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Abstract
In this study into the player’s emotional theory of mind (ToM) of gameplaying agents, we investigate how an agent’s behaviour 
and the player’s own performance and emotions shape the recognition of a frustrated behaviour. We focus on the perception 
of frustration as it is a prevalent affective experience in human-computer interaction. We present a testbed game tailored 
towards this end, in which a player competes against an agent with a frustration model based on theory. We collect gameplay 
data, an annotated ground truth about the player’s appraisal of the agent’s frustration, and apply face recognition to estimate 
the player’s emotional state. We examine the collected data through correlation analysis and predictive machine learning 
models, and find that the player’s observable emotions are not correlated highly with the perceived frustration of the agent. 
This suggests that our subject’s ToM is a cognitive process based on the gameplay context. Our predictive models—using 
ranking support vector machines—corroborate these results, yielding moderately accurate predictors of players’ ToM.

Keywords Theory of mind · Affective computing · Digital games · Artificial agents · Preference learning

1 Introduction

Understanding how we recognise and feel about artificially 
simulated emotional behaviour is central to the design of 
believable characters featured in modern, narrative-heavy 
AAA games and the research of emotional modelling and 
affective computing. Arguably, it is generally complex to 
unravel how we feel other actors (humans or agents) feel. It 
is also largely unknown how we represent others’ emotional 
and cognitive patterns according to the fundamental process 
known as the theory of mind (ToM) [24, 38, 40]: the feeling 
of how others feel.

Traditionally, the ToM refers to the mental models we 
form about others’ higher order beliefs. However, recent 
studies shed light on the emotional components of ToM 
[38, 45] as well. Throughout this paper we use a taxonomy 
of cognitive and emotional representation, which relies on 

the belief-order attribution hierarchy [37]. According to 
this taxonomy we refer to our own beliefs and feelings as 
zero-order representation and our mental model of another 
actor’s beliefs and feelings as first-order representation. In 
this regard, a second-order representation would be another 
actor’s recognition of our own judgement (i.e. “it knows I 
know its state”). However, here we focus only on the players’ 
recognition of emotion: specifically, their first-order repre-
sentation of the agent’s frustration.

We argue that modelling reliably a user’s ToM can be 
viewed as the holy grail of not just user research and user 
experience design, but also adaptive and creative compu-
tation for any task that involves user-agent interactions. In 
games, modelling ToM could revolutionise adaptivity and 
personalisation—e.g. in the form of dynamic difficulty 
adjustment, procedural content generation, interactive narra-
tive etc.—as our knowledge about the player’s understanding 
of game agents would afford us more nuanced control over 
the experience [51].

We explore the player’s emotional ToM from both statisti-
cal and predictive modelling, investigating how the game-
play context and the player’s emotional state during play 
affect their assessment of the agent’s behaviour through two 
different lens. We process our metrics (both input and out-
put) in an ordinal fashion, accounting for both absolute (i.e 
mean values) and relative (i.e. range of fluctuation) measures 
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[29]. To conduct our experiments, we introduce the MAZ-
ING testbed game, in which the player competes against 
an artificial agent designed to exhibit frustrated behaviour 
based on a top-down model inspired by the theory of com-
puter frustration [5]. We focus on frustration as one of the 
most prevalent and context-dependent affective outcomes of 
human-computer interaction. The main goals of our study 
are (a) to investigate the relationship between the gameplay 
context, manifestations of player emotion, and the first-order 
representation of the perceived frustration of the agent based 
on its behaviour, while (b) to explore different ways of pro-
cessing the self-reported ToM.

This paper is novel to the field of games user research 
and affective computing as it introduces a player-centred 
approach to ToM in human-agent interaction. To the best of 
our knowledge, this is the first time ToM is examined within 
human-agent scenarios, where the focus is not on the model 
of the agent per se but rather on the players’ first-order affec-
tive ToM process. Although most studies conceptualise ToM 
as a highly cognitive construct, we focus on the emotional 
component of the process and attempt to shed light on the 
ways players perceive how emotional agents feel.

2  Theoretical Background

This section provides the theoretical basis for our study and 
the agent model. We introduce the processes behind cogni-
tive and affective aspects of ToM and present the theory of 
computer frustration which inspired our top-down frustra-
tion model of the gameplaying agent.

2.1  Theory of Mind and Emotions

As briefly mentioned in Sect. 1, the ToM is the concept 
of high-level mental models. Although traditional views 
focused on the representation of cognitive processes [24], 
the concept has been recently extended with an affective 
dimension [38, 45]. ToM plays a central role in social cog-
nition and interaction [21] as it enables humans to hold 
and manage prevalent representations of other actors, their 
beliefs, emotions, and cognitive processes.

