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A traditional view on sentence comprehension holds that the listener parses linguistic

input using hierarchical syntactic rules. Recently, physiological evidence for such a claim

has been provided by Ding et al.’s (2016) MEG study that demonstrated, using a frequency-

tagging paradigm, that regularly occurring syntactic constituents were spontaneously

tracked by listeners. Even more recently, this study's results have been challenged as

artifactual by Frank and Yang (2018) who successfully re-created Ding's results using a

distributional semantic vector model that relied exclusively on lexical information and did

not appeal to any hierarchical syntactic representations. The current MEG study was

designed to dissociate the two interpretations of Ding et al.’s results. Taking advantage of

the morphological richness of Russian, we constructed two types of sentences of different

syntactic structure; critically, this was achieved by manipulating a single affix on one of the

words while all other lexical roots and affixes in the sentence were kept the same. In

Experiment 1, we successfully verified the intuition that due to almost complete lexical

overlap the two types of sentences should yield the same activity pattern according to

Frank and Yang’s (2018) lexico-semantic model. In Experiment 2, we recorded Russian

listeners' MEG activity while they listened to the two types of sentences. Contradicting the

hierarchical syntactic account and consistent with the lexico-semantic one, we observed

no difference across the conditions in the way participants tracked the stimuli properties.

Corroborated by other recent evidence, our findings show that peaks interpreted by Ding

et al. as reflecting higher-level syntactic constituency may stem from non-syntactic

factors.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Language is a primary means of communicating information

among humans. A key reason for the success of language in

this task lies in its productive power, i.e. the speaker's ability

to generate new sentences that express novel ideas combined

with the listeners' ability to comprehend them.What makes it

possible to understand novel, previously unheard sentences?

A dominant linguistic theory (Berwick & Weinberg, 1984, p.

325; Chomsky, 2002, p. 117; Everaert, Huybregts, Chomsky,

Berwick, & Bolhuis, 2015) proposes that this ability is under-

pinned by the hierarchical syntactic rules shared by the

speaker and the listener. On such theory, combining words

into units known as “syntactic constituents” is a critical step

in sentence comprehension.

In a recent study, Ding, Melloni, Zhang, Tian, and Poeppel

(2016) presented physiological evidence that listeners auto-

matically “extract” hierarchical syntactic structure. In a

magnetoencephalographic (MEG) study using a frequency-

tagging paradigm, participants listened to sequences of

words. These sequences could be either representing a series

of individualmonosyllabicwords (e.g., black went must from…),

or parsed into larger syntactic constituents such as 2-syllable

phrases (e.g., new plans big box …; “phrase condition”) or sen-

tences consisting of two 2-syllable phrases (e.g. new plans give

hope, big fish escaped …; “sentence condition”). Across condi-

tions, the syllables were presented isochronously (e.g., each

syllable lasted exactly 250 ms); all prosodic cues were

controlled for so that the stream of words had no prosodic

cues to phrase or sentence boundaries. All conditions,

expectedly, yielded a 4 Hz peak in the participants'MEG power

spectrum, corresponding to the regular rate of syllable pre-

sentation (Fig. 1a). Critically, the phrase condition featured an

additional peak at 2 Hz corresponding to the phrase rate

(Fig. 1b); the sentence condition yielded a 4 Hz syllable peak, a

2 Hz phrase peak corresponding to the phrase rate (e.g. new

plans, give hope) and a 1 Hz peak corresponding to the sentence

rate (new plans give hope; Fig. 1c). Unlike the 4 Hz syllable peak,

the 2 Hz phrase and 1 Hz sentence peaks could not have

emerged due to any regularity in the acoustic signal and

instead were considered to reflect the listener's syntactic

knowledge which results in automatic parsing of a word

stream into syntactically meaningful constituents whenever

such are available.

Frank and Yang (2018) challenged Ding et al.’s (2016)

interpretation of the findings and proposed an alternative

explanation formulated in purely lexical terms without

involving syntax. They simulated activity elicited by the

stimuli used in Ding et al. (2016) using distributional semantic

vectors (Mikolov, Chen, Corrado,&Dean, 2013). For eachword,

they constructed ae300-dimensional distributional semantic

vector based on a word2vec model (Mikolov et al., 2013). For

each word, a distributional semantic vector is calculated on

the basis of the words that surround the word in question in a

large text corpus (and without recourse to higher-level syn-

tactic representations such as phrases and sentences) so that

words that occur in similar lexical contexts receive similar

vectors. When each word (or syllable in case of the multisyl-

labic Chinese stimuli) in Ding et al.’s sequences was simulated
by its corresponding distributional semantic vector, the power

spectrum for each condition proved to be qualitatively iden-

tical to the neural spectral data in Ding et al. (2016). Thus,

Frank and Yang (2018) provided an alternative account for

Ding et al.’s neural findings whereby the observed spectral

peaks are accounted by lexical properties of the stimuli rather

than their hierarchical syntactic features.

As noted by Frank and Yang, a likely reason behind suc-

cessful replication of the neural data via distributional se-

mantic vector approach lies in the nature of Ding et al.’s

experimental materials. For example, in Ding et al.’s English

sentence condition, every other word is a noun that typically

denotes an entity and every fourth word is a transitive verb

that denotes an action. Because words that share syntactic

and/or semantic properties tend to have a similar surrounding

lexical context, their corresponding distributional semantic

vectors are also similar. As a result of similar vectors occurring

regularly, the power spectrum of the simulated sentence

condition shows spectral peaks reflecting these regularities.

