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Abstract 20 

Psychologists are beginning to uncover the rational basis for many of the biases revealed over 21 

the last 50 years in deductive and causal reasoning, judgement and decision-making. In this 22 

paper, it is argued that a manipulation, experiential learning, shown to be effective in judgement 23 

and decision-making may elucidate the rational underpinning of the implicit negation effect in 24 

conditional inference. In three experiments, this effect was created and removed by using 25 

probabilistically structured contrast sets acquired during a brief learning phase. No other theory 26 

of the implicit negations effect predicts these results, which can be modelled using Bayes nets as 27 

in causal approaches to category structure. It is also shown how these results relate to a recent 28 

development in the psychology of reasoning called “inferentialism.” It is concluded that many of 29 

the same cognitive mechanisms that underpin causal reasoning, judgement and decision-making 30 

may be common to logical reasoning, which may require no special purpose machinery or 31 

module.  32 

Keywords:  Polarity biases, negations, experiential learning, reasoning biases, new 33 

paradigm, causal Bayes nets, inferentialism. 34 
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“All human systems of communication contain a representation of negation. No animal 43 

communication system includes negative utterances, and consequently none possesses a 44 

means for assigning truth value, for lying, for irony, or for coping with false or 45 

contradictory statements.” (Horn, 1989, p. xiii) 46 

 47 

The psychology of judgement, decision making, causal, and deductive reasoning reveals many 48 

apparent biases. Biases are systematic deviations from the predictions of a normative theory of 49 

how people should respond on a task. Explaining these biases is a major industry in cognitive 50 

psychology/science that has driven many important theoretical developments. Common patterns 51 

of explanation are that the wrong normative theory has been applied to a task (Oaksford & 52 

Chater, 1994, 2007; Pothos & Busemeyer, 2013; Pothos, Busemeyer, Shiffrin, & Yearsley, 2017); 53 

that people are responding to a different question that has an equally normative answer (Griffths, 54 

& Tenenbaum, 2005; Tentori, Crupi, & Russo, 2013); the information was not presented in an 55 

understandable format (Gigerenzer & Hoffrage, 1995; Hogarth, & Soyer, 2011; Jarvstad, Hahn, 56 

Rushton, & Warren, 2013; Wulff, Mergenthaler-Canseco, & Hertwig, 2018); we need to take 57 

account of noise (Costello & Watts, 2014; Costello, Watts, & Fisher, 2018); or that the 58 

mind/brain approximates probabilities by sampling (Dasgupta, Schulz, & Gershman, 2017; 59 

Hattori, 2016; Sanborn & Chater, 2016; Stewart, Chater, & Brown, 2006), an approach aligned 60 

with the classical strategy in the psychology of deductive reasoning of explaining biases at the 61 
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algorithmic not computational level (Johnson-Laird, 1983; Rips, 1994). Most of these 62 

explanations explain away biases while retaining the normative standard of rationality given by 63 

classical binary logic (mental logic/mental models) or Bayesian probability theory.1 That we are 64 

beginning to understand the sources of bias in judgement and decision making also resolves a 65 

paradox. Explaining biases in the psychology of deductive reasoning, like confirmation bias, has 66 

invoked Bayesian probability theory as a normative standard (Oaksford & Chater, 1994, 2007, 67 

2020a). Yet, paradoxically, Bayesian reasoning in judgement and decision-making had seemed 68 

equally biased. It also opens up the possibility that the way that biases have been explained away 69 

in judgement and decision-making may also apply to the psychology of deductive reasoning. 70 

In this paper, we investigate a key outstanding problem in the psychology of conditional 71 

inference, that is, reasoning with if p then q in English, where p is the antecedent and q the 72 

consequent. Polarity biases occur when negations (“not”) are varied in conditionals (Evans, 73 

1972, 1998; Evans & Lynch, 1973; Oaksford, 2002; Oaksford & Chater, 1994; Oaksford & 74 

Stenning, 1992; Oaksford & Mousakowski, 2004; Schroyens, Schaeken, Fias, & d’Ydewalle, 75 

2000; Schroyens, Schaeken, & d’Ydewalle, 2001; Schroyens, Schaeken, Verschueren, & 76 

d’Ydewalle, 2000; Yama, 2001). As our opening quotation from Horn (1989) indicates, 77 

negations are a defining feature of human linguistic communication. The Aristotelean foundation 78 

of logic, the principle of non-contradiction, cannot be formulated without negations (a 79 

                                                 

 

1 An exception is quantum probability (Pothos & Busemeyer, 2013), which represents a different theory 

based on quantum logic. It can only be viewed as normative for human reasoning if following its dictates is rational. 