ToM has been investigated from the late ’70s [7, 40] and 
in the context of autonomous multiagent interaction from 
the mid-90s [1]. However, it is only recently being con-
sidered in game design and game user research. Although 
the bulk of studies focus on agent-based ToM modelling 
[3, 13], other venues consider player-player interactions 
[23, 26, 33] and player-game involvement [6]. Motivated 
by the lack of a human-agent interaction perspective, this 
paper explores cognitive and emotional manifestations of a 
human’s ToM while interacting with a game agent. While 
traditionally ToM is concerned with beliefs, trait judgements 

and strategic decisions [44], we follow Damasio’s somatic 
marker hypothesis [12] and approach ToM from an emotion-
centric perspective.

Based on neuroscientific evidence, we differentiate 
between a cognitive and an affective ToM. Cognitive ToM 
is focusing on belief and knowledge representations, while 
affective ToM processes are involved in the representation of 
emotions [46]. However, these processes are not mutually 
exclusive [45]. Cognitive ToM is generally associated with 
brain regions involved in autonomic responses and a choice-
selection downstream of the decision making process [20, 
48]. Meanwhile, affective ToM involves additional areas tied 
to the affective and cognitive regulation of decision making 
processes as described in the somatic marker hypothesis [12, 
14]. Evidence also shows that affective ToM relies on cog-
nitive empathy, which is the understanding of others’ emo-
tions, and to a lesser degree on emotional contagion, a form 
of emotional mimicry [45]. This suggests that while it is 
possible to represent other actors’ mental states cognitively, 
affective processes impact the formulation and regulation of 
such mental models.

The state of the art research in virtual agents, inferring 
goals and recognising false beliefs, is paving the way in 
developing bottom-up solutions for modelling artificial ToM 
[41]. Such approaches, however, generally do not consider 
modelling affective aspects of ToM [3, 13, 41]. Adopting the 
typology of Ref. [41] to human players, we focus on agent-
specific ToM—as opposed to general ToM, which stipulates 
a general predictive system—and turn our investigation 
towards how players formulate the cognitive and affective 
components of ToM with regards to game-playing agents.

2.2  Computer Frustration Theory

This explorative first study of player-agent ToM addresses 
perceptions of frustration. Frustration is one of the most 
common complex affective responses experienced during 
human-computer interaction [5], with distinctive cogni-
tive and behavioural patterns [9]. The model we use for 
our game agents relies on the principles of the computer 
frustration theory [5] which is based on the work of Refs. 
[2, 25]. Computer frustration is a complex model which 
incorporates pre-emotional appraisal, immediate emotional 
response, and long lasting mood [5]. Computer frustration 
is positioned within the information processing theories of 
cognition and emotion [10, 36, 42], by emphasising its role 
in pre-emotional appraisal.

According to the theory, frustration is triggered by the 
lack of anticipated change and manifests as non-specific 
arousal in the information processing system, leading to an 
eventual cognitive performance dysfunction. Computer frus-
tration differentiates between incident, session, and post-ses-
sion frustration and focuses on self-efficacy, appraisal, and 
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emotional outcomes of human-computer interaction. How-
ever, given the fast-paced nature of the game we designed 
for testing our hypotheses, in this paper we concentrate on 
the short-term effects and functions of frustration. Computer 
frustration further predicts that the severity of the interrup-
tions and the time lost are the primary causes of incident 
level (moment-to-moment) frustration—whereas low self-
efficacy and negative mood have a greater effect on session 
level and post-session outcomes.

However, not all frustrating events are detrimental to 
one’s performance. Instead, computer frustration posits a 
bell-curve-like function between the level of arousal and 
performance [5], based on a Hebbian interpretation (Fig. 1) 
of the Yerkes–Dodson Law [54]. Due to the connection 
between arousal and performance, frustration initially has 
a positive effect by limiting peripheral processes (both in 
perception and information processing), and thus helps focus 
on the task at hand. This enhancing effect is especially true if 
the frustration originates from unmet goals or expectations 
(in-game frustration) rather than from a failure to operate an 
input device (at-game frustration) [22].

3  The MAZING Game

To collect data on a game featuring an artificial agent that 
might exhibit frustration, we developed a 2D top-down 
shooter game where a player and an artificial agent compete 
(Fig. 2). The player scores points by attacking the agent, 
while avoiding it. A game session automatically ends after 
1 min.

In this study, we collect data from four playthroughs per 
player: in each playthrough, the opponent is different in 
terms of its level of frustration. The first agent has no inte-
grated model of frustration (the value of frustration remains 
at 0). The other three agents are reactive to their environment 
and vary their frustration scores according to our model 
between 25–50, 50–75, and 75–100. In the following sec-
tions we detail the player’s and agent’s goals in this game.