In order to distinguish lexical vs. syntactic-level contribu-

tion to neural tracking one needs to test conditions for which

predictions based on distributional semantics and those

based on syntactic constituency are distinct. Languages with

rich morphology, in which a superficially subtle manipulation

of a single suffix added to the same lexical root can have a

considerable effect on syntactic structure, come to help.

Consider, for example, minimally distinct sentences of

Russian in Fig. 2. The two conditions are identical in terms of

the lexical roots and most of affixes; the difference lies in a

single phoneme, i.e. the final phoneme of the second noun,

which is a suffixmarking the case of the noun: the noun's case
is either genitive (Diny “of-Dina”) or dative (Dine “for-Dina”).

The case of the second noun has considerable effects on

the syntactic structure of the whole sentence. The Genitive

condition is “symmetrical” in that it contains two two-word

phrases, i.e., the noun phrase (NP) povar Diny “Dina's cook”

and the verb phrase (VP) pechot bliny “is making pancakes”; we

will refer to it as “2-2” condition hereinafter. The Dative con-

dition, referred to as “1e3” condition, consists of a one-word

NP povar “cook” and a 3-word VP Dine pechot bliny “is making

pancakes for Dina”. Importantly, neither condition involves a

garden-path effect. In the Genitive condition, upon encoun-

tering DinyGEN the listeners can immediately form a noun

phrase ([NP povar Diny]). In the Dative condition,DineDAT cannot

be attached to povar to form an NP; rather a VP has to be

projected [NP povar] [VP Dine …].

Yet, because the roots and all affixes except the case

marker on the second noun (Dina) are identical, it is likely that

the model based on distributional semantics vectors yields

similar results for the two conditions.

In Experiment 1, we modeled the activity for a sequential

stream consisting of multiple sentences from either Genitive

or Dative condition in Fig. 2 using distributional semantic

vectors. This computational simulation has already been

completed, as its outcome is a pre-requisite for the MEG

experiment. Anticipating the findings from Experiment 1, the

modeling yielded peaks at the syllable, word, 2-word and

sentence rates. Most importantly, the 2-word peak in the

Genitive condition was not larger than in the Dative condi-

tion. That is, higher-level groupings emerging on the basis of

https://doi.org/10.1016/j.cortex.2021.09.012
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Fig. 1 e Visualization of the results from Ding et al. (2016): peaks in power spectra correspond exactly to the acoustic

(syllable) and syntactic (phrase, sentence) units present in the stimuli. NB: the data are not original, the graph is for

illustrative purposes only.

Fig. 2 e A sample set of sentences containing a Genitive

and Dative condition.
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lexical properties of the stimuli in the Genitive and Dative

conditions did not mimic the syntactic constituency, making

it possible to dissociate syntactic and distributional semantic

accounts.

In Experiment 2, we used MEG to record brain activity of

native Russian listeners while they listened to the same

streams of sentences as in Experiment 1, presented

isochronously at the syllable rate of 3.125 Hz (¼320 ms/syl-

lable). In both conditions, we expected a peak at the syllable

rate of 3.125 Hz reflecting a regular nature of the auditory

stimulus, a peak at the word rate of 1.56 Hz reflecting regular

occurrence of lexical items (as in Makov et al., 2017 who

found a word peak for bisyllabic words), and a peak at the

sentence rate of .39 Hz reflecting regularity at the 4-word

level (either because a sentence-sized syntactic constituent

is built or due to regular occurrence of grammatical cate-

gories, e.g., every fourth word being a transitive verb). Criti-

cally, only if listeners entrained to the syntactic structure, we

would have expected a 2-word peak at .78 Hz in the Genitive

2-2 condition that would be significantly stronger than in the

Dative 1e3 condition, reflecting regular occurrence of phra-

ses in the former but not the latter condition. Several sub-

jects were recorded before Stage 1 of this report, which

enabled us to verify the quality of our setupwithout checking

the critical difference between the conditions described

above. These preliminary results are described in the Pilot

data section. Results based on the full dataset are described

in the Results section under Experiment 2.

https://doi.org/10.1016/j.cortex.2021.09.012
https://doi.org/10.1016/j.cortex.2021.09.012
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2. Experiment 1: computational simulation
using the model by Frank and Yang (2018)

2.1. Materials

Sixty-four sentence sets of two conditions such as in Fig. 2were

constructed. All of the sentences consisted of four bisyllabic

words and followed the pattern Noun1 þ Noun2 þ VerbþNoun3.

Noun1 was always nominative, Noun3 was always accusative

and served as a direct object of the transitive verb that pre-

ceded it. Noun2 was a proper or common noun in either geni-

tive (Genitive 2-2 condition) or dative case (Dative 1e3

condition).Noun2wordswere selected so that the casemarking

was unambiguously distinguishable phonologically and

orthographically, i.e., we did not include nouns for which

genitive and dative case-marked suffixes sound similar due to

phonological reduction (such as the name Petja “Pete” for

which the genitive (PetiGEN) and dative (PeteDAT) case forms are

both pronounced as [peti]). Each word appeared in exactly one

sentence pair.

Four sentence pairs that received the lowest scores as a

result of auditory pre-screening (see sectionGeneration and pre-

screening of auditory stimuli under Experiment 2) were excluded.

Experiment 1 employed the remaining 60 sets of sentences.

2.2. Simulation

For the simulation, we closely followed the procedure in Frank

and Yang (2018). Twelve participants were simulated. For each

participant, all sentences from each condition were re-

shuffled to produce a 60 sentence long sequence. The se-

quences were thus 480 syllables long (60 sentences � 4

words � 2 syllables ¼ 480 syllables).