As for classical probability theory, this question depends on showing that not following its prescriptions leads one to 

accept bets one is bound to lose, the so-called Dutch book (Vineberg, 2011). Demonstrating this seems to rely on 

showing that, within a context, quantum probability is equivalent to classical probability theory (Pothos, et al., 

2017). 
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proposition p cannot be both true and false, i.e., not (p and not p)). Negations allow us to deny 80 

the claims made by others, setting up contradictions that must be resolved by argumentation 81 

(Hahn & Oaksford, 2007; Oaksford & Chater, 2020a). Horn (1989, p. xiii) argued that, “…the 82 

absolute symmetry definable between affirmative and negative propositions in logic is not 83 

reflected by a comparable symmetry in language structure and language use.” It may not be 84 

surprising therefore, that, when compared to the standard of formal logic, people’s reasoning 85 

with negations appears biased. 86 

In the conditional inference paradigm, people may be asked whether they endorse 87 

inferences like, if Johnny does not travel to Manchester (not p) then he takes the train (q), He did 88 

not take the train (not q), therefore he travelled to Manchester (p). This inference has the form of 89 

a logically valid modus tollens (MT) argument (formally, if p then q, ¬q, therefore, ¬p, where 90 

“¬” = not). Illogically, people endorse MT more when it has a negated conclusion (for an if p 91 

then q conditional) than when it has an affirmative conclusion (for an if ¬p then q conditional), 92 

as in our example (Evans, Clibbens, & Rood, 1996; Evans & Handley, 1999). This phenomenon 93 

occurs for all four conditionals in the negations paradigm, when negations are systematically 94 

varied between the antecedent and consequent (if p then q, if p then ¬q, if ¬p then q, and if ¬p 95 

then ¬q). However, this negative conclusion bias is subject to a dramatic effect: it disappears by 96 

the simple manipulation of using implicit negations in the categorical premise. For example, 97 

denying the consequent of our MT inference by asserting He travelled by car, rather than He did 98 

not take the train.  99 

The implicit negation effect occurs not only for MT but also for the logical fallacies of 100 

denying the antecedent (DA: if p, then q, ¬p, therefore ¬q) and affirming the consequent (AC: if 101 

p, then q, q, therefore p), and for the other logically valid inference rule of modus ponens (MP: if 102 
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p, then q, p, therefore q). For example, the AC inference on if not A, then not 2 using an explicit 103 

negation, not 2, produces 61% endorsements of the conclusion, not A. In contrast, using an 104 

implicit negation, 7, causes this to fall to 11% (Evans & Handley, 1999, Expt. 3). Although 105 

implicit negations remove negative conclusion bias, they do not lead to logical performance. 106 

They reduce conclusion endorsements as much for logically valid inferences (MP, MT) as for 107 

logical fallacies (DA, AC).  108 

Explanations of this effect may discriminate between the Bayesian new paradigm 109 

approach (Oaksford, 2002; Oaksford, Chater, & Larkin, 2000; Oaksford & Chater, 2003, 2007, 110 

2020a), heuristic approaches (Evans, 1998; Evans et al., 1996; Evans & Handley, 1999), and 111 

mental models theory (Johnson-Laird & Byrne, 2002; Khemlani, Orenes, & Johnson-Laird, 112 

2012), but the critical tests have never been conducted.2 Our experiments attempt to provide 113 

these tests. They used probability manipulations shown in decision making to improve 114 

participants’ understanding of a task and to lead to better fits to the data (Jarvstad et al., 2013; 115 

Wulf, et al., 2018). We used short experiential learning phases and asked participants for their 116 

subjective estimates of the learned probabilities that we used to predict the results on the 117 

inference task. This is the first time that discrete experiential learning has been used to 118 

manipulate probabilities in deductive reasoning tasks. We predicted that different acquired 119 

                                                 

 

2 One reason why the critical tests were not conducted may be because the effects were mainly observed 

for abstract materials, not real world thematic materials (Evans, 1998, 2002). Consequently, it seemed that these 

biases, although present in the lab, may not generalize to raise concerns about any real world behavior. However, the 

motivations for both main theories, the matching heuristic (Evans, 1998, 2002) and the contrast set account 