3.1  Player’s Mechanics

Players move in a 2D maze (viewed from a top-down per-
spective) using the WASD keys and aiming with the mouse. 
Their movement speed is higher than the agent’s base speed, 
giving the player an upper hand in most scenarios. They can 
also use a short dash ability every 2 s, which grants them 
a speed multiplier for less than a second. The player scores 
points by damaging the agent, via two modes of attack: (a) 
shooting up to five projectiles in quick succession by holding 
down the left mouse-button, and (b) throwing bombs with 
the right mouse-button. Bombs create fires where they land 
for 5 s (see Fig. 2). Passing through fire carpets deals dam-
age to both the player and the agent, and agents are gener-
ally discouraged from moving through them. Both attacks 
recharge after a short period of time. If the agent dies, play-
ers gain additional points. The game obscures the maze with 
a partial fog-of-war, which hinders visibility but does not 
block it completely. Players’ avatars have their field of view 
which illuminates the map primarily in a cone in front of 
them and to a lesser extent peripherally (including behind 
the avatar) as shown in Fig. 2. Players lose if they collide 
with the agent or if they lose all their hit points (players lose 
hit points only when passing through fire carpets). Losing 
decreases the player’s score and re-spawns the agent and the 
player at their original locations.

3.2  Agent’s Mechanics

The agent only performs movement and low-level decision 
making. The agent carries out a basic search behaviour, 
quasi-randomly wandering around the map. At the end of 
each search cycle, it picks a random point and makes its way 

Fig. 1  Optimal level of human performance based on Ref. [25]

Fig. 2  Screenshot of MAZING, showing the player attacking the agent 
(teal and red orbs) and a fire in the middle. A previously laid fire is 
disappearing in an upper corner
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there, avoiding fires set by the player. If the agent senses the 
player, it engages in a chase. To sense the player, the agent 
possesses two distinct sensors mimicking visual and audi-
tory senses. The visual sensor has an initial angle of 135◦ 
and a 10 m radius. The auditory senses affect an area around 
the agent (initially also 10 m), and have a low initial prob-
ability of detecting the player. If the player is standing within 
the sensor’s reach, the agent’s auditory system gradually 
increases the chance of detection and checks for the player 
every second. Intervening walls cut the auditory detection 
chance approximately in half. The agent takes damage from 
each bullet-hit and damage over time while standing in fire. 
The agent has many hit points, but they are not replenished 
over time.

3.3  Agent’s Frustration Model

In order to provide the player with a quasi-believable, 
responsive agent, we create a model of frustration that drives 
the perception, movement and decision-making of the agent. 
Based on the theory of computer frustration (see Sect. 2.2), 
we regard the severity of the setback as the primary variable 
for increasing frustration. As the agent’s primary short-term 
goal is to catch the player, all incidents that make it harder 
for the agent to do so increase its frustration. These incidents 
include player attacks, increasing distance from the player, 
and losing sight of the player. Since we conceptualize frus-
tration as a form of arousal, we also give a light increase to 
the agent’s frustration value whenever it spots the player. 
Given that we wish to model incident level frustration, we 
gradually decrease the agent’s frustration whenever it is 
engaged in search behaviour.

Several stimuli from the game environment affect the 
agent’s level of frustration. Frustration increases if the path 
towards a goal calculated in the previous frame is shorter 
than the current path (which indicates new obstacles or a 
player getting away) and decreases (at a lower rate) if it is 
longer. Frustration is increased when the agent spots the 
player and when the agent loses sight of the player. Third, 
the agent’s health has an effect on the agent’s frustration: 
frustration increases with each projectile hit. Finally, frustra-
tion slowly decreases in “resting periods”, when the agent is 
in search behaviour. All modifiers to frustration are designed 
to provide players with more persistent feedback [28], and 
ensure that the agent is getting more frustrated throughout 
the session and cannot easily revert to its baseline.

The agent manifests frustration in several perceptible 
ways:

Sensory system Frustration causes increasingly focused 
attention by decreasing the angle of the agent’s field of 
view (FoV): a frustrated agent can see further but at nar-
rower angles, which can increase the chance to spot the 

player. Similarly, the area of the agent’s auditory sensors is 
smaller as frustration rises, but the probability of hearing 
the player increases.

Movement On a basic level, frustration increases the 
agent’s movement speed and rotation speed linearly. This 
improves the agent’s performance in spotting the player 
initially. However, at high frustration levels it produces 
erratic movements; coupled with the narrower field of 
view, this can result in lower accuracy. Frustration also 
decreases the number of turns in search behaviour, simu-
lating increasingly agitated behaviour.

Decision making Generally, the agent chooses more 
dangerous paths towards its goal when frustrated. The 
agent perceives paths through fire carpets as riskier; it is 
more likely to take a risky option the more health it has, 
or if a safe path to the player is considerably longer. Frus-
tration affects the risk taking factor and biases the agent’s 
behaviour towards being more reckless.

