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Abstract. Sign Language Recognition (SLR) has becoming one of the
most important research areas in the field of human computer interac-
tion. SLR systems are meant to automatically translate sign language
into text or speech, in order to reduce the communicational gap between
deaf and hearing people. The aim of this paper is to exploit multimodal
learning techniques for an accurate SLR, making use of data provided
by Kinect and Leap Motion. In this regard, single-modality approaches
as well as different multimodal methods, mainly based on convolutional
neural networks, are proposed. Experimental results demonstrate that
multimodal learning yields an overall improvement in the sign recogni-
tion performance.
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1 Introduction

Sign language (SL) is an integral form of communication especially used by hear-
ing impaired people within deaf communities worldwide. It is a visual means of
communication, with its own lexicon and grammar, that combines articulated
hand gestures along with facial expressions to convey meaning. As most of hear-
ing people are unfamiliar with SL, deaf people find it difficult to interact with the
hearing majority. In this regard, Sign Language Recognition (SLR) has becom-
ing an appealing topic in modern societies. Its main purpose is to automatically
translate the signs from video or images into the corresponding text or speech.
This is important not only to bridge the communicational gap between deaf and
hearing people but also to increase the amount of contents to which the deaf can
access (e.g., educational tools or games for deaf and visual dictionaries of SL).

The SLR task can be addressed by using wearable devices or vision-based
approaches. Vision-based SLR is less invasive since there is no need to wear
cumbersome devices that might affect the natural signing movement. A vision-
based SLR system is typically composed by three main building blocks: (i) hand
segmentation and/or tracking, (ii) feature extraction, and (iii) sign recogni-
tion. The SLR problem was first addressed by the computer vision commu-
nity by means of just using the colour information of images and videos [1,2].
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Fig. 1. Vision-based SLR systems: (a) colour information provided by RGB cameras,
(b) colour and depth information provided by depth cameras, and (c) hand position
and orientation provided by Leap Motion.

More recently, the emergence of low-cost consumer depth cameras (e.g.,
Microsoft’s Kinect) has promoted the development of several approaches that
try to combine colour and depth information (see Fig. 1). Bergh and Gool [3]
demonstrated that depth information can be used together with colour informa-
tion to increase the recognition accuracy, especially when there is superposition
between hands and face. In [4], multiple depth-based descriptors are fed into a
SVM classifier for gesture recognition.

The recent introduction of the Leap Motion has launched new research lines
for gesture recognition. Instead of a complete depth map, the Leap Motion sen-
sor directly provides the 3D spatial positions of the fingertips and the hand
orientation with quite accuracy (≈ 200µm) (see Fig. 1). One of the first studies
referring to the utilization of Leap Motion for SLR has been presented in [5].
The authors stated that, although Leap Motion may have a great potential for
sign recognition, it is not always able to recognize all fingers in some hand con-
figurations. In order to overcome that limitation, Marin et al. [6,7] combined the
input data from Leap Motion with Kinect.

In this work, we extent the ideas proposed in [6,7], improving their results.
In particular, our main contributions are:

– We explore the concept of convolutional neural networks (CNNs) for recog-
nizing SL, in two different ways. First, CNNs are used to directly classify the
sign. Second, CNNs are used as feature extractor, avoiding the hand-craft
feature extraction process and the inherent difficulty of designing reliable
features to the large variations of hand gestures.

– We develop a multimodal learning framework for the SLR problem, making
use of data provided by both Kinect (colour + depth) and Leap Motion.

– We performed a comparative study between single-modality and multimodal
learning techniques, in order to demonstrate the effectiveness of multimodal
learning in the overall sign recognition performance.
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The paper is organized in four sections including the Introduction (Sect. 1).
In Sect. 2, the proposed SLR methods are fully described. Section 3 reports the
experimental results. Finally, conclusions and some topics for future work are
presented in Sect. 4.