Next, each 480-syllable long sequence had to be repre-

sented as a chain of distributional semantic vectors. This

was done by imitating the process of word segmentation as

performed by the human brain exposed to the same syllable

sequence auditorily, at an isochronous syllable rate without

any cues to word boundaries. Following Frank and Yang

(2018), the procedure was as follows: the first syllable s1 in

the 480-long syllable sequence (s1, s2, …,s480) activated a

cohort of words that start with that initial syllable with each

word activated in proportion to its frequency. Then the next

syllable from the sequence was added to yield s1s2, and the

cohort was reduced to only those words that started with

that string; the procedure repeated for as long as the

sequence s1s2 … sk yielded a non-empty cohort. Once the

cohort was empty, the segmentation procedure restarted

from the last syllable, i.e. sk. To exemplify using an English

example can-dy-mel-ted (candy melted), when the syllable can

becomes available it activates a cohort that includes words

can, candy, candle, canton, candid, cantaloupe, candidate, candy-

floss among others. Once can-dy becomes available, the

cohort is reduced to candy and candyfloss and few other

words; when the following syllable is added, the resulting

string can-dy-mel results in an empty word cohort. The seg-

mentation process then restarts from the last syllable (mel).

When applied to our Russian materials, 97% of the word
boundaries had been identified correctly; incorrect identifi-

cations were left as they were (i.e. not fixed manually).

Each cohort in the sequence produced by the step above

was then represented by the frequency-weighted sum of the

distributional semantic vectors of the words it contained. We

used vectors from the Russian Distributional Thesaurus

project (Panchenko, Ustalov, et al., 2017) which we down-

loaded from a publicly available dataset (Panchenko, Arefyev,

et al., 2017). The authors trained a skipgram word2vec model

(Mikolov et al., 2013) on a corpus of Russian-language books

(e13 billion words). In a skipgram word2vec model, a neural

network with a single hidden layer is trained to predict

neighbors of each word within a surrounding context window

of a set size (e.g. within 5 words to the left or right from the

word). After training, the weights connecting a word to the

hidden layer are taken as the word's distributional semantic

vector. The training was done using the skip-grammodel with

500 units in the hidden layer and a context window size of 10

words and iterated 3 times.

The segmentation procedure was applied to each partici-

pant's sequences (one for each condition). Each syllable was

mapped to a 500-dimensional vector v representing the distri-

butional vector of a cohort activated upon hearing that syllable.

In order to represent the temporal dynamics of the syllable

stream in a way comparable to the auditory presentation (as in

the subsequent Experiment 2), vector w(t) representing activa-

tion elicited at time t from the syllable onset was modeled as

background noise fromwhich v emerges after time tms (time t

was randomly drawn from a uniform distribution with range

40 ± 25). For each dimension i out of 500 and for each t between

1 ms and 320 ms (320 ms is the syllable duration in the MEG

experiment) the activation was calculated as follows:

wiðtÞ ¼
�

εiðtÞ if t< t

εiðtÞ þ viðtÞ if t � t

where εi(t) was normally distributed with m ¼ 0, s ¼ .1.

For each participant and each condition, the procedure

described above yielded a 500 � 153,600 matrix, where

153,600¼ 60 sentences� 8 syllables� 320ms is the duration of

each condition stream in milliseconds.
2.3. Data analysis

Matrices output by the simulation were Fourier-transformed

along the time dimension, only the coefficients above DC

and below 5 Hz were retained. The squared norms of the

resulting coefficients were then averaged along the 500-long

dimension to calculate average power at each frequency bin.

To quantify the statistical significance of any peaks in the

resulting power spectra, we calculated signal-to-noise ratios

(SNR) by dividing power at each frequency bin by the mean

power at the four immediately neighboring frequency bins

(two on each side). A flat spectrum corresponds to SNR close to

1. Peak presence at each frequency bin was tested by

comparing whether the normalized SNR is significantly larger

than 1 using a one-sample one-tail t-test. False discovery rate

(FDR, Benjamini & Hochberg, 1995) correction was applied

with .001 as the significance level.

https://doi.org/10.1016/j.cortex.2021.09.012
https://doi.org/10.1016/j.cortex.2021.09.012
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2.4. Results

Simulated power spectra for the Genitive 2-2 and Dative 1e3

conditions are shown in Fig. 3 and clearly feature peaks at

frequencies corresponding to the syllable, word, two-word

and sentence rates, as well as their harmonics.

We compared SNRs at the syllable (3.12 Hz) and word

(1.56 Hz) rates across conditions using paired-samples two-

tail t-tests. The syllable peaks predictably did not differ

(Md ¼ � .47, 95% CI [� 3.34, 2.39], t (11) ¼ � .36, P ¼ .723); the

word peaks, however, did differ (Md ¼ 1.99, 95% CI [1.51, 2.48], t

(11) ¼ 9.04, P < .001) due to differences in the distributional

semantic vectors corresponding to genitive and dative forms

of Noun2. Because the amplitude of the word peak in each

condition might have influenced the amplitude of higher (2-

word and sentence) peaks in the SNR spectra, leading to dif-

ferences that are irrelevant to the critical manipulation, we

normalized all SNRs by the SNR at the word frequency. This

was done in the logarithmic space to keep the baseline noise

SNR at 1 (see Equation (1)).