Behavioural outcomes We designed our frustration 
model to reflect observations in Ref. [9]. As frustration 
increased during play tests in that study, aggravated play-
ers took increasingly more and more risk, rushed forward, 
and paid less and less attention to their surroundings. In 
light of this research, we modify the agent’s different 
systems to bias its behaviour towards this direction. The 
focused sensors, increased speed, and risk-taking behav-
iour is initially helpful for the agent, creating a focused 
state and modelling the increased attention of the agent. As 
frustration rises, the system produces distinctly frustrated 
behaviour, including hasty movements, reckless behaviour, 
and loss of peripheral senses. Higher frustration levels, 
however, lead to rage signified by erratic, jerky movement 
and an almost complete shut down of the agent’s sensors. 
This behaviour is a natural fallout of the model but it is 
also in line with the frustration-aggression hypothesis [4].

4  Experimental Protocol

An experimental protocol was set up to collect data from 
each participant in a set of matchups with as diverse 
manifested frustration levels as possible. Each participant 
started with a tutorial level to get acquainted with the 
mechanics. After this, the participant played against an 
agent in four play sessions; each session was followed by a 
round of first-person annotation. During the four play ses-
sions we recorded a number of gameplay metrics and play-
ers’ facial features which were used to capture emotional 
manifestations during play. During the setup phase of the 
experiment, the facial recognition software was calibrated 
to each individual.
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4.1  Annotation

Following the core principles of ToM, we aim to assess what 
our players think about the feelings of the agents they have 
been observing and interacting with. Players were asked to 
annotate the first-order representation of the agent’s frustra-
tion—i.e. how frustrated they felt the agent was. To achieve 
this, the participant’s last play session was recorded and 
played back to the player as a relived experience which the 
player annotated.

Labels of the agent’s frustration were collected via a 
continuous annotation process which offers a more reliable 
and detailed picture of the underlying ground truth [49] and 
captures the temporal dynamics of the experience [30]. Spe-
cifically, the players themselves annotated their perceived 
frustration of the agent in every game they played. Players 
used the RankTrace tool (Fig. 3), which is an intuitive and 
validated [8, 29] annotation tool for unbounded and continu-
ous annotation.

The continuous frustration trace was then converted to 
ordered ranks between 3-s segments of gameplay. Processing 
trace annotation as ordinal data provides higher reliability, 
generality and inter-rater agreement [8, 29, 49] and is gener-
ally better aligned with the relative nature of emotions [52].

4.2  Gameplay Features

We extracted 30 features in each gameplay session which 
measure the position, kinaesthetic and sensory attributes 
and internal states of the agent. We also consider the posi-
tion and actions of the player, and the interactions between 
the player and the agent (e.g. distance between player and 
agent). Collected features refer to (a) the agent’s internal 
values: Frustration, Rotation Speed, Risk-Taking Factor, 

Movement Speed, Hearing Radius, Hearing Probability, FoV 
Radius, FoV Angle, Number of Turns in Search; (b) agent 
behaviour: Search Mode, Seeing Player, Chasing Player, 
Health, Distance Travelled, Taking Risky Path, Change in 
Rotation; (c) player behaviour: Distance Travelled, Shooting, 
Pressing Shoot on Cool-down, Mouse Movement, Health, 
Dash Pressed, Dash Mode, Pressing Dash on Cool-down, 
Change in Rotation, Bomb Dropping, Pressing Bomb on 
Cool-down; or (d) gameplay context: Score, Agent Distance 
From Player, Number of Fires.

4.3  Facial Emotion Recognition

Neuroscienctific evidence suggests that autonomic responses 
alone might not be sufficient when it comes to measuring 
ToM [11, 20]. Emotional manifestations of ToM during 
gameplay are based on facial expression recognition and 
processing [34]. We extract facial features and derive high-
level facial expressions via the Affdex SDK [32]. This sys-
tem uses 34 facial landmarks to provide continuous feedback 
(with a rate of 10–30 FPS) and calculates the presence and 
intensity of the six basic emotions (anger, disgust, fear, joy, 
sadness, surprise) and contempt as well as estimates of the 
user’s attention, engagement, and emotional valence from 14 
facial action units. A total of 23 features are extracted from 
facial data captured during play and provided as intensity 
values of each expression on a scale between 0 (expression-
less) to 100 (exaggerated display).

5  Data Preprocessing and Methods

This section discusses our methods for data preprocessing 
and presents two quantitative measures of our signals, met-
rics and annotations. Section 5.3 offers a short introduction 
to preference learning, focusing on ranking support vector 
machine (rankSVM) which is used to build predictive ToM 
models in Sect. 6.