2 Methodology

The aim of this paper is to explore the potential of multimodal learning for
SLR. To accomplish this purpose, single-modality approaches as well as different
multimodal methods, to fuse them at different levels, are proposed. Multimodal
techniques include data-level, feature-level and decision-level fusion methods.

2.1 Single-Modality Sign Recognition

2.1.1 Kinect Modalities (Colour and Depth)
In this work, convolutional neural networks (CNN) were explored in two different
ways. In the first approach, a CNN is used to directly classify the sign. In the
second approach, the CNN is used as a feature extractor.

Both Kinect modalities, colour and depth, require a pre-processing step in
order to segment the hands, from the noisy background of the image, before fea-
ture extraction and sign recognition. In the first step, a skin colour model is used
to distinguish skin pixels from background pixels. This skin colour binarization
is used to filter the depth map. Then, the hand segmentation is performed on
the filtered depth map by just using depth information.

CNN Model as Classifier. The implemented neural network follows the
traditional CNN architecture for classification, typically starting from several
sequences of convolution-pooling layers to fully connected layers [8]. Hence, the
implemented CNN is composed by two convolution layers and one fully con-
nected layer (or dense layer), in which each convolution layer is followed by a
2 × 2 max-pooling layer. Both convolution layers have the same filters’ number
and size. Finally, the last layer of the CNN is a softmax output layer. The out-
put layer contains the output probabilities for each class label. The output node
that produces the largest probability is chosen as the overall classification. The
architecture of implemented CNN is illustrated in Fig. 2a. During the training
stage, several regularization techniques, such as the L2 norm, data augmentation
and dropout [9], were applied to prevent overfitting.

CNN Model as Feature Descriptor. The later layers of a CNN seem to
learn visually semantic attributes of the input [8]. Hence, these intermediate
representations can be used as a generic feature descriptor. Many research works
[8] stated that these CNN features are better than hand-crafted features, such
as SIFT or HoG, for several computer vision tasks. In here, the CNN is used
as feature extractor instead of being used as a classifier. More concretely, the
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Fig. 2. Single-modality sign recognition: (a) CNN model as classifier; (b) CNN model
as feature descriptor (methodologies applied to both Kinect modalities); and (c) Leap
Motion sign recognition methodology.

activations of the last dense layer (FC-1) are extracted to be used as a feature
descriptor (see Fig. 2a). For sign recognition, this CNN feature descriptor is fed
into a multi-class SVM classifier (see Fig. 2b).

2.1.2 Leap Motion
Unlike Kinect, Leap Motion does not provide a complete depth map, instead it
directly provides a set of relevant features of hand and fingertips. In this paper,
3 different types of features computed from the Leap Motion data are used:

1. Fingertip distances Di = ‖Fi − C‖, i = 1, ..., N ; where N denotes the
number of detected fingers and Di represents the 3D distances between each
fingertip Fi and the hand centre C.

2. Fingertip inter-distances Ii = ‖Fi − Fi+1‖, i = 1, ..., N − 1; represent the
3D distances between consecutive fingertips.

3. Hand direction O: represents the direction from the palm position toward
the fingers. The direction is expressed as a unit vector pointing in the same
direction as the directed line from the palm position to the fingers.

Both distance features are normalized by signer (user), according to the maxi-
mum fingertip distance and fingertip inter-distance of each user. This normaliza-
tion is performed to make those features robust to people with different hand’s
size. Then, these 3 features are used as input into a multi-class SVM classifier
for sign recognition. The block diagram of the implemented Leap Motion-based
sign recognition approach is illustrated in Fig. 2c.

2.2 Multimodal Sign Recognition

The data provided by Kinect and Leap Motion have quite complementary charac-
teristics, since while Leap Motion provides few accurate and relevant keypoints,
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Kinect produces both a colour image and a complete depth map with a large
number of less accurate 3D points. Therefore, we intend to exploit them together
for SLR purposes.