SNRnorm ¼ exp

�
ln SNR

ln SNRword

�
(1)

Normalized SNRs, shown in Fig. 4, significantly differed

from 1 at frequencies corresponding to the syllable, word, 2-

word and sentence rates, as well as their harmonics (all

P < .001). Importantly, the word-normalized 2-word peak in

the Genitive 2-2 condition was not larger than in the Dative

1e3 condition (Md ¼ .05, 95% CI [ � ∞, .09], t (11) ¼ 2.53,

P ¼ .986).
Fig. 3 e Simulated average power spectra for the Genitive and D

model. Peaks at the frequencies corresponding to syllables, wor

arrows. Thin grey lines represent simulation of individual part

simulated participants.
2.5. Discussion

Modeling using distributional semantic vectors showed a

similar pattern of activity at frequencies corresponding to 2-

word combinations and sentences in the Genitive 2-2 and

Dative 1e3 conditions. Thus this pair of conditions presents a

case that can help to dissociate whether neural tracking can

be explained by a model that solely relies on word-level sta-

tistics, or whether recourse to hierarchical syntactic structure

is needed. In the former case, in accordance with the out-

comes of the current simulation, a statistically indistin-

guishable neural response is expected for the two conditions

in Experiment 2 with human participants, most critically at

the .78 Hz frequency rate corresponding to 2-word combina-

tions. On the other hand, difference in the .78 Hz response,

that corresponds to the rate of phrases in the Genitive but not

in the Dative condition, is expected on the syntactic view.
3. Experiment 2ethe MEG experiment

3.1. Methods

3.1.1. Participants
According to our sequential sampling plan (see below), we

planned to collect enough participants so that the first statis-

tical testwas runondata from20participants.Due to technical

reasons and the recruitment procedure whereby participants

were recorded in blocks of up to six participants, the test was

first run on data from 27 participants (we additionally report
ative conditions from the distributional semantics vector

ds, 2-word combinations and sentences are marked by the

icipants. Pink or teal lines represent the mean of all

https://doi.org/10.1016/j.cortex.2021.09.012
https://doi.org/10.1016/j.cortex.2021.09.012


Fig. 4 e Normalised signal-to-noise ratios (SNR) calculated on the basis of the simulated power spectra from the

distributional semantics vector model for the Genitive and Dative conditions. ‘*’ mark frequencies at which the power is

larger than mean power at the four neighboring bins with FDR-adjusted p-value smaller than .001. Peaks at the frequencies

corresponding to syllables, words, 2-word combinations and sentences are labelled. Thin grey lines represent simulation of

individual participants. Pink or teal lines represent the mean of all simulated participants.

Table 1 e Sample critical and control questions used in auditory pre-screening for the sample Genitive 1e3 (“Dina's cook is
making pancakes”) and Dative 2-2 (“The cook is making pancakes for Dina”) conditions from Fig. 2. Two response options
for each question type and the correct (✓) and incorrect (£) responses for each condition are also shown.

Question Response options

Critical Who are the pancakes for? certainly for Dina (Gen � , Dat ✓) cannot tell definitively (Gen ✓, Dat � )

Control 1 Who is making the pancakes? Cook (Gen ✓, Dat ✓) Dina (Gen � , Dat � )

Control 2 What is the cook making? Pancakes (Gen ✓, Dat ✓) Pies (Gen � , Dat � )

1 The 90% CIs on Cohen's d are reported here because they
correspond to the equivalence and noninferiority/nonsuperiority
tests at the significance level of 5% (Walker & Nowacki, 2011).
Positive d values correspond to the peaks in Genitive condition
being larger.
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what would the test have shown had we stopped at 20 as

planned, see MEG data under Results. In total, we collected the

data from 40 participants. Of these 40 participants, six were

removed due to various technical reasons (participants falling

asleep, sound not recorded, data not recorded at all, etc.), and

another 3 participantswere removeddue tomissing triggers in

the MEG data. Additional data-based participant exclusion is

reported in the Behavioral data section under Results.

3.1.2. Materials
Materials in Experiment 2 were the auditory versions of the 60

sentence sets of 2 conditions used in Experiment 1. As

mentioned earlier, the 60 sets were chosen from a larger pool

via auditory prescreening, described below together with

other relevant details.

3.1.2.1. GENERATION AND PRE-SCREENING OF AUDITORY STIMULI. Sixty-
four sets of Genitive 2-2 and Dative 1e3 conditions as in Table 1

were created, phonetically transcribed and split into syllables.

Each unique syllable was then synthesized using the MacinTalk

Synthesizer (Russian female voice Milena, macOS High Sierra
Version10.13.6).Allsilent intervalsat thebeginningandendof the

synthesized syllables were removed. This resulted in syllable

durations ranging from 200 to 550 ms. All syllables were then

slowed down or speeded up to become as close to the target

duration of 320ms as possible (pitch preserved). The exact dura-

tion of 320 ms was obtained by truncating the resulting syllables

by several milliseconds or padding them with several millisec-

onds of silence. Auditory words were constructed by concate-

nating 2 syllables together without any gaps; sentences were

constructed by concatenating 4 words. The stimulus intensity

spectra averaged over 24 trials for each condition are depicted in

Fig. 5. Note that unlike in Ding et al. (2016), our spectra do feature

small peaks at theword, 2-word, andsentence rates.However, an

independent-samples t-test showed no significant difference in

the peak amplitude at the 2-word rate between conditions (t

(43.38)¼� .42,P¼ .674,90%CIonCohen'sd [� .61, .36]1).Therefore,

https://doi.org/10.1016/j.cortex.2021.09.012
https://doi.org/10.1016/j.cortex.2021.09.012


Fig. 5 e Spectra of stimulus intensity for the Genitive 2-2 (pink line) and Dative 1e3 (teal line) conditions averaged over 24

trials
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this acoustic regularity does not confound the comparison of the

2-wordratepeaks inMEGdata. Incidentally, thepeaksat thethree

other rates of interest were similar as well (syllable rate: t

(41.42)¼ .22, P¼ .825, 90% CI on Cohen's d [� .42, .55]; word rate: t

(43.01)¼ � .20, P¼ .846, 90% CI on Cohen's d [� .54, .43]; sentence

rate: t (40.38)¼ � .51, P¼ .612, 90% CI on Cohen's d [� .63, .34]).