5.1  Data Format and Preprocessing

Data from 80 play sessions is processed via a sliding-
window approach. During this process the gameplay is 
segmented into consecutive equal-length windows with 
no overlap ( w ) and the mean value ( �A ) and value range 
( Â ) of each feature is calculated within each window (see 
Fig. 4). Both �A and Â are relevant (and disparate): the mean 
values are an absolute metric which is intuitive for com-
paring time windows (e.g. whether the player believes the 
agent is more frustrated in one window than in the next). In 
contrast, value range measures the amount of change in the 
given metrics within a time window. While value range is 
expressed through absolute values as well, it captures the 

Fig. 3  The RankTrace software annotation tool with its physical inter-
face

Administrator
下划线文本

Administrator
高亮文本

Administrator
高亮文本

Administrator
高亮文本

Administrator
高亮文本



50 KI - Künstliche Intelligenz (2020) 34:45–55

1 3

relative changes within a time window. Ordinal relationships 
of value range between time windows can be intuitive for 
gameplay metrics or facial expressions (e.g. whether there 
the game score changed more in one time window compared 
to the next) but, admittedly, are less intuitive for player anno-
tation (e.g. whether the player saw a larger increase in agent 
frustration within one time window than in the next). Rela-
tive measures have been shown to be more powerful pre-
dictors than absolute ones for players’ own affective states 
[8]. We believe that the degree of fluctuation within time 
windows can provide a clearer picture of the aggravated and 
erratic behaviour typical of frustrated players [9] and the 
fluctuation of the player’s appraisal of the agent.

Based on relevant findings [30], we also consider the 
reaction lag of annotation traces and facial expressions ( l ). 
As in Ref. [8], in this study we parse our data with a time 
window of 3 s ( w = 3 ), with no overlap between windows 
and a lag of 1 s ( l = 1 ). The lag is introduced to the annota-
tion and facial features to account for the participants’ reac-
tion time. When calculating the lag, these values are shifted 
back (with the first 1 s discarded) before applying the win-
dowing method. See Fig. 4 for an illustrative example.

5.2  Method for Correlation Analysis

We use Kendall’s � for all correlation analysis reported in 
Sect. 6. Kendall’s � is a non-parametric, bivariate test of 
correlation for measuring monotonic relationships [35], 
which is suited for analysing the concordance of ordinal data 
(unlike Pearson’s correlation) and is a more robust metric 
than Spearman’s � but outputs lower correlation values [18]. 
We treat significant findings at 5% ( � = 0.05 ) and highly 

significant at 1% ( � = 0.01 ) level. Because multiple compar-
isons are being made with the same variable (the processed 
annotation value) the Bonferroni correction is applied. Thus, 
the correlation analysis measures significance at � =

0.05

53
 and 

high significance at � =
0.01

53
 for each window-processing 

setup ( �A and Â).

5.3  Preference‑Based ToM Models

Preference learning (PL) is a supervised learning technique, 
in which an algorithm predicts a rank order between two or 
more data points. The name preference learning originates 
from the most prominent applications of these algorithms 
in predicting user preferences [27], however, as PL simply 
learns to predict ordinal relationships in the data, it can be 
used to solve a wide array of problems where it is important 
to conserve the relative relation of datapoints. We use PL 
to investigate the ordinal change in player’s emotional ToM 
as there is a growing body of evidence that points towards 
the ordinal nature of emotions [50, 52], which underlines 
cognitive and affective processes. Even though we focus on 
ordinal changes, in this paper we use the term preference 
learning to differentiate our algorithms from regression and 
classification algorithms. Contemporary research highlights 
the limitations of regression in affective computing [53]. 
PL is also proving more robust than classification to handle 
ordinal annotations of affect [8, 31, 52] as it preserves more 
information about the global and local order of the data than 
traditional class-based methods.

In this study we use a form of pairwise preference learn-
ing, which leverages binary classification by transforming 
the representation of the dataset from singular datapoints to 
pairwise differences. During this transformation each pair 
of input points (xi, xj) ∈ X2 are observed based on their cor-
responding output (yi, yj) ∈ Y2 . Then a new dataset is con-
structed by assigning the pairwise difference of each pairs 
of input xi − xj a label � = 1 and xj − xi a label � = −1 if 
yi > yj (where xi is preferred over xj ). The resulting dataset 
reformulates the problem, which can be solved by any kind 
of binary classifier.

Because of the size of our dataset and the robustness of 
the technique, we use support vector machines (SVM) for 
this task. SVMs are supervised learning algorithms, origi-
nally designed to solve classification problems by maximiz-
ing the margin of a separating boundary between data points 
[47]. Since their conception, SVMs have been adapted to 
solve different problems including regression analysis, clus-
tering, and—in our case—ranking [19]. In our experiments, 
we use the SVM implementation found in the Preference 
Learning Toolbox1 [16], based on the algorithm of Ref. [27].

