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A B S T R A C T

Combining EEG with eye-tracking is a promising approach to study neural correlates of natural vision, but the
resulting recordings are also heavily contaminated by activity of the eye balls, eye lids, and extraocular muscles.
While Independent Component Analysis (ICA) is commonly used to suppress these ocular artifacts, its perfor-
mance under free viewing conditions has not been systematically evaluated and many published reports contain
residual artifacts. Here I evaluated and optimized ICA-based correction for two tasks with unconstrained eye
movements: visual search in images and sentence reading. In a first step, four parameters of the ICA pipeline were
varied orthogonally: the (1) high-pass and (2) low-pass filter applied to the training data, (3) the proportion of
training data containing myogenic saccadic spike potentials (SP), and (4) the threshold for eye tracker-based
component rejection. In a second step, the eye-tracker was used to objectively quantify the correction quality
of each ICA solution, both in terms of undercorrection (residual artifacts) and overcorrection (removal of
neurogenic activity). As a benchmark, results were compared to those obtained with an alternative spatial filter,
Multiple Source Eye Correction (MSEC). With commonly used settings, Infomax ICA not only left artifacts in the
data, but also distorted neurogenic activity during eye movement-free intervals. However, correction results could
be strongly improved by training the ICA on optimally filtered data in which SPs were massively overweighted.
With optimized procedures, ICA removed virtually all artifacts, including the SP and its associated spectral
broadband artifact from both viewing paradigms, with little distortion of neural activity. It also outperformed
MSEC in terms of SP correction. Matlab code is provided.
Humans actively explore their environment with 2–4 saccadic eye
movements per second, or about 10,000 during every waking hour.
Although natural vision is fundamentally trans-saccadic, procedures in
electroencephalographic (EEG) research have traditionally aimed to
minimize oculomotor behavior by requiring sustained visual fixation. In
recent years, however, there has been rising interest in measuring brain-
electric activity also during unconstrained viewing situations such as
reading (e.g. Dimigen et al., 2011; Henderson et al., 2013), scene viewing
(e.g. Nikolaev et al., 2011; Ossandon et al., 2010; Simola et al., 2013),
visual search (e.g. Brouwer et al., 2013; Kamienkowski et al., 2012;
K€orner et al., 2014; Ries et al., 2018) or whole-body motion (Soto et al.,
2018).

With this approach, eye movements are co-recorded with the EEG and
the signal is aligned to the beginning or end of spontaneously occurring
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eye movements, yielding saccade- or fixation-related potentials (SRPs/
FRPs), respectively. Fixations onsets, in particular, provide natural time-
locking points to study attentional, cognitive, or affective processes
during natural vision, since every fixation triggers a renewed sequence of
lambda waves (Evans, 1953; Gaarder et al., 1964; Yagi, 1979), primarily
visually-evoked potentials that share many features with those elicited by
passive retinal stimulation (Dandekar et al., 2012; Kazai and Yagi, 2003;
Kornrumpf et al., 2016; Marton et al., 1985).

Despite their promises, recordings during natural vision are also
complicated by serious data-analytical challenges (Baccino, 2011;
Dimigen et al., 2011; Nikolaev et al., 2016), the most obvious of which
are the voltage distortions produced by rotation of the eye balls, move-
ments of the eye lids, and contraction of the extraocular muscles (Berg
and Scherg, 1991; Keren et al., 2010; Picton et al., 2000; Pl€ochl et al.,
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2012). These ocular artifacts pose inferential hazards because they are
not only magnitudes larger than the event-related neural signals, but
typically correlated to the experimental condition due to condition dif-
ferences in saccade size, saccade orientation, or fixation duration. Their
complete removal is therefore crucial to avoid misinterpretations.

A multitude of methods has been proposed for ocular correction,
including those based on EEG-on-EOG regression, dipole modelling/
beamforming, PCA, and other variants of blind source separation (Brunia
et al., 1989; Delorme et al., 2007; Gratton, 1998; Ille et al., 2002). Of
these, Independent Component Analysis (ICA) is now perhaps most
commonly used to remove occasional saccade and blink artifacts in
steady-fixation experiments (Delorme et al., 2007; Jung et al., 2000). ICA
employs higher order statistics to decompose the EEG into independent
components (ICs), linear combinations of the scalp channels weighted to
be maximally temporally independent (Stone, 2004). For this purpose,
ICA is typically trained on a portion of the recording – the training data –

containing a sample of the neural and non-neural sources active during
the task. Only ICs believed to reflect neural sources are then converted
back (i.e., back-projected) to the electrode space, yielding an
artifact-corrected version of the EEG.

Although ICA is now also frequently applied in SRP/FRP studies, its
performance on heavily contaminated free viewing data has not been
systematically evaluated, nor compared to that of alternative methods.
Yet there are reasons to suspect that the quality of ICA-based ocular
artifact correction may be overestimated in practice, in particular for free
viewing applications. The first is that the corrected data is rarely
analyzed time-locked to the saccade itself, but often inspected in
continuous data (where small residual artifacts are nearly impossible to
spot) or in fixation onset-aligned averages (where the saccade onset-
locked artifacts are jittered due to variance in saccade duration). Sec-
ond, many free viewing studies aggregate across saccades of different
orientations, meaning that the most salient corneoretinal (CR) artifacts
cancel out (partially) in the average, but may still remain present at the
single-trial level. Third, the vast majority of SRP/FRP studies so far has
focused on posterior scalp sites, where residual artifacts are less obvious.
In contrast, facial electrooculogram (EOG) electrodes, which show arti-
facts most clearly, are often excluded before ICA or not plotted. Finally,
few studies have tested whether the correction removes legitimate
neurogenic activity.

If the corrected EEG is instead aligned to the onsets of saccades of a
single orientation and inspected at frontal sensors, the results are often
sobering. Eye muscle-generated saccadic spike potentials (SPs, see
below), in particular, are difficult to model with ICA and most existing
reports display residual SP artifacts in the plotted waveforms (for arbi-
trarily picked examples see Dimigen et al., 2012; Henderson et al., 2013;
Kamienkowski et al., 2012; K€orner et al., 2014; Kornrumpf et al., 2016;
Nikolaev et al., 2011; Ossandon et al., 2010; Ries et al., 2018; Simola
et al., 2013).

The presence of residual artifacts in most published free viewing
studies indicates that correction procedures need to be improved and
specifically adapted for this purpose. In case of ICA, this requires
addressing three practical problems: (1) How to select and preprocess the
training data, (2) how to reliably categorize ICs as ocular/non-ocular,
and (3) how to quantify and minimize the distortion of neural activity.
The preprocessing of the input data, in particular, has received
comparatively little attention, but has been shown to be more important
than the choice of the ICA algorithm (e.g. Infomax, FastICA, or AMICA;
Zakeri et al., 2014). Rather than proposing yet another correction
method, goal of the present study was therefore to validate and adapt the
pipeline for the widely-used extended Infomax algorithm (Bell and Sej-
nowski, 1995; Lee et al., 1999) to natural viewing.

In the following, I will first briefly review the three partially inde-
pendent mechanisms that generate ocular artifacts. I will then describe
the four parameters of the ICA pipeline manipulated in the present study.
Finally, I will outline how parallel eye-tracking can be used to quantify
correction outcomes more objectively.
2

1. Three types of ocular artifacts

Corneoretinal (CR) dipole. Due to metabolic activity in the pigmented
layer of the retina (Marmor and Zrenner, 1993), each eye ball posesses an
electrical gradient of one to several millivolts (depending on ambient
illumination level, Marmor and Zrenner, 1993; Young and Sheena, 1988)
between its front (cornea) and back (retina). When the eyes rotate, these
corneoretinal dipoles also rotate, such that a rightward saccade, for
example, generates maximal positive distortions at frontolateral
right-hemispheric electrodes (towards which the corneas rotate). For
saccades up to about 30�–40� (Shinomiya et al., 2008), CR artifact
amplitude increases as a linear function of saccade size (at ~9.5–16 μV
per degree; Keren et al., 2010), meaning that propagation factors are
similar for small and large saccades of the same orientation. However,
artifact topographies are not strictly mirrosymmetric for upward versus
downward saccades (Picton et al., 2000; Pl€ochl et al., 2012) and have
also been reported to depend on the participant's absolute screen viewing
position (Ai et al., 2016), which of course changes frequently during free
viewing.