The quality of the auditory sentences and whether they

can be correctly understood by listeners was verified in a pre-

screening by an independent set of 11 native Russian-

speaking volunteers aged 18e29 (7 females, 4 males) who did

not take part in the MEG experiment. For each of 64 sets, we

constructed three questions: a critical question and two con-

trols. Each question was paired with two response options, of

which exactly one was correct on a given trial. All questions

served to test general intelligibility of the sentences, while the

critical ones specifically assessed whether participants could

correctly hear and interpret the case of the critical noun

(Noun2). Control questions were added to add variability and

prevent strategies on behalf of the participants and ensured

that participants had to listen to the whole sentence and not

just to the critical noun. Table 1 shows questions for the set of

sentences from Fig. 2.

On each trial, a sentence was presented auditorily via

headphones and followed by a question presented visually on

the screen together with two response options. The partici-

pants were asked to choose the correct response. With 64

sentence pairs and three sentence types, there was a total of

64 sets � 2 conditions � 3 questions ¼ 384 possible trials.

Participants were tested individually, in a sound-resistant

cubicle. In total, the data from 11 participants were

collected. The first 6 participants were tested on half of all

trials (192 trials, counterbalanced across participants). As the

data collection was quicker than expected, the remaining 5

participants were assigned a full set of 384 trials presented in
random order. The data were analyzed by fitting a mixed-

effects logistic regression with a random intercept of partici-

pant and estimatingmarginalmeans, confidence intervals and

comparing across conditions based on the fitted model. The

estimated overall percentage of correct answers to all the

critical questions combined was generally high (87%, 95% CI

81%e91% across participants) although it was higher in the

Dative condition (estimated marginal means for Dative: 90%,

Genitive: 84%, odds ratio 1.71, P ¼ .005). Three sets of sen-

tences that yielded the lowest accuracy (all 62%) were

removed. A fourth set was removed that contained an unin-

telligible word noted bymultiple participants during debrief at

the end of the test. The remaining 60 sets of conditions had an

overall accuracy of 88% across participants (95% CI 83%e92%)

and were used as stimuli in Experiments 1 and 2.
3.1.3. Procedure
Participants’ MEG activity was recorded while they listened to

isochronous speech presented in 10-sentence-long trials.

Sixty sentences from each condition were randomly split into

6 trials, each containing 10 sentences from a single condition.

This resulted in a total of 12 trials (6 Genitive and 6 Dative) that

constitute a single block. Each trial was presented auditorily at

a rate of 320 ms/syllable, without any pauses between sylla-

bles or any other prosodic segmentation cues to word or

sentence boundaries. The block was repeated 4 times for each

participant (with pauses in between blocks); the composition

of trials within a block and the order of trials was randomized

for each block and each participant. All in all, there were 24

Genitive and 24 Dative trials.

In order to minimize the evoked response to the auditory

onset in the MEG experiment, a fade-in/fade-out was added at

the beginning/end of each trial. To create them, a random

https://doi.org/10.1016/j.cortex.2021.09.012
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sentence representing the same condition that was not used in

the trial was chosen and split into halves, i.e. Noun1 þ Noun2

and VerbþNoun3. For the trial-initial fade-in, the 4-syllable

sequence corresponding to VerbþNoun3 was manipulated as

follows: (i) the initial 0e1.5 syllables (the exact duration was

chosen randomly) was rendered silent, (ii) the intensity of the

following 2.5e4 syllables built up linearly from silence to the

original level, (iii) the intensity of the remaining 0e1.5 syllables

did not change. The procedure was applied in the mirrored

order to theNoun1þ Noun2 sequence to create a fade-out at the

end of the trial. The overall duration of the 10-sentence long

trial including the fade-in and fade-out was 25.6 sec.

Amemory taskwas bepresented at the endof each trial. The

participants were shown a sentence on the screen, and had to

judge whether it had been played during the trial by choosing

between “This sentence was among the ones just played” and

“There was no such sentence” response options. The partici-

pants judged two sentences at the end of each trial. Each time,

thesentencewaseithera fullsentencepresentedduringthetrial

(e.g., Q1 in Fig. 6a and Q1 and Q2 in Fig. 6b) or a grammatically

correct novel sentence that combined words from three

different sentences presentedduring the trial (e.g., Q2 inFig. 6a).

At the start of each trial, a beep (a 240-ms-long diamond-

shaped 250-Hz sinusoid) was played as a cue to trial begin-

ning, followed by 760 ms of silence and then by the rest of the

trial sequence (fade-in, 10 sentences of the same condition,

fade-out, memory task). The audio level of the sound was

adjusted to a comfortable level for each participant.
Fig. 6 e A sample MEG trial. Two-sentence long excerpts from a

trials are shown, together with their underlying syntactic const

memory task presented at the end of each trial.
The experiment started with a practice session of 3 trials

(additional sentences similar to the experimental ones were

used). Each participant then was exposed to 4 blocks of 12

trials, with a pause in between blocks. The experiment took

approximately 40 min.

3.1.4. MEG recording
The magnetoencephalographic (MEG) recording was done

using a 306-channel Neuromag Vector View (Elekta Oy,

Finland) in a magnetically-shielded room at the Moscow MEG

Centre (Moscow State University of Psychology and Education

campus).

An online band-pass filter of .1e330 Hz was applied during

the recording. Head position was monitored continuously by

means of 4 head position indicator (HPI) coils attached above

the forehead and behind the participant's ears. HPI coils and

additional head point positions in reference to the nasion, left

and right pre-auricular points coordinate framewere digitized

using Polhemus FASTRAK device. The sampling frequency

was 1 kHz.