Fig. 4  Calculating the mean and value range of different signals (top 
to bottom: player annotation, facial data, gameplay data) through 
a sliding window approach. Features are shifted back 1 s in relation 
to the gameplay metrics before cut into equal-length windows. Mean 
and value range are calculated from the highlighted time window 
(window 2) and its previous one (window 1) to derive rankings

1 http://plt.insti tuted igita lgame s.com.

http://plt.institutedigitalgames.com
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6  Results

Following the experimental protocol of Sect. 4, we collected 
data from 20 participants (described in Sect. 6.1), process-
ing them as ranks in terms of mean values and value range 
of subsequent time windows. These rankings are used to 
analyse the impact of individual features (with rank correla-
tions presented in Sect. 6.2) and to train predictive models 
which combine some or all features linearly or non-linearly 
(in Sect. 6.3).

6.1  Collected Data

Gameplay, facial and annotation data was collected from 20 
participants (16 male, 4 female). Participants’ average age 
was 30 and all participants held or studied towards graduate 
degrees. All participants were experienced players, with half 
of them playing daily.

Each participant played and annotated four gameplay ses-
sions lasting 1 min each. With a sliding window of 3 s, a 
total of 1570 data points are collected after partially missing 
data was removed. These errors were caused by limitations 
of the face detection software. To allow participants to play 
freely, a web-camera was used to record their faces. As some 
participants shifted in their chairs during gameplay, they 
inadvertently moved out from the camera’s vision, resulting 
in missing facial data.

In Sect. 6.2, 1570 individual datapoints are considered, 
where each datapoint represents a 3 s snapshot of a player’s 
gameplay. For PL in Sect. 6.3, differences between all data-
points are considered. As discussed in Sect. 5.3, for each 
comparison two observations are made and this results in 
27,968 comparisons for �A and 22,674 comparisons for Â 
with a 50% baseline.

6.2  Correlation Analysis

Table 1 shows the Kendall’s � correlation values between 
annotated frustration of the agent and gameplay features of 
the agent, the player, and their interaction (i.e. General), as 
well as emotions estimated from facial detection. Correla-
tions are calculated between the mean values ( �A ) of features 
and the annotation data, and between the value range ( Â ) 
of a time window for features and the annotation data. As 
mentioned in Sect. 5.2, we apply Bonferroni correction to 
all significance tests. Overall, there are only a handful of sig-
nificant correlations in both �A (18 out of 53 with p < 0.05 ) 
and Â (17 out of 53 with p < 0.05 ) cases. While most of 
the action units and more complex emotional and affective 
constructs measured by face recognition show very weak 

Table 1  Kendall’s � correlation values between the annotation of 
frustration and features captured from the game and the web-cam

Type Feature �(�
A
) 𝜏(Â)

Agent model Agent Frustration Score 0.048 0.038
Agent behaviour Search mode 0.176 −0.055

Seeing player 0.174 0.134
Chasing player 0.169 0.088
Distance travelled 0.125 0.102
Rotation speed 0.101 0.074
Speed 0.048 0.035
Change in rotation 0.008 0.016
Taking risky path −0.002 0.008
Search mode length −0.057 0.034

Agent sensory system Health  0.154 0.065
Hearing probability 0.054 0.033
View radius 0.048 0.048
Risk taking factor 0.007 0.046
Hearing radius −0.049 0.040
View angle −0.049 0.035

Player behaviour Shooting 0.121 0.044
Tries to shoot on CDa 0.104 0.073
Distance travelled 0.072 0.026
Mouse movement 0.029 −0.028
Change in rotation 0.029 0.040
Health 0.018 0.033
Tries to bomb on CD 0.014 0.047
Dash pressed −0.008 −0.047
Dashing −0.009 −0.053
Bomb dropped −0.012 0.036
Tries to dash on CD −0.018 −0.027

General gameplay Score 0.240 0.070
Agent–player distance  0.141 0.069
Number of fires 0.014 0.071

Basic emotions Contempt 0.037 −0.035
Sadness 0.017  0.071
Fear 0.009 −0.058
Surprise 0.006 0.008
Joy 0.002 0.019
Anger 0.001 −0.041
Disgust −0.018 0.097

Affective dimensions Valence 0.077 −0.044
Attention −0.001 0.090
Engagement  0.070 0.000
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correlations (generally below 0.1), features relating to the 
agent’s behaviour and the gameplay context show much 
stronger connections with the perceived frustration of the 
agent.