Eye lids: During blinks, the eye lids slide across the positive corneas,
allowing current to flow to the forehead (Matsuo et al., 1975). A smaller
blink-like artifact – sometimes called eye “rider artifact” (Lins et al.,
1993) – also occurs towards the end of upward or oblique-upward sac-
cades (Barry and Jones, 1965; Pl€ochl et al., 2012) and is believed to be
caused by the eye lids lagging behind the upward-rotating eye balls,
temporarily changing their overlap with the positive cornea. The result is
a blink-like frontal positivity that begins during upward saccades but
outlasts the offset of the saccade (by about 100ms in Pl€ochl et al., 2012).

Spike potential: The most difficult-to-correct artifact is the saccadic
spike potential (SP), a brief, high-frequency biphasic wave, which ramps
up ~5–10ms before the saccade and reaches its primary peak at saccade
onset (Blinn, 1955; Keren et al., 2010; see Carl et al., 2012 for MEG). The
main peak of the SP has a focal negative maximum at facial electrodes but
is accompanied by a more widespread positive deflection over parietal
sites. SP topography also changes with saccade direction, but laterali-
zation of its main peak is opposite to that of CR artifacts such that for a
rightward saccade, the frontally-negative main spike is largest near the
right eye, whereas the diffuse parietal positive pole shifts towards the left
hemisphere. However, the SP is less lateralized than the CR artifact
around the eyes, which explains why bipolar EOG montages do not
capture this artifact well. Instead, it is largest in a “radial” EOG montage
for which facial electrodes are referenced against a centroparietal site. SP
amplitude increases with saccade size, although it is unclear whether this
relationship is linear (Keren et al., 2010) or not (Boylan and Ross Doig,
1989).

Current scientific consensus holds that the SP most likely reflects
myogenic (EMG) activity from the recruitment and only initially syn-
chronous firing of the motor units of the extraocular muscles at saccade
onset (Thickbroom and Mastaglia, 1985; Yamazaki, 1968). The SP is not
of corneoretinal origin since it precedes rotation of the eye ball and
survives removal of the bulbus in patients with an eye ball prothesis but
preserved eye muscles (Thickbroom & Mastaglia, 1985). A myogenic
rather than cerebral source is also suggested by its frontal generators
(Carl et al., 2012; Hipp and Siegel, 2013), its presence in darkness (Riggs
et al., 1974) and intramuscular EMG (Yamazaki, 1968) as well as its
weakness or absence in intracranial EEG (Jerbi et al., 2009; Kovach et al.,
2011; Sakamoto et al., 1991) and patients with extraocular muscle palsy
(Thickbroom & Mastaglia, 1985). In contrast, there is little persuasive
evidence for cerebral contributions to the SP itself (Balaban and Wein-
stein, 1985; Berchicci et al., 2012; Parks and Corballis, 2008), although
relevant cortical activity may of course take place during the same in-
terval (e.g. Parks and Corballis, 2008).

Spike potentials have received attention because even involuntary
microsaccades (<1�) during attempted fixation generate sizeable SPs
(Armington, 1978; Dimigen et al., 2009; Yamazaki, 1968; Yuval-Green-
berg et al., 2008), which introduce a broadband artifact in the
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time-frequency spectrum of the EEG, affecting the low-amplitude beta
(~14–30 Hz) and gamma bands (>30Hz), in particular (Reva and Afta-
nas, 2004; Yuval-Greenberg et al., 2008). Complete removal of SPs with
ICA has proven challenging even for microsaccades (Craddock et al.,
2016; Hassler et al., 2011; Hipp and Siegel, 2013; Keren et al., 2010) and
ICA often fails to single out the SP in one or more distinct ICs (Hipp and
Fig. 1. Schematic workflow to determine parameters for optimized ICA training (O
line overview”.
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Siegel, 2013; Keren et al., 2010). In addition, even clean SP components
can be difficult to spot in scalp maps alone (Pl€ochl et al., 2012), especially
if EOG electrodes were not placed around both eyes, recorded with a
bipolar montage, or excluded before ICA (Keren et al., 2010).

Residual SP artifacts pose problems for SRP/FRP analyses in free
viewing. First, they distort the typical baseline period in the time and
PTICAT) and component classification. Steps are described in the section “Pipe-
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frequency domain. Placing the baseline further away from saccade onset
(e.g. �200 to �100ms) is possible (e.g., Nikolaev et al., 2016; Simola
et al., 2013), but will reduce the signal-to-noise ratio of the averaged
waveforms. The spectral broadband artifact can also easily distort the
EEG's beta and gamma band during free viewing, e.g. if it leaks into the
post-saccadic interval in a time-frequency analysis. Second, the SP
greatly complicates the study of phenomena occurring in temporal
proximity to saccade onset, such as remapping (Kusunoki and Goldberg,
2003), saccadic suppression (Duffy and Lombroso, 1968), or
saccade-related changes in cortical excitability (Ito et al., 2011). Finally,
because a new saccade is executed every 200–400ms during natural
vision, late intervals of the SRP/FRP waveform are also contaminated by
SPs from the following saccades on the stimulus (see also Fig. 6). It is
therefore desirable to fully remove SPs. The following section reviews
several ICA preprocessing parameters that can influence correction
performance.

2. Explored parameters of the ICA pipeline

High-pass filter. The reliability of ICA decompositions has been shown
to improve after signal offsets are removed by subtracting the mean
voltages across each epoch (mean-centering, Groppe et al., 2009). In
addition, practical experience suggests that decompositions improve
after slow oscillations and drifts – for example caused by electrode po-
tentials or skin potential fluctuations – are further suppressed by
high-pass filtering (Debener et al., 2010; Winkler et al., 2015; Zakeri
et al., 2014). The adverse effects of slow signals on ICA unmixing quality
are not fully understood (Debener et al., 2010; Winkler et al., 2015), but
one likely reason is that ICA is biased towards these high-amplitude
signals since it tends to focus on data expressing the most power.
Filtering may also help to satisfy ICA's stationarity assumption by
removing signals that are spatially unstable.

Using data from an auditory oddball task, Winkler et al. (2015) sys-
tematically investigated effects of high-pass filtering on artifact reduc-
tion. Unmixing weights were computed on filtered data and then applied
to the unfiltered recording (to preserve slow ERPs like P300; Debener
et al., 2010). Filtering at 1 or 2 Hz produced the most dipolar ICs
(Delorme et al., 2012), the best discrimination between
targets/non-targets, and the least noisy ERPs. While these results un-
derline the importance of data preprocessing, adequate filtering may be
even more important for free viewing applications. The reason is that
during normal vision – and in contrast to tasks with isolated saccades
(e.g. Pl€ochl et al., 2012) – CR artifacts from multiple saccades frequently
sum up to produce large deviations from baseline. This problem is most
obvious in reading, where ~85% of all saccades point in the same di-
rection (Rayner, 1998), creating DC offsets of �250 μV at the end of each
trial (Dimigen et al., 2011; their Fig. 1C). To explore this hypothesis, I
high pass-filtered the ICA training data at 20 different frequencies.

Low-pass filter. Removing high frequencies can also improve de-
compositions since it attenuates electromagnetic noise and scalp-EMG.
High cutoffs around 40–45Hz are therefore commonly applied to ICA
input data (e.g. Castellanos and Makarov, 2006; Gwin et al., 2010;
Mannan et al., 2016; Ries et al., 2018; Winkler et al., 2015; Zakeri et al.,
2014). However, EMG is not only produced by face, head, and neck
muscles, but presumably also reflected in the SP, whose bandwidth ex-
tends to at least 90 Hz (Keren et al., 2010; Nativ et al., 1990). This implies
that the SP may actually be modeled better if high frequencies remain in
the data. Keeping high frequencies in the data also allows the researcher
to isolate and remove other unwanted scalp-EMG sources from the data
with ICA. To test this hypothesis, the training data was low pass-filtered
at either 40 or 100 Hz.

Spike potential overweighting. The difficulty of removing the SP with
ICA is likely due to the fact that it accounts for little energy in the signal,
because the SP (1) is of moderate amplitude compared to CR artifacts, (2)
possesses a different topography for different saccade directions, (3) lasts
only a few samples (~20ms, see Fig. 5), and (4) also changes its
4

topography within this interval. A potential solution, suggested by Keren
et al. (2010), is to overweight peri-saccadic samples in the training data
(see also Mennes et al., 2010). In particular, both Keren et al. (2010) and
Craddock et al. (2016) trained their ICAs on relatively short segments
(81ms and 200ms long, respectively) centered on microsaccades.
Similarly, Meyberg et al. (2017) found that only the inclusion of 15�

saccades in the training data allowed for the removal of small CR artifacts
produced by microsaccades. Finally, to aid component identification,
Hassler et al. (2011) proposed an unconventional use of ICA for which
“virtual” channels are added to the data, which contain a copy of the SP
waveform (averaged across frontal channels) during microsaccade in-
tervals, but zeros elsewhere. Taken together, these studies suggest that
overweighting can improve ocular correction, particularly in case of the
SP, but this approach has not been tested on free viewing data. I therefore
aimed to improve the correction by massively overweighing
peri-saccadic samples.