3.1.5. MEG data analysis
A .1e40 Hz band-pass filter was applied to the data. The data

were divided into 23.04 sec long epochs starting at the onset of

the second sentence and ending at the offset of the last (i.e.,

10th) sentence. The first sentence was excluded in order to

avoid the response to the acoustic onset of each trial (as in

Ding et al., 2016).
10-sentence long Genitive 2-2 and Dative 1e3 condition

ituent structure. Questions Q1 and Q2 are part of the
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In the following steps, we employed denoising based on

spatial filtering (Cheveign�e & Simon, 2008). This technique

partitions data into stimulus-related and stimulus-unrelated

activity based on their trial-to-trial phase-locked reproduc-

ibility. As in Ding et al. (2016), we utilized this technique twice:

once to denoise the data in the original time space and once to

accentuate the peaks in the frequency space. The initial

denoising was done with the following parameters: 60 com-

ponents kept during two applications of principal component

analysis (PCA), the proportion of evoked power explain-

ede90%. Epoched data was then Fourier-transformed into the

frequency domain where peaks corresponding to different

syntactic units could be compared. The frequency resolution

was 1/23.04 sec�1 ¼ .04 Hz. We then applied denoising based on

spatial filtering again, once for each frequency bin using the

formula in Ding et al. (2016) (subsection Data Analysis in Online

Methods). As a consequence of applying the outlined proced-

ure, the spatial dimensionality of the data was reduced from

306 (the number of sensors) to 1, i.e., each trial was repre-

sented by a single frequency-indexed vector.

3.1.6. Exclusion criteria
We excluded participants whose performance on thememory

taskwas not above chance at the significance level of .05.With

96 questions (2 question after each of the 48 trials) this crite-

rion corresponds to having less than 56 correct answers. This

was the only data-based exclusion criterion.

3.1.7. Statistical analysis
For each participant, after processing the data as described in

subsection MEG data analysis, we applied the following steps:

1. The power at each frequency bin was averaged over trials

separately for each condition.

2. Averaged power was then converted into SNR.

3. SNRs were normalized by the SNR at the word-rate fre-

quency as in Equation (1).

4. The natural logarithm of the SNRs was taken to obtain log-

SNRs.

For each participant, the log-SNRs at the 2-word frequency

in Gen 2-2 and in Dat 1e3 conditions were compared with a

one-tailed paired Bayes factor (BF) t-test with the boundaries

1/6 and 20. The asymmetry in boundaries was introduced in

order to balance the probabilities of false positive and false

negative errors (as proposed in Sch€onbrodt & Wagenmakers,

2018; and Weiss, 1997). The null hypothesis for the test was

that there was no effect of condition, and the alternative hy-

pothesis was that there was an effect of condition with an

informed prior used (a shifted and scaled t-distribution). See

subsection Sequential sample analysis in the Appendix for de-

tails on the parameter selection.

3.1.8. Sequential sampling plan
We planned to initially collect 20 participants and then

sequentially collect additional participants in the increments

of 5 until we got a Bayes factor less than 1/6 or larger than 20,

or reach the sample size of 50.We applied Bayes Factor Design

Analysis (BFDA, Sch€onbrodt&Wagenmakers, 2018) in order to

assess this plan and took the results to suggest that our plan
had a high probability of yielding compelling evidence to-

wards the correct hypothesis. See subsection Sequential sample

analysis in Appendix for details.

3.1.9. Outcome-neutral quality assurance
To test the quality of our setup and data collection, we plan-

ned to check that the sentence, word and syllable peaks were

present in the collected data, i.e. the corresponding unnor-

malized SNRs were all significantly larger than 1 at the sig-

nificance level of .01.

3.1.10. Code and data availability
The MEG and behavioral data are available at https://

openneuro.org/datasets/ds003703/versions/1.0.0. The code

and the files necessary to recreate this manuscript are avail-

able at https://osf.io/kdpcs/.

3.1.11. Preregistration
Registered Report Protocol Preregistration is available at

https://osf.io/qhg9z. The accepted Stage 1 manuscript is

available at https://osf.io/project/qhg9z/files/osfstorage/60dd

d82431881a025463d91c.

3.2. Results

3.2.1. Behavioral data
Of the 31 participants remaining after exclusion for non-data-

related reasons (see Participants under Methods), further 4 had

to be removed because the number of the correct answers

they gave was less than the prespecified threshold of 56 (see E.

criteria under Methods). The accuracy of the remaining 27

participants ranged from 56 to 91 correct answers with the

median of 69.

3.2.2. MEG data
The sentence, word and syllable peaks were all present in

the data thus confirming the data quality (all p's < :01, see

Outcome-neutral quality assurance under Methods). The aver-

aging and the tests were done using the logarithms of

unnormalized SNR due to the right-skewed nature of the

SNR distribution. Fig. 7 shows SNR spectra from several

representative participants (pooled across the Gen 2-2 and

Dat 1e3 conditions) and demonstrates strong peaks at the

sentence, word and syllable rates, as well as at the 2-word

phrase rate.

Looking at the data from the Genitive 2-2 and Dative 1e3

condition separately, the four peaks are again clearly visible in

the individual and averaged power spectra (Fig. 8). A critical

comparison is that between the 2-word peaks in the Genitive

2-2 vs. Dative 1e3 conditions (Fig. 9). A quick glance is enough

to see that the conditions look similar both at the group level,

and at an individual level for most participants.