Perhaps surprisingly, the absolute highest correlation is 
with the player’s score—which naturally relies both on the 
player’s and the agent’s performance. Even though other 
gameplay features inform the score (i.e. the agent’s health), 
score is the utmost indicator of the success and failure of the 
player. Therefore, it provides additional high-level informa-
tion about the game state compared to other, simpler fea-
tures. It is also evident that captured facial features includ-
ing expressions of the six basic emotions [15] and contempt 
show even weaker correlations when the data is processed 
as �̂� and no significant connections when it is processed as 
�A . Since annotations of agent frustration have few signifi-
cant correlations with affective markers but many significant 
correlations with contextual gameplay information, we may 
conclude that the first-order representation of the agents in 
our experiments is a predominantly cognitive process.

6.3  Predictive Models

While a traditional correlation analysis can indicate which 
individual features are good predictors of player ToM, it 
does not test how these features perform when combined 
in linear or non-linear fashions. We use preference learn-
ing methods (see Sect. 5.3) to construct models based on 

different feature sets and with the input and output processed 
either in an absolute or a relative fashion. The input features 
consist of 30 gameplay features, 23 facial emotion manifes-
tation features, and their combination (see these 53 features 
in Sect. 4.2 and on Table 1). The output of our models are 
the ordinal relation of pairwise differences between data-
points. We infer these relation both in terms of mean values 
( �A ) and value ranges ( Â ). We indicate the processing of 
the input and output features with a right arrow between 
them (i.e. in case of an input processed as mean values and 
output processed as value ranges the notation is 𝜇A → Â ). To 
test the robustness of our models, we apply cross-participant 
validation: i.e. training the model on data of 18 players and 
testing it on data of two unseen players, repeated 10 times so 
that all players are validated. To measure the statistical sig-
nificance of the difference between models, two-tailed t-tests 
are used with p < 0.05 . When a model is tested against mul-
tiple other models, the calculation of significance is adjusted 
using the Bonferroni correction. Since 12 different models 
are compared, one model is significantly different from all 
others at � =

0.05

11
.

Figure 5 shows the tenfold cross-validation accuracies 
of linear support vector machines (SVMs) and non-lin-
ear SVMs with radial basis function (RBF) kernels. RBF 
emphasises the local proximity between input vectors in a 
feature space, allowing for a non-linear measure of match 
between vectors [47]. Both linear and RBF SVMs use the C 
regularisation parameter to optimise the trade-off between 
maximising the separating margin and minimising the clas-
sification error, while the RBF SVMs also rely on the � 
hyperparameter to control the weight given to datapoints 
during the kernel calculation. The input features and output 

Table 1  (continued)

Type Feature �(�
A
) 𝜏(Â)

Facial action units ChinRaise 0.115 0.040

BrowRaise 0.064 0.066

Smirk 0.028 −0.028

InnerBrowRaise 0.027  0.077

LipSuck 0.004 −0.017

NoseWrinkle −0.021 0.094

EyeClosure −0.027 0.081

LipPucker −0.029 0.025

UpperLipRaise −0.033 0.069

LipPress −0.044 0.011

BrowFurrow  0.062 −0.053

Smile  0.067 0.043

MouthOpen  0.100 0.057

Values in bold are significant ( p < 0.05 ); highly significant values are 
underlined ( p < 0.01 ). Bonferroni correction is applied to all signifi-
cance tests
a  CD cool-down. An ability is recharging and unavailable

Fig. 5  Accuracies of linear SVM and best RBF SVM predictive mod-
els, on different combinations of �A and Â input and output values 
( input → output ). Results are averaged from tenfold cross-validation 
folds, and error bars denote the 95% confidence intervals
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(annotations) are processed as mean value and value range 
separately, leading to four combinations of input–output. 
Results shown in Fig. 5 are from the best C and RBF� val-
ues per model2 based on an exhaustive gradient search for 
both the C and RBF� parameters from 10−3 to 103 with pow-
ers of 10.

From Fig. 5 it is evident that the modelling of perceived 
frustration is a challenging predictive task. Both linear and 
non-linear SVMs are performing less than 10% above the 
baseline, with the exception of �A → �A , which reaches 
67.5% on average (80.2% at best) based on game features 
and 66.4% on average (81.7% at best) based on all features. 
Based on the results of the correlation analysis presented on 
Table 1, it is not surprising that features processed as Â yield 
weaker results: the best Â → Â models only reaching 58.4% 
on average and 62.9% at best based on gameplay features. 
The best model combining both processing techniques is 
𝜇A → Â with 60.2% average and 69% maximum accuracy 
using gameplay features. While the best models are achieved 
using gameplay features only, accuracies for models based 
on facial features corroborate findings of Sect. 6.2. In the 
�A → �A and Â → Â scenarios, models based on facial rec-
ognition result in significantly worse accuracies than other 
feature sets. There is no significant difference, however, 
between models using only gameplay features and when 
both feature sets are combined together in a bimodal fashion.