Eye tracker-guided IC classification. Unlike the EOG, eye-tracking pro-
vides an accurate gaze position signal that is electrically independent of
the EEG and therefore potentially useful to improve ocular correction
(Dimigen et al., 2011; Hironaga et al., 2004; Kierkels et al., 2007;
Lourenço et al., 2016; Mannan et al., 2016; Noureddin et al., 2012; Pl€ochl
et al., 2012).

One application is the objective classification of ICs (Dimigen et al.,
2011; Pl€ochl et al., 2012). A simple but elegant criterion for this purpose
was proposed by Pl€ochl et al. (2012), who validated it on data from a
guided-saccade task. Basis for their classification is the variability of each
IC's activity time course during saccades versus fixations: ICs showing
relatively more variance during saccade intervals are likely to reflect
ocular artifacts, whereas those showing more variance during fixations
are likely neurogenic (because each fixation evokes lambda waves).
Thus, if the ratio of both variances (varsaccade/varfixation) exceeds 1, an IC
is likely to reflect artifact; conversely, ratios below 1 indicate neural
sources. Non-ocular artifacts such as cardiac activity show similar vari-
ance during both intervals and are not flagged; they can be detected with
other techniques (Campos Viola et al., 2009; Chaumon et al., 2015;
Mognon et al., 2011; Nolan et al., 2010; Winkler et al., 2011).

Obviously, the success of this procedure depends on an appropriate
threshold. Although a value of 1 seems like a logical choice, Pl€ochl et al.
(2012) proposed using a slightly higher threshold (1.1) to reduce mis-
classifications. Here I explored different thresholds to identify the lowest
variance ratio threshold that removes ocular ICs while preserving
neurogenic activity.

3. Quantifying overcorrection with eye-tracking

Correction can distort data in two ways. If ocular ICs are missed, ar-
tifacts will remain in the data (undercorrection). A question less often
discussed is whether ICA removes brain activity observed in the task
(overcorrection; e.g. Castellanos and Makarov, 2006; Mennes et al.,
2010; Pontifex et al., 2016; see Ries et al., 2018 for a recent investigation
with FRPs). Some overcorrection is to be expected since the number of
active sources is likely much higher than the number of recording
channels, meaning that ICA will never perfectly isolated any single
source (Groppe et al., 2008). Thus, overcorrection can happen because
the ICA produces mixed non-neural/neural ICs (e.g. Castellanos and
Makarov, 2006; McMenamin et al., 2010) but also because the experi-
menter accidently removes neurogenic ICs. For example, inquiries among
colleagues suggest that some labs tend to remove all ICs with a frontal
topography that is focal or bipolar around the eyes. Presumably, how-
ever, at least some of these sources reflect (pre)frontal brain activity.

Under most circumstances, it is impossible to quantify overcorrection
since the “true” (artifact-free) data is unavailable for comparison. Here I
argue that high-resolution eye-tracking provides a unique opportunity in
this regard, since it allows us to identify intervals objectively free of sig-
nificant oculomotor activity (Dimigen et al., 2011). In particular, every
experiment contains at least some short intervals during which the eye
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lids remained open and the eyes were (virtually) motionless. Blinks can
be objectively identified in video-based eye-tracking data because pupil
and corneal reflex tracking is lost during a blink. Similarly, significant
eye movements during fixation – in particular microsaccades – can be
detected with suitable algorithms (Engbert and Kliegl, 2003). Although
intervals without microsaccades are rare, they can be found immediately
after stimulus onsets, since any sufficiently strong stimulation triggers
saccadic inhibition, a transient decrease in the rate of saccades (Reingold
and Stampe, 2002) and microsaccades (Engbert and Kliegl, 2003). Since
these eye movement-free intervals should not be modified by the ocular
correction, they provide a ground truth to quantify overcorrection.

4. A benchmark for ICA: Multiple-Source Eye Correction

To put the performance of Infomax ICA into context, I compared it to
that obtained with an alternative algorithm, the surrogate variant of
Multiple-Source Eye Correction (MSEC, Berg and Scherg, 1994). Like ICA,
MSEC can be described as a spatial filter (Ille et al., 2002), which sepa-
rates brain and artifact activities based on their topographical definitions
(for details, see the Supplementary Materials, Supplement A). A main
difference to ICA is that artifact topographies are not obtained by blind
source separation, but empirically defined by averaging the artifacts of
isolated calibration saccades. In addition, a set of generic brain topog-
raphies is defined by a dipole model that is the same for all participants.
The purpose of this “surrogate” brain source model is not to directly
model neural activity in the task, but to reduce the subtraction of brain
activity spatially correlated to the artifact topographies (i.e. to reduce
overcorrection). Because MSEC has been shown to produce good cor-
neoretinal correction in natural reading (e.g. Dimigen et al., 2011;
Kornrumpf et al., 2016) is was considered a suitable benchmark.

5. Current study

To summarize, this study aimed to evaluate and improve the ICA-
based ocular correction of free viewing data. For this purpose, I
analyzed combined eye movement/EEG recordings from two frequently
studied free viewing paradigms with different oculomotor behavior: vi-
sual search in scenes and left-to-right sentence reading. The four
described parameters of the ICA pipeline were orthogonally manipulated
Fig. 2. Stimuli and eye movement behavior. In the Scenes experiment, participants s
experiment, participants read short stories. For each experiment, plots show an exam
density), a directional histogram of saccade directions, and the distributions of sacca
indicates saccades classified as “rightward” (�30�).
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(see Fig. 1). The outcomes of each ICA variant were then compared using
objective measures of under- and overcorrection and benchmarked
against those obtained with MSEC.

6. Methods

6.1. Pipeline overview

I analyzed data from two eye-tracking/EEG experiments with un-
constrained eye movements: scene viewing and reading (Fig. 2). Both
were recorded in the same laboratory with identical hardware and
largely identical recording settings (details below).

Fig. 1 summarizes the analysis pipeline. In a first step, I created for
each participant 40 differently filtered copies of the original recording by
crossing 20 high-pass filters (with passband edges between 0.016 and
30 Hz) with two low-pass filters (passband edge of 40 or 100Hz). These
differently filtered datasets were then cut into epochs serving as ICA
training data. From each of these “basic” versions of the training data, I
then created a second, “overweighted” version in which peri-saccadic
samples were overrepresented. This was achieved by cutting 30ms seg-
ments around saccade onsets and repeatedly re-appending them to the
training data.

In the next step, ICAs were computed on each of the resulting 80
training datasets (20 high-pass filters� 2 low-pass filters� 2 versions).
In a third step, the resulting unmixing matrices (W) were multiplied with
the original, unfiltered recording (X), thereby producing activity wave-
forms (S) for the ICs in the original recording. In a fourth step, eye
movement events provided by the eye-tracker were used to remove ICs
whose activity waveforms showed more variance during saccades than
fixations. To find the best threshold for this classification, 10 different
thresholds were applied (0.6, 0.7, …1.5) and the corresponding artifact
ICs were marked. The artifact-corrected data was then obtained by back-
projecting only the neural sources (Xcorr¼W�1

brain * Sbrain). Since every
threshold was applied to every ICA solution, this produced 800 versions
of artifact-corrected data per participant (or 19,200 in total).

Finally, three eye tracker-based criteria were used to compare
correction quality. To quantify undercorrection, I measured the residual
amplitude of (1) CR and (2) SP artifacts in saccade onset-ERPs (SRPs). To
quantify overcorrection, I identified short stimulus onset-aligned epochs
earched for a small target stimulus hidden within natural images. In the Reading
ple stimulus, a “heat map” of fixation locations (warmer colors indicate higher
de amplitude and saccade duration. Red shading in the saccade direction plots



1 Highly similar results were obtained without the mean-centering of the 3 s
epochs. This step was only included here to illustrate that the effects of high-pass
filtering go beyond those of the mean-centering for this epoch length. In
contrast, the mean-centering step was beneficial in the case of the short, peri-
saccadic epochs that were added during the overweighting procedure (see
section Overweighting spike potentials).
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without detectable oculomotor activity. Because these intervals should
not be affected by the ocular correction, overcorrection was quantified as
(3) the degree to which these intervals were changed by ICA.

6.2. Participants

For the current analysis, I used the first 12 participants of each
experiment. Most were students at Humboldt-University, with a mean
age of 25.3 years in the Scenes (range 19–25 yrs, 7 female) and 21.3 years
in the Reading experiment (18–33 yrs, 11 female). Procedures complied
with the declaration of Helsinki and participants provided written
informed consent.