According to the level of fusion, multimodal fusion techniques can be roughly
grouped into three main categories: (i) data-level, (ii) feature-level, and (iii)
decision-level fusion techniques [10]. As described in the following, we propose
multimodal approaches of each fusion category for the SLR task, making use of
3 modalities (i.e. colour, depth and Leap Motion data).

2.2.1 Data-Level Fusion
The purpose of data-level fusion is to merge data from different modalities at
an early stage. As illustrated in Fig. 3a, this methodology simply consists in the
concatenation of the RGB colour image with the depth map, which results in a
4-dimensional matrix. In this approach, just both Kinect modalities (i.e. colour
and depth) are considered for fusion, since the data dimensions of Leap Motion
are incompatible.

2.2.2 Feature-Level Fusion
In general, feature-level fusion is characterized by three phases: (i) learning a
representation, (ii) supervised training, and (iii) testing [10]. According to the
order in which phases (i) and (ii) are made, feature-level fusion techniques can be
roughly divided into two main groups: (1) End-to-end fusion, where the repre-
sentation and the classifier are learned in parallel - see Fig. 3b; and (2) Multi-step
fusion, where the representation is first learned and then the classifier is learned
from it - see Fig. 3c.

End-to-End Fusion. The underlying idea of this approach is to learn an end-
to-end deep neural network. In our scenario, the neural network has multiple
input-specific pipes (one for each data type: colour, depth and Leap Motion),
in which each input type is processed by its specific neural net. While colour
and depth are both processed by a CNN, the Leap Motion data is processed
by a classical neural net with one hidden layer. Then, the last hidden layers of
each pipe are concatenated followed by one additional fully connected layer. All
the layers are trained together end-to-end. The architecture of the implemented
neural network is represented in Fig. 3b.

Multi-step Fusion. As in the end-to-end approach, a shared (multimodal)
representation vector is created, by concatenating the last hidden layers of each
model previous trained individually. Then, for sign recognition, the multimodal
representation vector is fed into an additional classifier (i.e. a multi-class SVM).
The multi-step feature-level fusion scheme is depicted in Fig. 3c.

2.2.3 Decision-Level Fusion
The purpose of decision-level fusion is to learn a specific classifier for each modal-
ity and, then, to find a decision rule between them. In this paper, we apply this
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Fig. 3. Multimodal sign recognition: (a) Data-level fusion; (b) Decision-level fusion,
where ⊕ is an aggregate operator representing the decision rule for fusion; (c) End-to-
end feature-level fusion; and (d) Multi-step feature-level fusion.

concept making use of the output class probabilities of the models designed
individually for each modality under analysis. Then, two main kinds of decision
rules, to combine these class probabilities, were implemented: (1) pre-defined
decisions rules, and (2) decision rules learned from the data (see Fig. 3d).

Pre-defined Decision Rules. Herein, two different pre-defined decision rules
were implemented. In the first approach, the final prediction is given by the argu-
ment that maximizes the averaged class probabilities. In the second approach,
the final prediction is given by the model with the maximum confidence. The
confidence of a model in making a prediction is measured by its highest class
probability.

Learned Decision Rule. The underlying idea of this approach is to learn a
decision rule from the data. Therefore, a descriptor that concatenates the class
probabilities, extracted from the individual models of each modality, is created
and, then, used as input into a multiclass SVM classifier for sign recognition.
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3 Experimental Results

The experimental evaluation of the proposed methodologies was performed in
a public Microsoft Kinect and Leap Motion hand gesture recognition database
[6,7]. The database is composed by 10 static gestures from the ASL. Each sign
was performed by 14 different people, and repeated 10 times, which results in
a total of 1400 gestures. In order to ensure signer independence, the dataset
is divided into a training set of 1000 images from 10 people, and a test set of
400 images from the other 4 people. The training set is further divided in half,
resulting in two subsets: one for training all single-modality methods and another
for training the multimodal techniques that require input from single-modality
methods, such as the feature-level and decision-level fusion approaches.