These results are supported by Table 1 and align with the 
conclusion of Sect. 6.2 suggesting that the first-order repre-
sentation of the agent mainly relies on the cognitive under-
standing of observable information without much emotional 
feedback. The deliberative nature of this mechanism might 
explain the weak predictions based on non-linear models, 
as players might actively interpret and reflect on the context 
of the interaction instead of relying on their own affective 
response or simple observations of the game state.

7  Discussion

This study examined the player’s ToM regarding a game-
playing artificial agent which was designed to exhibit behav-
ioural signs of frustration. The test-bed game, MAZING, 
was designed for the study based a contemporary theory of 
frustration in human-computer interaction. Within MAZ-
ING, an AI opponent was designed for the player to interact 
with. We collected first-person annotations of the player’s 
first-order representation of the agent’s frustration and 

examined the player’s perception both through correlation 
analysis and via predictive models.

Results indicate that the most prominent correlations 
of the player’s appraisal of agent frustration is the game-
play context, i.e. the performance and interaction of both 
player and agent. Our results also suggest that the process of 
developing and maintaining a ToM was a primarily relies on 
the understanding of the gameplay context, with no strong 
monotonic correlations to visible signs of player emotion. 
Predictive models of a player’s ToM showed that gameplay 
features alone are more reliable predictors of how players 
appraise situations and perceive agent behaviour and frus-
tration. On the other hand, SVM models only had moderate 
success in predicting players’ ToM.

Our results are corroborated by Ref. [17] and recent find-
ings of Ref. [43], which applied deep neural networks to the 
mapping of basic emotions to gameplay events with mixed 
outcomes. Just as their results, our research also indicates 
that the ambiguity and underlying complexity of emotions 
are not trivial to read and contextualise through facial emo-
tion manifestations, leading to inaccurate predictions based 
on absolute measures of basic emotions. The meta-review 
of Ref. [39] found that multimodal modelling generally 
outperforms unimodal methods in audio-, video-, and text-
based analysis. Our results expand these findings to new 
modalities which we capture through the gameplay logs (i.e. 
player behaviour and gameplay context) and provide addi-
tional validity by showcasing the improved performance of 
models using both gameplay-based, and video-based (facial 
features) modalities.

The primary limitation of our study is the ad-hoc nature 
of the agent’s model of frustration: while the model is 
inspired by contemporary theory and manifests a varied 
but persistent behaviour, the testbed cannot be validated 
based on the statistical analysis. Preliminary comparisons 
between players’ annotations did not show substantial dif-
ferences between playthroughs with agents exhibiting low or 
high frustration, but future work should find a more granular 
method of validating the internal models of the gameplaying 
agent through experimentation. This could involve a focus 
on basic, more universally recognised emotions, a more 
expressive agent, and more streamlined gameplay.

Another limitation was the lack of a ground truth for 
the player’s own emotional state, as we relied instead on 
detected emotion via facial expressions. While the correla-
tion analysis showed little relationship between player emo-
tion and perceptions of frustration, this could be instead due 
to the instrument used to capture emotion in the first place. 
We deliberately avoided an extra step asking players to anno-
tate their own emotion, as this would cause more cognitive 
load and bias the ToM annotation due to ordering effects. 
However, future work could explore ways of collecting 

2 The best (C) and RBF� values for each model are:�
A
→ �

A
 : game: 

(0.1) 0.5; facial: (100) 0.1; all: (1) 0.01.Â → Â : game: (0.1) 0.5; 
facial: (10) 1; all: (0.1) 0.1.Â → 𝜇

A
 : game: (0.1) 0.1; facial: (0.1) 

0.01; all: (0.1) 0.5.𝜇
A
→ Â : game: (0.5) 0.01; facial: (0.1) 0.01; all: 

(0.5) 0.01.
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ground truth data on the emotional state of the players with-
out increasing the difficulty of the annotation task.

Finally, while this first study focused only on gameplay 
metrics and facial features, future work could extend the 
data collection to other modalites. This study also collected 
a number of physiological signals (heart rate variability and 
electrodermal activity), but due to varying signal quality we 
chose to omit them from this paper. Improved ways of col-
lecting physiological signals, gaze tracking, or other ways 
to process the features in a relative fashion such as average 
gradient per time window [8] could lead to more robust pre-
dictive models, and should be further investigated.

8  Conclusions

This paper examined a player’s ToM regarding an agent’s 
simulated frustration. The MAZING test-bed game was 
created explicitly towards this end, inspired by the theory 
of computer frustration. Results from a small-scale study 
with 20 players gave us a rich dataset of granular annota-
tions of perceived agent frustration, as well as 53 features 
of gameplay and players’ facial expressions. The analysis of 
the results indicated that a player’s first-order representation 
of the agent’s state is largely a cognitive process. Further, 
emotional responses were deemed unreliable in modelling 
player ToM, as relying solely on gameplay features yields 
models of significantly higher accuracies compared to mod-
els based on facial features.
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