6.3. Scene viewing experiment

In the Scenes experiment, participants searched for a target stimulus
hidden within greyscale natural images. Most images were taken from
the Zurich Natural Image Database (Einh€auser et al., 2006), a set of pho-
tographs shot in a forest. During the experiment, 99 images were pre-
sented at a resolution of 800� 600 pixels (28.8� � 21.6�), centered on a
1024� 768 pixels background showing 1/f noise. On each trial, a single
scene was presented and the participant's task was to find a gray disc
(0.4 cd/m2) that appeared at a random location within the image 8–16 s
after scene onset. This disc had an initial diameter of just 0.07� but then
slowly increased in size. Once the participant found the target, he/she
pressed a button, terminating the trial. The top row of Fig. 2 summarizes
eye movement behavior in the task. Saccades had a median amplitude of
4.9�, mean duration of 44.2 ms and pointed in all directions, although
most were horizontal. Fixation locations were distributed across the
images, with some bias towards the image center and corners (heat map
in Fig. 2). Average fixation duration was 264ms.

6.4. Reading experiment

In the Reading experiment, participants read 152 short stories
(including 8 practice trials) of the Potsdam Sentence Corpus III, a set of
sentences used in previous ERP research (Dambacher et al., 2012). Each
story consisted of two sentences successively presented as a single line of
black text on a white background (0.45� per character). Purpose of the
experiment was to study fixation-related N400 effects elicited by a
semantically congruent/incongruent word in the second sentence. In
addition, the experiment manipulated whether that target word was
parafoveally visible or not while readers were looking at an earlier word
in the sentence (nþ2 boundary paradigm; Kliegl, Risse, & Laubrock,
2007). Only data for the second sentence was analyzed. As Fig. 2 shows,
reading saccades had a median amplitude of 2.6� and mostly pointed
rightward. Average fixation duration was 197ms. Please note that the
relatively short fixation durations in both experiments (cf. Rayner, 1998)
are explained by the sensitive saccade detection algorithm used here,
which also detects microsaccades.

6.5. Common methods: stimulation & eye-tracking

Recordings were made in an electromagnetically shielded room.
Stimuli were presented on a 22 inch CRT monitor (Iiyama Vision Master
Pro 510; vertical refresh: 160 Hz) at a viewing distance of 60 cm using
Presentation software (Neurobehavioral Systems Inc.). Binocular eye
movements were recorded at a rate of 500Hz with a video-based eye-
tracker (IView-X Hi-Speed, SMI GmbH). Offline, saccades and fixations
were detected using Engbert and Kliegl's (2003) velocity-based algorithm
as implemented in the EYE-EEG toolbox (Dimigen et al., 2011). Saccades
were defined as intervals in which the velocity of both eyes exceeded for
�10ms a threshold set at 5 median-based SDs of all recorded eye ve-
locities (excluding blink intervals). This low threshold (cf. Dimigen et al.,
2009) was chosen to maximize detection sensitivity for microsaccades. In
cases where multiple saccades were detected within <50ms, I only kept
6

the first to avoid detecting post-saccadic oscillations as separate saccades.

6.6. Common methods: electrophysiology

EEG and EOG were recorded from 45 (Scenes) or 63 (Reading) Ag/
AgCl electrodes referenced against the left mastoid (A1). Electrodes were
mounted in a cap at standard 10-10 system positions, except for four EOG
electrodes that were affixed to the outer canthus and infraorbital ridge of
each eye. Throughout all analyses, EOG electrodes remained in the data
and were treated like EEG channels (which is crucial to detect residual
artifacts and ocular ICs; Dimigen et al., 2011; Nikolaev et al., 2016). To
make the montages in both experiments comparable, I reduced the
Reading dataset also to 45 electrodes, which were largely identical to
those in the Scenes experiment. Exact electrode locations are visualized in
Supplementary Fig. S1. Signals were recorded with BrainAmp DC am-
plifiers (Brain Products GmbH) at a rate of 500Hz with impedances
kept< 5 kΩ. The Scenes data was initially acquired with a time constant
of 10 s, whereas the Reading data was acquired as direct current data. To
make the datasets directly comparable, the raw data of both experiments
was high-pass filtered at 0.016 Hz (10 s time constant) using ERPLAB's
Butterworth filter (pop_basicfilter.m, Lopez-Calderon and Luck, 2014).
The EEG and eye-tracking data were synchronized offline based on
shared trigger pulses with a synchronization error <2ms.

6.7. Creating differently filtered ICA training data

For each participant, I trained the ICA on 80 differently preprocessed
versions of the original data. In a first step, I created 20 copies of the
continuous EEG recording and high-pass filtered them differently using
EEGLAB's (Delorme and Makeig, 2004) standard filter function pop_eeg-
filtnew.m (a zero-phase Hamming-windowed sinc FIR filter, Widmann
et al., 2015) with its default, frequency-dependent transition bandwidth.
Importantly, this filter function expects as the input the edge of the filter's
passband (the frequency at which the filter starts attenuating the signal)
rather than the more commonly reported half-amplitude cutoff (the
frequency at which the signal is attenuated by �6 dB). Therefore, for the
present analysis, all filters are described by their passband edge. The
corresponding cutoff values are given in Supplementary Table 1. Sup-
plementary Fig. S2 visualizes the filter characteristics. For high-pass
filtering, the 20 passband edges were set to: No filtering, 0.1, 0.25, 0.5,
0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 7.5, 10, 12.5, 15, 20, 25, and 30 Hz.
Afterwards, each dataset was also low-pass filtered with the (upper) edge
of the passband set to either 40 Hz or 100Hz.

Each filtered dataset was then cut into 3 s epochs (�200 toþ2800ms)
around stimulus presentations. In the Scene dataset, I used the onset of
the photograph as well as the onset of the search target, yielding 198
epochs. In the Reading data, I used the onset of the second sentence,
yielding 152 epochs. Note that these epochs contain a representative
sample of brain and artifact activity in these tasks, since they include
both the stimulus onset and several subsequent saccades. From each
epoch, I then removed the mean channel voltages across the epoch
(mean-centering, Groppe et al., 2009). Any high-pass filtering was
therefore done in addition to mean-centering.1 To exclude epochs with
large non-ocular artifacts, I rejected epochs containing extreme outliers
(>�500 μV) in any channel. No additional pruning was performed (see
also Winkler et al., 2015).

The resulting 40 differently filtered versions of training data will be
called “basic” versions in the following, because they contain no
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overweighted artifacts. From each of these filtered and epoched datasets,
I then used the first 162,000 points to train the ICA (corresponding to
k¼ 80 points per weight in the 45� 45 unmixing matrix).2

6.8. Overweighting spike potentials

From each basic versions of the training data, I then created an
“overweighted” copy in which SP samples were overrepresented (Fig. 1).
For this purpose, short 30 ms epochs (�20 to þ10 ms) were extracted
around all saccade onsets found in the basic version. These brief saccade-
locked epochs were then again mean-centered, concatenated together,
and repeatedly appended to the end of the training dataset until its total
length was doubled to 324,000 points (k¼ 160), half of which now only
consisted of parts of the SP waveform. This means that all of the
appended samples were already contained in the basic version of the
training data, that is, they were redundant except for the renewed mean-
centering applied to the brief peri-saccadic epochs.

6.9. ICA decomposition

ICAs were computed on each of the resulting 80 training datasets per
participant using EEGLAB's binary implementation of extended Infomax
ICA (minimum change criterion: 10�7). Infomax was chosen because it is
widely used as the default option in EEGLAB and produces rather reliable
decompositions (Groppe et al., 2009; Pontifex et al., 2016). The resulting
ICA weights were then applied to the original, unfiltered recording. More
precisely, source waveforms (S) for the original recording were
computed by multiplying each of the 80 unmixing matrices (W)
computed on the training data (this also includes the corresponding
sphering matrices, stored separately in EEGLAB) with the matrix (X)
containing the unfiltered recording (Fig. 1).

6.10. Eye tracker-guided component identification

The next step was to remove ocular ICs using the procedure by Pl€ochl
et al. as implemented in EYE-EEG (function pop_eyetrackerica.m). I
applied 10 thresholds between 0.6 and 1.5 (in steps of 0.1). To compute
variance ratios, the saccade time window was defined as lasting from
�10ms before saccade onset until saccade offset. Conversely, fixations
were defined as lasting from fixation onset until 10ms before the
saccade.3 To obtain the corrected EEG (Xcorr), only the activity of the
neural sources was back-projected to the scalp (Xcorr¼W�1

brain * Sbrain).