The interpretation was confirmed via a planned one-tailed

paired BF t-test with the boundaries 1/6 and 20 (see Sample size

estimation) applied to the word-normalized log-SNRs from two

conditions of the 27 eligible participantswhich resulted in a BF

of .009 or, approximately, 1/112. Because this number is

smaller than 1/6 we considered the current sample as final

and concluded that there was evidence of no difference be-

tween the conditions (Note that the conclusion is the same

https://openneuro.org/datasets/ds003703/versions/1.0.0
https://openneuro.org/datasets/ds003703/versions/1.0.0
https://osf.io/kdpcs/
https://osf.io/qhg9z
https://osf.io/project/qhg9z/files/osfstorage/60ddd82431881a025463d91c
https://osf.io/project/qhg9z/files/osfstorage/60ddd82431881a025463d91c
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Fig. 7 e SNR spectra of several representative participants spanning the range from the lowest to the highest SNRs averaged

over the four frequencies of interest. Power was first averaged over the trials pooled from both conditions. Then the

averaged power at each frequency bin was divided by the average of the power in the two neighboring bins on both sides.
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when a subsample of the first 20 participants is analysed: BF of

.011 or, approximately, 1/93).

Unnormalized SNRs at the sentence, 2-word, word, and

syllable rates are additionally depicted in Fig. 10 for visual

comparison.

3.3. Exploratory analysis

3.3.1. Response topographies
At the request of one of the reviewers, here we provide

response topographies for the labeled peaks in Fig. 8 The

particular analysis we performed following Ding et al. (2016),

does not allow for comparing the topographies of the peaks
across conditions. Applying the denoising based on spatial

filtering (DSS) procedure for the second timeein the frequency

domainereduced the spatial dimensionality of our data to 1

(see subsection MEG data analysis for details). Thus, response

topographies of the peaks could only possibly differ in

magnitude but not in distribution over the sensors. To over-

come this problem, here we ran a slightly different

calculation:

� In the original analysis, the second DSSwas used to find an

optimal filter to use for averaging across DSS components.

Here, we first calculated power spectra after applying DSS

for the first time and then averaged the results both over

https://doi.org/10.1016/j.cortex.2021.09.012
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Fig. 8 e Power spectra of individual participants (light grey) and their grand averages (thicker lines). All the four expected

peaks (sentence, 2-word, word, syllable) are clearly present in both conditions.

Fig. 9 e The peaks at the 2-word frequency operationalized as logs of normalized SNR of the power spectrum. The two

vertical box and whiskers plots show distributions of peak sizes in the Genitive 2-2 (pink) and Dative 1e3 (teal) condition.

The black lines connect within-subject points (n ¼ 27).
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trials and DSS components to estimate the power spectra

for each participantecondition combination. These indi-

vidual power spectra are depicted in Fig. 11 (thin lines)

together with the average per-condition spectra (the thick
lines). Note that the peaks are much smaller than in Fig. 8

and the sentence peaks cannot be discerned at all.

� We then inverted the first DSS transformation to return to

the sensor space and then averaged power over trials

https://doi.org/10.1016/j.cortex.2021.09.012
https://doi.org/10.1016/j.cortex.2021.09.012


Fig. 10 e Comparison of peaks at the frequencies of the four units of interest (sentence, 2-word, word, syllable)

operationalized as SNR of the power spectrum. The vertical box and whiskers plots show distributions of peak sizes in the

Genitive 2-2 (pink) and Dative 1e3 (teal) condition.

Fig. 11 e Power spectra of individual participants after the first application of DSS (light grey) and their grand averages

(thicker lines). Only three out of the four expected peaks (2-word, word, syllable) are clearly present in both conditions, the

sentence peak is not.
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only, to estimate the power spectra for each partic-

ipanteconditionesensor combination. We then normal-

ized each power topography independently and averaged

the results across the participants to obtain an estimate of

a general topography for each conditionefrequency
combination. The topographies for the four frequencies

of interest are depicted in Fig. 12. The topographies are

very similar across conditions and frequencies, which is

likely a consequence of the DSS filtering. Such a similarity

is also present in Ding et al. (2016).

https://doi.org/10.1016/j.cortex.2021.09.012
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4. Discussion

In the present study, we used Russian case marking to create

pairs of 4-word sentences that differed in a single phoneme

(corresponding to the Genitive vs. Dative case marker) which

led to differences in the syntactic structure of the sentences

but not in their lexico-semantic characteristics (asmodeled by

Frank and Yang (2018)). The Genitive 2-2 condition sentences

contained two 2-word long constituents: a 2-word long subject

(e.g., cook of-Dina) followed by a 2-word long verb phrase (is-

making pancakes). In the Dative 1e3 condition, on the other

hand, the subject was a single word (e.g., cook) and was fol-

lowed by a 3-word long verb phrase (indirect object, verb and

direct object, e.g., for-Dina is-making pancakes). As participants

listened to sequences of sentences from the same condition

we recorded their MEG and found spectral power peaks cor-

responding to the rates of syllables, words, sentences, as well

as 2-word pairs. According to previous frequency tagging

studies (Ding et al., 2016, 2017) that interpreted such peaks as

reflecting the sentence syntactic structure, we should have

observed a larger peak at the 2-word rate in the Genitive 2-2

condition that contained well-formed syntactic constituents
Fig. 12 e Response topographies of the power spectra after the si

columns) for both conditions (Genitive 2-2 in the first two rows

(gradiometers in the odd rows, magnetometer in the even ones

across frequencies and conditions.
at that rate. Yet there was no difference in the power of the 2-

word peak in the Genitive 2-2 vs. Dative 1e3 condition. A

plausible and, arguably, simpler alternative interpretation is

that the peaks resulted from the lexico-semantic regularities

in the stimuli as proposed by Frank and Yang (2018). As can be

seen in Fig. 3, according to Frank and Yang's model our

Genitive vs. Dative conditions do not exhibit reliable differ-

ences at the 2-word rate peak (as well as at the syllable or

sentence rate peaks). The lack of difference between condi-

tions observed in the human data is in line with this model.