The implementation of the deep neural networks is based on Theano. The
Nesterov’s Accelerated Gradient Descent with momentum is used for optimiza-
tion, and the categorical cross-entropy is used as the loss function. The adopted
SVM classifier consists in a multi-class SVM classifier based on the one-against-
one approach, in which a nonlinear Gaussian Radial Basis Function (RBF) kernel
is used. The parameters (C, γ) of the RBF kernel are estimated by means of a
grid search approach and cross-validation on the training set.

3.1 The Potential of Multimodal Learning

In order to access the potential of multimodal learning in the SLR context, we
computed the rate of test signs for which each single-modality method made a
correct prediction while the others were wrong. As presented in Table 1a, these
results clearly demonstrate that there is a relative big potential to tackle the
SLR problem via multi-modality. In particular, there is a higher complementarity
between each Kinect modality (i.e. colour or depth) with the Leap Motion rather
than between both Kinect modalities. For instance, there are 4.25% and 5.75%
of test instances for which Leap Motion made correct predictions while colour
and depth made incorrect ones, respectively.

3.2 Discussion

The experimental results of the proposed single-modality and multimodal sign
recognition methodologies are presented in Table 1b and c, respectively. The
results are reported in terms of classification accuracy (Acc), which is given by
the ratio between the number of correctly classified signs t and the total number
of test signs n: Acc% = t

n × 100. A first observation, regarding single-modality
approaches, is that both colour and depth outperform Leap Motion, with accu-
racies of 94.75%, 91.75% and 82.00%, respectively. However, it should be noticed
that Leap Motion sign recognition does not require any kind of preprocessing
in order to segment the hand from the background for feature extraction. The
most interesting observation is that multimodal fusion often promotes an overall
improvement in the sign recognition accuracy. These results clearly demonstrate
the complementarity between the three modalities. Typically, the classification
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Table 1. Experimental assessment of the proposed recognition methods. (a) The poten-
tial of multimodal learning, expressed by the rate of test instances for which modality
B made correct predictions while modality A made incorrect ones. (b) and (c) Experi-
mental results of the proposed single-modality and multimodal recognition approaches,
respectively. The results are presented in terms of classification accuracy (%).

(a)

Modality A Modality B
Multi-modality
potential (%)

Colour Depth 3.00
Colour Leap Motion 4.25
Depth Colour 4.75
Depth Leap Motion 5.75

Leap Motion Colour 18.5
Leap Motion Depth 18.25

(b)

Modality Method Acc (%)

Colour
CNN C† 93.50

CNN FEAT‡ 94.75

Depth
CNN C 91.75

CNN FEAT 90.75

Leap Motion - 82.00

(c)

Proposed multimodal learning methodologies

Fusion-level Method Involved Modalities Acc (%)

D
a
ta

- C + D 89.75

F
e
a
tu

re End-to-end
C + D 93.00

C + D + L 94.25

Multi-step
C + D 96.25

C + D + L 96.75
D
e
c
is
io
n

Average rule
C + D 96.00

C + D + L 97.00

Highest confidence
C + D 96.00

C + D + L 96.50

Learned decision rule
C + D 96.25

C + D + L 96.75

State-of-the-art methodologies

Marin et al. 2014 [6] 91.28
Marin et al. 2015 [7] 96.50

†CNN as classifier.
‡CNN as feature extractor.

accuracy increases as each modality is added to the recognition scheme. In par-
ticular, the decision-level fusion scheme, with the average decision rule, provides
the best overall classification accuracy (Acc = 97.00%). Still, regarding multi-
modal fusion techniques, it is possible to observe that, in general, decision-level
fusion performs better than data-level and feature-level fusion. In fact, data-level
fusion resulted in a worst model than the best single-modality method, with an
Acc of 89.75%. These worst results are probably due to the curse of dimen-
sionality, as the dimension of the input features in this model is considerable
higher than in the others. Likewise, the end-to-end feature-level fusion app-
roach also performed worst than the best single-modality method. This result
might seem quite unexpected; however, a multimodal neural net architecture
with multiple input-specific pipes has potentially more local minima which may
explain the unsatisfying results. The initialization of the input specific weights
from pre-trained single-modality networks might improve the results. Finally, it
is important to stress that the best implemented multimodal fusion approach
outperformed both state-of-art methods [6,7], with an Acc of 97.00% against
91.28% and 96.50%, respectively.