6.11. Measuring correction quality

To quantify correction quality and visualize results, the corrected EEG
was converted to average reference. I then extracted three measures of
correction quality:

6.12. Undercorrection: CR artifact size

The size of residual CR artifacts was quantified by averaging all
rightward saccades (tolerance of �30�; see red shading in Fig. 2) and
measuring the remaining EEG lateralization at frontal electrodes.
Rightward saccades were selected because they occur frequently in both
2 The length of the training data (k¼ 80 points per weight) was defined
arbitrarily, but clearly exceeds minimum recommendations for mid-density EEG
montages (e.g., k¼ 20 in Onton et al., 2006; k¼ 30 in Miyakoshi, 2019). Effects
of data length on ICA reliability are explored in Groppe et al. (2009).
3 The SP begins before saccade onset. A comparison of 20 different saccade

window sizes (not reported here) showed that this definition (�10ms before
saccade until saccade offset) distinguished best between ocular and non-ocular
ICs (i.e. maximized the distance between the two variance ratio distributions
separated by a threshold of 1.1; cf. Fig. 8A).
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scene viewing and reading. However, for Scenes, comparable results were
obtained for other saccade directions (Supplementary Fig. S4). Epochs
were cut from �200 to þ600 ms around saccade onsets, baseline-
corrected from �50 to �10 ms (thereby excluding the SP from the
baseline), and averaged. Residual artifact amplitude in these saccade-
locked ERPs was then summarized as a single measure by subtracting
the mean voltage at eight frontal left-hemispheric EEG and EOG elec-
trodes (lateral EOG left, infraorbital EOG left, FP1, AF7, F7, F3, FT9, FC5)
from that at their right-hemispheric counterparts (lateral EOG right, …,
FC6) in the window þ10 to þ200 ms after saccade onset. Hemispheric
lateralization within this window captures the CR artifact but excludes
the SP, which was quantified separately.

A possible concern with this measure is that saccades are accompa-
nied by genuine lateralized brain activity. However, most of the later-
alized potentials related to attention shifts (Eimer, 2014) or oculomotor
preparation (Becker et al., 1972; Berchicci et al., 2012; Everling et al.,
1996; Moster and Goldberg, 1990) have been observed before rather than
after the saccade and post-saccadic effects (Meyberg et al., 2015) have
been observed at posterior sites. Thus, although some influence of neural
sources on post-saccadic frontal lateralization cannot be ruled out, its
influence was likely small in comparison to that of residual corneoretinal
artifacts.
6.13. Undercorrection: SP size

The same rightward SRPs were used to measure residual SP ampli-
tude. The SP is difficult to capture in a single measure, because it is
biphasic and also has a diffuse parietal pole. As a suitable measure, I
computed the average Global Field Power across the scalp (GFP, Leh-
mann and Skrandies, 1980) at the seven sampling points between �8 ms
and þ6 ms around saccade onset. Because the GFP of EEG data rarely
drops to zero, the GFP around saccade onset was compared to that during
a neutral and artifact-free reference interval before saccade onset (seven
samples from �66 to �52 ms). The average GFP during this reference
interval provides an estimate of the lowest possible GFP expected after a
“perfect” SP correction. It is indicated by the horizontal dotted lines in
Fig. 3B.
6.14. Overcorrection

Brain signal distortion.Overcorrection was quantified in intervals
without significant oculomotor activity. As explained above, a suitable
interval to find such intervals is immediately after the trial-initial onset of
the scene/sentence-stimulus. Another set of epochs was therefore cut
around stimulus onsets and baseline-corrected with a 100 ms pre-
stimulus baseline. The eye-tracker was then used to identify a subset of
these epochs in which no blink or eye movement was detected between
�100 and þ 200 ms after stimulus onset; this was the longest feasible
interval that yielded some (virtually) eye movement-free epochs for each
participant. Three criteria were used to identify these epochs: First, I
excluded epochs in which a (micro)saccade was detected. Second, I
removed epochs in which gaze position in any of the four eye-tracker
channels (vertical and horizontal, left and right eye) changed by > 0.2�

between successive samples. Finally, to detect significant binocular drift,
I removed epochs during which horizontal or vertical gaze position
(averaged binocularly) varied by> 0.5� (peak-to-peak) within the epoch.

These criteria identified M¼ 38.0 eye movement-free epochs per
participant for Scenes (range: 5–66, SD¼ 21.1) and M¼ 101.3 (range:
32–129, SD¼ 26.3) for Reading which were then averaged to obtain a
“clean” stimulus-ERP. To quantify overcorrection, this ERP was sub-
tracted from the same ERP after ocular correction with each of the 800
ICA variants described above. The resulting difference waves (Fig. 7)
therefore capture the distortion introduced by ICA and the average GFP
of these difference waves across the 300ms was used to quantify
overcorrection.



Fig. 3. Overview over main results for the Scenes
(left) and Reading (right) experiment. Plots in the
three rows depict the (A) size of the residual cor-
neoretinal artifact, (B) size of the spike potential,
and (C) distortion of eye movement-free intervals
(overcorrection) after correction with ICA. Note that
all measures of correction quality shown in this
figure were computed on the original, unfiltered
experimental data corrected with ICA. Results only
differ in terms of the high-pass filter, low-pass filter,
and overweighting applied to the training data. For
this plot, ocular ICs were flagged using a variance
ratio threshold of 1.1. Results for the MSEC algo-
rithm are shown on the right of each plot (black
open circles). In the panels in B, the horizontal
dotted lines (min) mark the mean GFP during an
artifact-free reference interval (i.e., the best possible
correction). Error bars indicate �1 SEM. The stan-
dard error for MSEC is too small to be visible in
some plots.
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6.5. Comparison to MSEC

Results were compared to those obtained with surrogate MSEC, as
implemented in BESA (version 6.0, Besa GmbH, Gr€afeling). Details on the
algorithm and its implementation are provided in Supplement A.
6.16. Statistics

The three measures of correction quality were entered into separate
mixed ANOVAs on the factors Experiment (2-level between-subject fac-
tor), High-pass filter (20), Low-pass filter (2), and Overweighting (2). For
these analyses, the saccade/fixation variance ratio threshold was fixed at
1.1. ANOVAs were conducted using the “ez” package in R (Lawrence,
2013). To handle violations of the sphericity assumption, degrees of
freedom were adjusted by multiplication with the Greenhouser-Geisser
8

epsilon. Here I report the original degrees of freedom, the epsilon (ε), the
adjusted p-values, and effect size as generalized eta-squared (ηG2).
Post-hoc paired t-test were used to assess the relationship between
threshold and overcorrection and to compare MSEC with the best ICA
solution.
6.17. Validation on new data

To test whether the specific best parameters determined in the pre-
sent study (e.g. the most suitable high-pass filter) generalize to new data,
all analyses described abovewere also repeated on new data. For Reading,
analyses were re-run on the next twelve participants of the same exper-
iment (mean age: 21.8 years, 7 female). For Scenes, analyses were
repeated for the 9 participants of a follow-up experiment (mean age: 24.1
years, 7 female) who performed the same search task with different



Fig. 4. Effect of high-pass filtering the training data on ICA correction of the original, unfiltered data. Plotted is the grand-average saccade-locked ERP (SRP) for
rightward saccades in the Scenes (upper half) and Reading (lower half) experiment. Time zero marks saccade onset. (A) The leftmost column shows the SRP without
ocular correction. Strong lateralized CR artifacts are evident. Maps depict the corresponding scalp distribution in the interval 10–200ms after saccade onset. The
positive deflection over midoccipital sites reflects the visual lambda response. Note that all plots also include EOG electrodes, which show the strongest residual
artifacts. (B) Same data corrected with ICA. Best results were obtained with the passband edge set to about 2 Hz. Note the different y-axis scaling between plots. (C)
Same data, corrected with MSEC. (Note: results in this figure are based on training data low-pass filtered at 100 Hz, with overweighted SPs). Frontal views of all
topographies shown in this figure are provided in Supplementary Fig. S3.