At the same time, we would like to emphasize that our

results should not be taken as providing strong support for the

model by Frank and Yang (2018) as a model of the EEG/MEG

response produced during auditory sentence comprehension.

Themodel predicts large peaks at the harmonic frequencies of

the sentence rate which are much less salient in the MEG data

(compare Figs. 3 and 8). This suggests that lexico-semantic

properties alone may not be sufficient to explain a full

pattern of results (see Jin, Lu, and Ding (2020) and Lo (2021) for

a similar point). In particular, as we discuss next, it was pro-

posed that factors other than those discussed so far (i.e. syn-

tactic and lexico-semantic factors) may also contribute to the

EEG/MEG response during sentence comprehension.
ngle application of DSS at the four frequencies of interest (in

, Dative 1e3 in the last two) and the two types of sensors

). Note that the topographies are barely distinguishable
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Glushko, Poeppel, and Steinhauer (2020) draw attention to

the role of prosody in sentence comprehension and argue that

Ding et al.’s (2016) findings may strongly reflect prosodic fac-

tors, i.e. stem from prosodic properties of the stimuli. For

sentences in the 2-2 syntactic condition, the 2-2 grouping was

a prosodic default, e.g., (new plans |give hope). At the same time,

the sentences in the 1e3 syntactic condition could only have

the 1e3 prosodic grouping (drink |lemon juice) but not (drink le- |

mon juice). Thus, in the critical 2-2 and 1e3 conditions, the

prosodic groupings paralleled the syntactic structure. Even

though Ding et al. (2016) explicitly neutralized prosodic cues,

listeners are known to activate covert, implicit prosody (see

Glushko et al. (2020) for references of previous research

demonstrating this). Therefore, Ding et al.’s (2016) findings

could also be explained by the prosodic account. Glushko et al.

(2020) tested this alternative by comparing the 2-2 condition

with a new 1e3 condition in which the prosodic grouping into

two 2-word chunks was plausible, e.g., (John likes |big trees). As

in the current study, the 2-word peak in this new 1e3 condi-

tion did not differ from that in the 2-2 condition, contradicting

the syntactic interpretation in Ding et al. (2016).

Both our study and the Glushko et al. (2020) study adapted

the 2-2 and 1e3 conditions from Ding et al. (2016). This is not a

coincidence: the 1e3 was a crucial control condition. Without

it, it would have been impossible to tell whether the 2-word

peak in the 2-2 condition had anything to do specifically with

the phrases. Indeed, it could have been argued that the largest

meaningful chunks (sentences in the case of the 2-2 condition)

not only produced the peak at their corresponding frequency

but also at its harmonics. By changing the 2-2 syntactic struc-

ture to the 1e3 structure and thennot observing a peak at the 2-

word frequency, Ding et al. (2016) refuted this argument.

Tavano et al. (2021) took a different approach to differentiating

phrase-level peaks from those arising as harmonics of a slower

(sentence) rhythm: they employed sentences that had 2-3 and

3-2 structures in addition to 2-2 and 1e3 structures. Critically

for the present discussion, Tavano et al. (2021) did not find any

difference in the 2-word peaks between the 2-2 and 1e3 con-

ditions. Whereas their findings do not make it possible to

distinguish between the lexico-semantic vs. prosodic accounts

(as thiswas not the study goal), their findings are clearly at odds

with the syntactic account.

An anonymous reviewer notes that the memory task

employed in our study did not require syntactic processing and

that a different task could produce a stronger syntactic

response. We agree that a properly syntactic task would

enhance the degree of syntactic processing undertaken by the

listeners, which may have effects on MEG spectral responses

and, consequently, on general conclusions. Arguably, our

memory task could be solved on the basis of word sequences

only, with no involvement from syntax. Yet we point out that

our memory task was formulated in terms of sentences (i.e.

“This sentence was among the ones just playedeyes/no”) and

that building a sentence requires establishing syntactic re-

lations between (groups of) words. Thus we believe that the

task difference was an unlikely reason for the difference in the

conclusions of Ding et al.’s (2016) study and the current one.

Ding et al.’s (2016) task for the Chinese participants was to

detect outlier trials containing sentences/phrases that were

syntactically correct but semantically implausible. Ding et al.’s
(2016) task for the English participants required spotting out-

liers that were syntactically ill-formed and semantically

implausible. Like our memory task, both variants require

establishing syntactic relations between (groups of) words. The

part of Ding et al.’s task that is different from our memory

taskeevaluating how plausible the sentence/phrase iseis

largely semantic in nature.

Summarising, our findings do not support a strong syn-

tactic interpretation of frequency peaks proposed in Ding et al.

(2016). Together with other corroborating evidence (Glushko

et al., 2020; Tavano et al., 2021), we have to conclude that

the frequency-tagging paradigm as used in this and other

studies does not successfully isolate the syntactic structure

and is subject to otherefor example, prosodic and lexico-

semanticeinfluences. This conclusion has important practical

repercussions, i.e. frequency-tagging data cannot serve as a

specific marker of intact or impaired syntactic processing in

developmental studies or in clinical studies of patients.

Theoretical repercussions of our findings are limited: they

show that the frequency-tagging findings cannot be taken as

evidence for hierarchical syntactic structure and return the

field to where it was prior to Ding et al. (2016), with some who

take a hierarchical syntactic structure as an integral part of

sentence comprehension and others who do not.
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