4 Conclusions

This paper addresses the topic of static SLR, by exploring multimodal learning
techniques, making use of data from 3 distinct modalities: (i) colour; (ii) depth,
both from Kinect; and (iii) Leap Motion data. In this regard, single-modality
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approaches as well as different multimodal methods, to fuse them at different
levels, are proposed. Multimodal techniques include data-level, feature-level and
decision-level fusion techniques. Experimental results suggest that both Kinect
modalities are more discriminative than the Leap Motion data. However, the
most interesting observation is that, in general, multimodal learning techniques
outperform single-modality methods. In particular, the proposed decision-level
fusion scheme, with the average decision rule, achieved the best results (Acc =
97.00%) and outperforms the current state-of-the-art methods. As future work,
it is expected to extend the proposed methodologies for dynamic signs.

Acknowledgements. This work was funded by the Project “NanoSTIMA: Macro-
to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and
Analytics/NORTE-01-0145-FEDER-000016” financed by the North Portugal Regional
Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development Fund (ERDF), and also
by Fundação para a Ciência e a Tecnologia (FCT) within PhD and BPD grants with
numbers SFRH/BD/102177/2014 and SFRH/BPD/101439/2014.

References

1. Cooper, H., Bowden, R.: Large lexicon detection of sign language. In: Lew, M.,
Sebe, N., Huang, T.S., Bakker, E.M. (eds.) HCI 2007. LNCS, vol. 4796, pp. 88–97.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75773-3 10

2. Adithya, V., Vinod, P.R., Gopalakrishnan, U.: Artificial neural network based
method for Indian sign language recognition. In: 2013 IEEE Conference on Infor-
mation Communication Technologies (ICT), pp. 1080–1085 (2013)

3. den Bergh, M.V., Gool, L.V.: Combining RGB and ToF cameras for real-time 3D
hand gesture interaction. In: 2011 IEEE Workshop on Applications of Computer
Vision (WACV), pp. 66–72, January 2011

4. Dominio, F., Donadeo, M., Zanuttigh, P.: Combining multiple depth-based descrip-
tors for hand gesture recognition. Pattern Recog. Lett. 50, 101–111 (2014). Depth
Image Analysis

5. Potter, L.E., Araullo, J., Carter, L.: The leap motion controller: a view on sign
language. In: Proceedings of the 25th Australian Computer-Human Interaction
Conference: Augmentation, Application, Innovation, Collaboration, OzCHI 2013,
pp. 175–178. ACM, New York (2013)

6. Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with leap motion
and kinect devices. In: 2014 IEEE International Conference on Image Processing
(ICIP), pp. 1565–1569, October 2014

7. Marin, G., et al.: Hand gesture recognition with jointly calibrated leap motion and
depth sensor. Multimedia Tools Appl. 75(22), 14991–15015 (2015)

8. Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N., Kruthiventi, S.,
Radhakrishnan, V.B.: A taxonomy of deep convolutional neural nets for computer
vision. Front. Robot. AI 2(36), 1–13 (2016)

9. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

10. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep
learning. In: International Conference on Machine Learning, vol. 6 (2011)

http://dx.doi.org/10.1007/978-3-540-75773-3_10

	Multimodal Learning for Sign Language Recognition
	1 Introduction
	2 Methodology
	2.1 Single-Modality Sign Recognition
	2.2 Multimodal Sign Recognition

	3 Experimental Results
	3.1 The Potential of Multimodal Learning
	3.2 Discussion

	4 Conclusions
	References