Fig. 5. Spike potential correction as a function of high-pass filter, low-pass filter, and overweighting. Waveforms show the SRP for rightward saccades at a radial EOG
channel (mean of all facial EOG electrodes minus electrode POz). Note that the SP is almost entirely removed if the three parameters are combined in an optimal way
(rightmost panels). In contrast, MSEC failed to fully correct the SP.
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Figure 6. Correction with a “typical” versus “optimized” ICA. In all panels, time zero indicates the onset of rightward saccades during scene viewing. Left panels:
Grand-average saccade-related activity without correction. Middle panels: Same data, corrected with a typically trained ICA (1–40 Hz bandwidth, no overweighting).
Right panels: Same data, corrected with a well-trained ICA (2–100 Hz, with overweighting). Upper panels plot the grand-average saccade-locked ERPs with occipital
electrode Oz highlighted by the turquoise line. Maps show the scalp distribution at �2ms (SP artifact), 60 ms (CR artifact) and 120ms (P1 brain potential),
respectively. Lower panels present the same data at prefrontal electrode Fpz and occipital electrode Oz after a wavelet transform (ERSP). SP artifacts from the current
saccade (around time zero) and the next saccade (beginning around 200 ms) are evident. Whereas the “typically”-trained ICA left some artifacts in the data, the
optimized ICA removed them better. The bottom panel shows the pure artifact in the frequency domain at electrode Oz, i.e., the difference between the spectrograms
for uncorrected data minus corrected data.
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greyscale images. Everything else was identical.

7. Results

Below, I first present the results for CR and SP correction and for
overcorrection. These are based on the removal of ICs with the saccade/
fixation variance threshold fixed at 1.1, which proved to be suitable.
Afterwards, I describe the effects of different thresholds. Finally, ICA is
10
compared to MSEC.
7.1. Correction of CR artifacts

Fig. 3A summarizes the impact of high-pass filtering, low-pass
filtering, and overweighting on the removal of CR artifacts. As evident
from this figure, correction quality in both experiments differed drasti-
cally as a function of filtering. Results for CR artifacts are also depicted in



Fig. 7. Effect of high-pass filtering on overcorrection. Shown is the stimulus-locked ERP for (virtually) eye movement-free epochs. (A, E) Grand-average ERPs in the
Scene (A) and Reading (E) experiment. Time zero marks image/sentence onset, respectively. (B, F) Averaged horizontal and vertical eye position. (C, G) Difference
waves of the stimulus-ERP after ocular correction minus that without any correction for ICAs trained on differently filtered data. Scalp maps depict the corresponding
difference topography between 0 and 200ms. In many cases, ICA introduced overcorrection at frontal electrodes. (Note: ICAs shown here were computed on training
data with overweighted SPs, low-pass filtered at 100 Hz). (D, H) Results for MSEC.
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detail in Fig. 4, which shows the grand-average SRP locked to rightward
saccades. Panel A in Fig. 4 displays the raw SRP without ocular correc-
tion; here, strong CR artifacts of up to �70 μV are evident as differences
between left- (blue lines) and right-hemisphere (red lines) channels.
Black lines mark sagittal midline electrodes that are less affected by
lateral saccades. At these channels, the visual lambda responses (P1
component) can be seen peaking over occipital cortex about 110ms after
saccade onset.

Fig. 4B shows the same data after correction with differently trained
ICAs. Note that all averages shown here were extracted from the original,
unfiltered data corrected with ICA; the results only differ in terms of the
preprocessing of the training data. Although ICA reduced artifacts at all
filter settings, visual inspection suggests that residual artifact size
depended strongly on the high-pass filter, with filters <1.5 Hz producing
suboptimal correction. Numerically, best results were obtained with
passband edges between 2 and 2.5 Hz for Scenes, and 3–4Hz for Reading.
Interestingly, very strong low-pass filtering (>5Hz) tended to invert the
topography of residual CR artifacts in the corrected data, that is, right-
hemisphere channels became more negative than left-hemisphere chan-
nels (see values below zero in Fig. 3A; see reversed lateralization in
Fig. 4B). In other words, overly aggressive filtering distorted the data,
whereas filtering at < 1.5 Hz left CR artifacts in the data. This visual
impression was confirmed by a significant effect of high-pass filter on CR
artifact amplitude, F(19,418)¼ 82.917, ε¼ 0.155, p< 0.0001,
ηG2¼ 0.638, which did not interact with Experiment. Factors low-pass
filter and overweighting did not affect CR correction.

7.2. Correction of spike potential

Fig. 3B summarizes results for the SP. Waveforms are depicted in
11
Fig. 5. High-pass filtering also strongly influenced SP correction. With
increasingly stricter high-pass filtering, residual SP amplitude decreased
in an almost monotonous fashion (main effect of high-pass filter on re-
sidual SP amplitude, F(19,418)¼ 50.940, ε¼ 0.103, p< 0.0001,
ηG2¼ 0.380). Importantly, however, the other two parameters also
strongly modulated the SP: First, correction was improved by over-
weighting, but as Fig. 3B shows, this benefit was only present in datasets
that were only moderately high-pass filtered (at frequencies of about 3 Hz
or less), resulting in a significant high-pass filter� overweighing interac-
tion, F(19,418)¼ 10.943, ε¼ 0.124, p< 0.0001, ηG2¼ 0.086. Second, a
similar pattern was seen for the low-pass filter (passband edge 40 vs. 100
Hz). Leaving the filter open up to 100Hz clearly improved SP correction,
but again only if high-pass filtering was moderate (interaction high-pass
filter� low-pass filter, F(19,418)¼ 9.799, ε¼ 0.111, p< 0.001,
ηG2¼ 0.068).

Fig. 5 shows that if all three parameters were combined in a near-
optimal manner, that is, high-pass filtering at 2 Hz, overweighting of
SPs, and no additional low-pass filtering, SP artifacts could be almost
entirely removed from both the Scenes and Reading data. Fig. 6 also shows
the Scenes data in the frequency domain, that is, after saccade-locked
epochs (cut from �600 to 1000ms for this analysis) were individually
wavelet-transformed using EEGLABs newtimef.m function, yielding event-
related spectral pertubation (ERSP) values relative to a pre-saccadic
(�200 to �100ms) spectral baseline. Whereas a more “typically”
trained ICA (bandwidth 1–40 Hz, no overweighting) left some spectral
artifacts in the data, the near-optimally trained ICA removed the
broadband artifact in the beta and gamma band (Craddock et al., 2016;
Hassler et al., 2011; Hipp and Siegel, 2013; Yuval-Greenberg et al.,
2008); not only from the current saccade (at time zero, see Fig. 6), but
also from the following saccades on the stimulus.
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7.3. Brain signal distortion (overcorrection)

Next, I tested whether ICA distorts neurogenic activity during
stimulus-locked intervals (virtually) free of oculomotor activity. Aggre-
gated results are again shown in Fig. 3C. Exemplary waveforms are
provided in Fig. 7 (the data shown is based on ICAs trained on data low-
pass filtered at 100Hz with overweighted SPs, since these settings pro-
vided the best SP correction, see above). Panels B and F in Fig. 7 show the
binocular gaze position in these clean epochs, measured by the eye-
tracker. In both experiments, grand-average gaze position changed by
less than 0.05� across the 300ms intervals. Panels A and D in Fig. 7 depict
the corresponding stimulus-ERPs for these clean epochs without correc-
tion. As expected, the trial-initial stimulation elicited a visual P1/N1
complex in both experiments. The following panels C and G only show
the difference waves (at all channels) between this artifact-free ERP after
ICA correction minus the same ERP without any ocular correction. In
other words, these panels show the distortions introduced by ICA.

A first interesting finding is that all ICA variants produced some
changes in eye movement-free intervals, regardless of filter settings.
Crucially, however, overcorrection depended again strongly on details of
the preprocessing of the training data, as confirmed by a main effect of
high-pass filter, F(19,418)¼ 13.213, ε¼ 0.098, p< 0.0001, ηG2¼ 0.208.
More precisely, overcorrection and high-pass filtering displayed a U-
shaped relationship such that with stricter filtering, distortions of the
stimulus-ERP first decreased, then reached a plateau (from about 2 to
5 Hz), and then rebounded again. This effect of high-pass filtering also
interacted with that of overweighting, F(19,418)¼ 8.627, ε¼ 0.280,
p< 0.0001, ηG2¼ 0.015.

