frequency scales may reflect strong coupling across those fre-

quency bands (Lakatos et al. 2005; Giraud and Poeppel 2012) and

processing of semantic and syntactic information (Bastiaansen

and Hagoort 2015).

Task modulation of speech processing
It is well-established that neural response to speech is strongly

modulated by tasks (Makov et al. 2017; Ding et al. 2018). First,

the mental construction of multi-word chunks can overwhelm

neural tracking of semantic relatedness between words. Jin et al.

(2020) designed word sequences in which 2 kinds of semantically

similar word pairs varied periodically (e.g. “teacup-button oyster-

rabbit”) and asked listeners to group pairs of words based on

the experimental rules. The results show that neural activity

prominently tracksmulti-word chunks defined by the rules rather

than the semantic relatedness between words. The current study

builds on and extends this finding by demonstrating delta-band

neural tracking of semantic relatedness is rather weak even when

listeners have access to the semantic properties of individual

words in the sentential context. Second, a previous study shows

that listeners can recall the gender of a speaker of unattended

speech (Cherry 1953), indicating that the gender detection task

is an easy task and acoustic information can be processed even

without top-down attention. The current study does not observe a

1-Hz response to paired-word sequences during the auditory-level

task, which is also consistent with a previous electrophysiological

study that theN400 component is attenuated onlywhen semantic

processing is required (Chwilla et al. 1995).

In summary, delta-band neural activity is more effectively

driven by implicit syntactic processing and explicit sequence

chunking, rather than semantic relatedness between words.

Together with similar studies that distinguish the role of word

properties and phrasal/sentential chunk structures (Jin et al. 2020;

Kaufeld et al. 2020; Lo 2021; Lu et al. 2022), delta-band neural

activity is better explained by chunk-level representations, rather

than word-level representations. AQ9
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