Maps in Fig. 7 show the scalp distribution of overcorrection for some
ICA solutions. Distortions occurred mostly at frontal channels and their
topographies closely resembled those of typical CR and/or SP artifacts in
most cases, suggesting that the activity time courses of some of the ocular
ICs removed during the correction were non-zero during eye movement-
free intervals.
7.4. Validation on new data

To validate the suitable values for high-pass filtering, low-pass
filtering and overweighting, all main analyses were repeated on new
data from different participants. Results are shown in Supplementary
Fig. S5. As can be seen, the overall pattern of results and the numerically
best parameter combinations largely generalized to new data. The most
suitable high-pass filter for the correction of CR artifacts was again
numerically higher for Reading than for Scenes.
7.5. Comparison to MSEC

Figs. 3–5 and 7 also include the corresponding results for MSEC. To
assess its performance, MSEC was compared to a near-optimal ICA
variant (2–100Hz, with overweighting) using paired t-tests. In terms of
CR artifact removal, there was no evidence that MSEC performed
significantly better or worse than this optimized ICA (p¼ 0.863 for
Scenes, p¼ 0.123 for Reading). However, MSEC produced less over-
correction than the optimized ICA variant for Scenes, t(11)¼ 2.41,
p< 0.05, although the actual numerical difference between the methods
was small (difference: �0.21 μV, 95% confidence interval of difference:
�0.41 to 0.02 μV). For Reading, overcorrection did not differ between
methods (p¼ 0.274). Importantly, for both Scenes and Reading, MSEC
failed to remove the SP, which was only reduced to about a third of its
original amplitude in the radial EOG (see Fig. 5). Residual SP artifacts
therefore remained significantly larger with MSEC than optimized ICA.
This difference in SP correction performance was highly significant for
Scenes (difference between methods: 2.33 μV, 95% CI: 1.74–2.93 μV,
t(11)¼ 8.65, p< 0.0001) and Reading (difference between methods:
1.65 μV, 95% CI: 1.27–2.03 μV, t(11)¼ 9.6, p< 0.0001).
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7.6. Choice of threshold

All analyses above were based on a variance ratio threshold of 1.1 for
the identification of ocular ICs (Pl€ochl et al., 2012). At this threshold, the
criterion removed on average 5.3 components for Scenes (SD¼ 1.37) and
4.0 components for Reading (SD¼ 0.74), a difference that is likely
explained by the absence of vertical saccades in reading. Fig. 8 summa-
rizes effects of changing the threshold. For this analysis, the other pa-
rameters were fixed at near-optimal values (bandwidth 2–100Hz, with
overweighting). Ideally, we would want a bimodal distribution of vari-
ance ratios that clearly distinguishes between ocular and non-ocular ICs.
As Fig. 8A shows, the observed distribution was indeed fairly bimodal,
with relatively few ICs located in a “gray area” between 1.0 and 1.4. As
expected, decreasing the threshold increased the number of rejected ICs
(Fig. 8B). Overweighting had no effect on the number of removed ICs at
any threshold (Fig. 8C).

Fig. 8D shows the relationship between threshold and overcorrection.
Whereas overcorrection was not significantly different for thresholds
between 1.5 and 1.1, it increased once the threshold was lowered further.
Specifically, for Scenes, overcorrection started to increase (relative to a
lenient threshold of 1.5) once the threshold was lowered to 1.0 or less
(comparison threshold 1.0 vs. 1.5; t(11)¼ 2.79, p< 0.05). For Reading, a
statistically significant increase happened at thresholds of 0.9 or less,
t(11)¼ 2.90, p< 0.05; however, as the right panel of Fig. 8D shows, a
numerical increase was already seen at 1.0. Together, these results
indicate that 1.1 is indeed the lowest suitable threshold that avoids
overcorrection, while also almost fully removing ocular artifacts (given
optimized training data, see above).

8. Discussion

Human behavior is characterized by frequent saccades of varying
amplitude and direction. Although independent component analysis
(ICA) has been previously used to reduce the strong ocular EEG artifacts
generated during natural vision (e.g. during visual search, reading, face
perception, or whole-body motion), little is known about how to adapt
and improve the procedures for this purpose. Here I used simultaneous
eye-tracking to explore the parameter space for data preprocessing, to
select ocular ICA components, and to objectively validate the outcomes of
the correction. Specifically, the goal was to combine the concepts of
optimized filtering (Winkler et al., 2015), artifact overweighting (Keren
et al., 2010), eye tracker-guided component classification (Pl€ochl et al.,
2012), and eye tracker-based quality control (Dimigen et al., 2011) into
one coherent pipeline. Results show that with common preprocessing
parameters, ICA left substantial artifacts in the data and also distorted
neural activity during eye movement-free intervals. However, with
optimized procedures, Infomax ICA removed artifacts almost entirely
from natural scene viewing and reading with little overcorrection. Below,
I first discuss the individual parameters and then summarize specific
recommendations.

8.1. High-pass filter

Adverse effects of slow signals on unmixing quality are known among
ICA practitioners (see also Miyakoshi, 2019) and many filter their input
data at cutoffs between 0.1 and 1Hz (e.g. Nieuwland et al., 2018).
Similar settings have also been used in SRP/FRP research (e.g. 0.5 Hz; as
used in Henderson et al., 2013; Nikolaev et al., 2011; and Ossandon et al.,
2010). However, filter effects have rarely been formally investigated
(Winkler et al., 2015) and not in tasks with multiple eye movements,
where filtering was hypothesized to be crucial. Results confirm this hy-
pothesis. Whereas the impact of suboptimal filtering on the resulting ERP
waveforms was comparatively mild in the oddball task investigated by
Winkler and colleagues (cf. their Fig. 5), effects were strong for both
scene viewing and reading. Without filtering of the training data (i.e. 10 s
time constant), ICA produced strong distortions of eye movement-free



Fig. 8. Selecting a threshold for automatic component classification (Pl€ochl et al., 2012). (A) Grand-average distribution of variance ratios for all 45 ICs per
participant, shown here for a near-optimal ICA variant (2–100Hz, with overweighting). The threshold of 1.1, used in all analyses above is highlighted by the vertical
line. For both Scenes (left) and Reading (right), there was a rather clear separation between ICs with a low vs. high variance ratio. (B) Number of ICs rejected as
“ocular” as a function of threshold. (C) Overweighting SPs in the training data did not influence the number of rejected ICs. (D) Effect of threshold on overcorrection,
with y-axis indicating the distortion of artifact-free epochs. Gray shading marks the 95% confidence interval (CI) around the threshold of 1.5. Compared to this lenient
threshold, overcorrection increased significantly (p< 0.05, asterisks) once the threshold was lowered beyond 1.1 (for Scenes) or 1.0 (for Reading), indicating that 1.1
is a suitable threshold to avoid overcorrection (while ensuring good CR and SP correction).
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intervals and left large CR artifacts in the saccade-related potentials;
however, even if the edge of the passband was raised to 1 Hz (corre-
sponding to a half-amplitude cutoff of 0.5 Hz), correction was still sub-
optimal. Instead, filtering at a passband edge of 2 or 2.5 Hz
(corresponding to a cutoff of 1 and 1.5 Hz, respectively) produced the
smallest residual CR artifacts and the least overcorrection for scene
13
viewing. These results are in line with those of Winkler et al. (2015). For
Reading, the numerically best results were obtained with even stronger
filtering (passband edge settings as high as 4 Hz), but filtering at 2.5 Hz
still produced good results. Although the interaction of High-pass filter
with Experiment did not reach significance, the same pattern was
observed when the analyses were repeated on a new data



4 Even during microsaccade-free intervals, the eyes are never entirely
motionless but show slow (<0.5�/s, Rolfs, 2009) conjugate or non-conjugate
drift movements of limited spatial extent (resembling a random walk) as well
as a high-frequency microtremor of extremely small (~0.1–0.5 min-arc) ampli-
tude. Significant conjugate drift was eliminated by the criteria applied here.
Regarding microtremor, it has been putatively suggested by Onton and Makeig
(2009) that it produces a tiny, high-frequency (>40 Hz) oscillation in peri-ocular
EEG channels; however, such a small frontal oscillation would not have affected
the overcorrection measure used here in a significant manner.
5 The distortion of stimulus onset-ERPs occurring during artifact-free intervals

was not larger if the ICA was trained on filtered data (e.g. at 2 Hz) as compared
to unfiltered data. This indicates that it is permissible to transfer ICA weights
trained on filtered data to the unfiltered version of the same data (e.g. Debener
et al., 2010).
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(Supplementary Fig. S5). This tendency for a higher optimal cutoff in
reading is likely explained by the stronger summation of CR artifacts
from repeated rightward saccades during reading. It indicates that
aggressive filtering may be especially important in paradigms with an
assymetric distribution of saccade orientations. If the edge of the pass-
band was raised much higher, beyond about 7.5 Hz, residual CR artifacts
and overcorrection increased again markedly in both paradigms.

Importantly, it should be noted that the most suitable cutoff fre-
quency also depends on the characteristics of the filter used (Widmann
et al., 2015), in particular its steepness (transition bandwidth). In the
present study, all filtering was done with EEGLAB's FIR filter with its
default, frequency-dependent transition bandwidth setting (Supplemen-
tary Fig. S2). Alternatively, users could manually define a steeper filter.
For example, in a control analysis with a much steeper filter setting,
decent correction results for Scenes were already obtained with the
passband edge set to 1 Hz and a cutoff at 0.75 Hz (for details see Sup-
plementary Fig. S7).

8.2. Low-pass filter

Another parameter of interest was the low-pass filter which is often
set to cutoffs around 30–40Hz for traditional ERP analyses. Results show
that SP correction was significantly better if filters were instead kept
open to 100Hz (Fig. 5), even though this meant that the input data
contained more line noise and scalp EMG. The likely reason for this
benefit is that the spectrum of the SP extends well beyond 40Hz (see
Fig. 6), meaning that this artifact is larger – and presumably better
modeled – without low-pass filtering. Of course, without low-pass
filtering, a large proportion of the produced ICs may reflect scalp EMG.
This is not a problem if the goal is to remove ocular ICs and to back-
project the data. If the experimenter plans to work with the neural ICs
in source space instead (and wants to avoid problems associated with re-
running ICA on rank-reduced data after removing EMG sources; Artoni
et al., 2018), it may be better to keep the low-pass filter and only optimize
the other two parameters (high-pass and overweighting), since this may
yield more neural components (at the cost of a slightly less clearly
modeled SP).

8.3. Overweighting spike potentials

In combination with suitable filtering, spike potential overweighing
strongly improved SP correction and made it possible to almost fully
remove this artifact – and its associated beta and gamma band distortions
– from both paradigms (Figs. 5 and 6). These findings are consistent with
the beneficial effects of overweighting for suppressing gamma-band ar-
tifacts from much smaller microsaccades in steady-fixation experiments
(Keren et al., 2010; Craddock et al., 2016). Overweighting also did not
influence the number of removed ICs, suggesting that it produced qual-
itatively better SP components. I also observed that overweighting was
only effective if the brief peri-saccadic epochs taken from the basic
training data were mean-centered again across their 30ms duration
before appending them, most likely because this further emphasizes
signal variance in high frequency bands. In line with this observation,
results in Fig. 3B show that both overweighting and low-pass filtering
became irrelevant if the training data was already high-pass filtered very
aggressively (e.g. at 10 Hz), presumably because in this data, the SP
already accounts for sufficient variance. Importantly, however, such
extreme filtering produced bad CR correction and strong overcorrection.
The tradeoff to remove both the SP and the CR artifact is therefore to
combine moderate high-pass filtering (here: passband edge set to
2–2.5 Hz for scenes) with overweighting and no low-pass filtering. All
three measures increase the proportion of signal variance due to spike
potential artifacts.

In the current study, the overweighting of peri-saccadic samples
doubled the length of the training data. Since a longer training dataset
increases ICA computation time, this raises the question of how many
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samples need to be added. In a supplementary analysis (Supplementary
Fig. S6), the length of the appended samples was varied between 0% and
400% of the original training data length. In this analysis, SP correction
generally improved with increasing overweighing proportions, but this
was especially the case if the high-pass filter was chosen poorly (e.g.
0.1 Hz).

8.4. Overcorrection & threshold choice

One question motivating the current study was to what degree ICA
distorts neurogenic signals. Results show that all tested ICA variants
modified the EEG during intervals that were free of significant oculo-
motor activity. In scene viewing, ICA also produced stronger distortions
that MSEC, which was explicitly designed to reduce overcorrection (Berg
and Scherg, 1994). Interestingly, distortions mostly affected frontal sites
and their scalp distributions resembled those of SP and CR artifacts
(Fig. 7). Given this topographical resemblance, one might suspect that
these changes in the stimulus-ERP were not really caused by “over-
correction”, but simply reflect the removal of tiny, overlooked artifacts
elicited by undetected microsaccades (Meyberg et al., 2017; Pl€ochl et al.,
2012) or other fixational eye movements (Rolfs, 2009).4 This seems
unlikely for at least two reasons: First, it is unlikely that the sensitive
detection algorithm (Engbert and Kliegl, 2003) missed a relevant number
of microsaccades and significant binocular drift was also eliminated.
Second, and more importantly, if this was the case, overcorrection should
have been largest at filter settings that were also the most effective at
removing artifacts. However, the opposite was true: “Bad” ICA solutions
– those that failed to suppress all CR and SP artifacts – generated the
strongest changes in eye movement-free intervals, whereas “good” ICA
solutions – those that effectively removed ocular artifacts (see Fig. 3A and
B) – produced the least overcorrection (Fig. 3C). The more likely expla-
nation is therefore that with a suboptimal unmixing, some neural activity
or noise was modeled in the activity time courses of the ocular ICs that
were later removed from the data, thereby also affecting eye
movement-free intervals.5

As expected, the distortion of stimulus-ERPs increased if the variance
ratio threshold was set too low; that is, once it was lowered to 1.0 (for
Scenes) or 0.9 (for Reading). Thus, a threshold of 1.1, as initially proposed
by Pl€ochl et al. 2012 (see also Ries et al., 2018 for converging evidence)
appears to be suitable.

8.5. Comparison to MSEC

Surrogate MSEC (Berg and Scherg, 1994) was used as a benchmark
for Infomax ICA. In terms of CR correction and overcorrection, this
alternative method performed as well or better than the best ICA solu-
tions obtained here. Crucially, however, at least with its default pro-
cedures (Scherg, 2013; see Supplement A), MSEC failed to remove the SP.
MSEC also has practical drawbacks: First, it requires the experimenter to
record 5–10min of isolated eye movements from each participant before
or after the experiment. Second, to my knowledge, the method is
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currently only implemented in proprietary software (see Berg, 2003 for
an outdated open implementation). Finally, it provides a less flexible
framework than ICA for removing non-ocular artifacts. Nevertheless,
MSEC appears to be a viable alternative if the focus is on removing CR
artifacts with little brain-signal distortion.

8.6. Other challenges when analyzing multi-saccadic EEG

Artifacts are only one of four challenges when analyzing EEG exper-
iments with multiple saccades (Dimigen et al., 2011). The other problems
relate to (1) the integration of eye-tracking and EEG data, (2) the
temporally varying overlap between the neural responses generated by
successive fixations, and (3) the complex influences of visual and ocu-
lomotor low-level variables (such as saccade size) on the morphology of
the post-saccadic lambda waves. The first of these problem can now be
solved with dedicated toolboxes (such as EYE-EEG, see also Baekgaard
et al., 2014; Xue et al., 2017), whereas the latter two are effectively
addressed by analyzing the artifact-corrected EEG with regression-based
linear deconvolution models (Burns et al., 2013; Cornelissen et al., 2019;
Dandekar et al., 2011; Dimigen and Ehinger, 2019; Ehinger & Dimigen,
2019; Kristensen et al., 2017; Smith and Kutas, 2015). If ocular correc-
tion is also optimized, there are now viable solutions to all four problems.

9. Conclusions & recommendations

Results motivate the following practical recommendations: First, ICAs
of free viewing data should be trained on high-pass filtered data. Using
EEGLAB's standard FIR filter with its default settings, best results were
obtained at passband edges of around 2–2.5 Hz (corresponding to cutoffs
of 1–1.5 Hz). For reading, optimal values tended to be higher. Second,
frequencies higher than about 40 Hz should remain in the training data,
since this improves SP correction. Third, correction is further improved if
SPs are overweighted. Fourth, a threshold of 1.1 is suitable for compo-
nent identification (in combination with a saccade window that begins
�10ms before saccade onset), with lower thresholds leading to
overcorrection.

Importantly, Infomax ICA trained in this manner removed ocular
artifacts almost fully with little distortion of neural activity and no need
for any subjective classifications by the experimenter. Since the suitable
parameters were overall similar for scene viewing and reading, they will
likely also generalize to other free viewing taks, e.g. in virtual reality or
during mobile brain/body imaging (Gwin et al., 2010). The fact that it is
feasible to remove the spike potential artifact under free viewing con-
ditions should also facilitate future studies of the attentional, oculomotor,
and visual processes occurring around the time of saccade onset.

Finally, it should be noted that the explored parameters only cover
some of the choices when designing the ICA pipeline. Parameters not
investigated include the specific algorithm used (e.g. Infomax vs.
AMICA), the number and locations of EEG channels in the montage, the
overall number of data points submitted to ICA, or the question whether
and how the variance ratio criterion should be combined with other
flagging methods (Chaumon et al., 2015). The objective eye
tracker-based quality measures proposed here may help to quantify the
role of these other parameters in the future.

9.1. Implementation

A function to create training data with overweighted artifacts was
added to the EYE-EEG extension for EEGLAB and a simple Matlab script
implementing the current procedures is found at www.github.com/
olafdimigen/opticat.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116117.
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