(Oaksford & Chater, 2007; Oaksford, et al., 2000; Oaksford & Stenning, 1992), came from the pragmatics of 

negation in natural discourse. Like other illusions created in the lab, perceptual (e.g., the Muller-Lyer illusion) or 

cognitive, they may still be highly instructive about the normal function of the cognitive system (e.g., the importance 

of prior experience of a carpentered world).  
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distributions should be able to create or remove the implicit negation effect in conditional 120 

inference. No other theory predicts these effects. 121 

We first briefly introduce the probabilistic Bayesian new paradigm approach to 122 

conditional reasoning (for a recent review see, Oaksford & Chater, 2020a). We show how the 123 

concept of a contrast set (Oaksford 2002; Oaksford & Stenning, 1992) can explain the implicit 124 

negations effect, and how it can be created and removed by simple probabilistic manipulations. 125 

Testing these predictions requires an effective way of manipulating probabilities. Therefore, we 126 

then discuss why using experiential learning may prove a useful method, as in judgement and 127 

decision-making (Wulf, et al., 2018). We then introduce our first experiment and derive the 128 

specific predictions that we tested. 129 

 130 

Probabilities and Contrast Sets 131 

The new Bayesian paradigm in human reasoning is a broad church (Oaksford & Chater, 2020a). 132 

However, there are several assumptions common to these approaches. First, the conditional is not 133 

a binary truth functional operator, as in the standard logic, that licenses the validity of MP and 134 

MT and not of AC and DA. Second, the probability of a conditional is the conditional 135 

probability, Pr(if p then q) = Pr(q|p).3 This assumption is called “the Equation” (Edgington, 136 

1995). Third, probabilities are subjective and relate to individuals’ degrees of belief. Finally, 137 

conditional probabilities are suppositional and determined by the Ramsey test: suppose p is true, 138 

add it to your stock of beliefs and read off your degree of belief in q.  139 

                                                 

 

3 In standard logic, which assumes that propositions are true or false, if p then q is false is p is true 

and q is false, and true otherwise. Consequently, Pr(if p then q) = Pr(p, q) + Pr(¬p, q) + Pr(¬p, ¬q), an 

assignment that is very rarely observed empirically. 
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There are a variety of sophisticated probabilistic approaches to conditional inference, for 140 

example, probability logic (Cruz, Baratgin, Oaksford, & Over, 2015; Evans, Thompson, & Over, 141 

2015; Pfeifer & Kleiter, 2009; Politzer & Baratgin, 2016; Singmann, Klauer, & Over, 2014), 142 

belief revision (Eva & Hartmann, 2018; Oaksford & Chater, 2007, 2010b, 2013), and Bayes nets 143 

(Ali, Chater, & Oaksford, 2011; Chater & Oaksford, 2006; Fernbach & Erb, 2013; Oaksford & 144 

Chater, 2010b, 2013, 2017). We will discuss these in the sequel. For now, as a first 145 

approximation, we assume that the probability of a conclusion of an inference is its conditional 146 

probability given the categorical premise calculated over a joint probability distribution (JPD) 147 

(Anderson, 1995; Oaksford et al., 2000).4 We can then derive our predictions by considering two 148 

JPDs one without (Table 1) and one with contrast sets (Table 2).  149 

 150 

Table 1 151 

Learning a new distribution 152 

 153 

 154 

 155 

Contradictory Negation 156 

Suppose your initial beliefs about Johnny’s travelling habits are captured by the JPD Pr0 in Table 157 

1. In this table, p and ¬p are contradictories, and are treated with “absolute symmetry” (Horn, 158 

1989, p. xiii). If one of these propositions is true the other is false, but finding out that Johnny 159 

did not travel to Manchester conveys nothing about where he may have travelled.  160 

                                                 

 

4 In the General Discussion, we show that both the belief revision and Bayes nets accounts make 

exactly the same prediction as we derive here. We also identify a problem for the belief revision account 

that is resolved by treating inference as belief update in Bayes nets. 
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In Pr0, you are reasonably confident that if he travels to Manchester (p), he takes the train 161 

(q). Your degree of belief in the conditional is the relevant conditional probability computed over 162 

this JPD, Pr0(q|p) = .75. However, you are maximally uncertain about whether he takes the train 163 

or not when he does not travel to Manchester (Pr0(q|¬p) = Pr0(¬q|¬p) = .5). You also know that 164 

just less than half of his journeys are to Manchester (Pr0(p) = .4). Now suppose either that you 165 

learn (1) from experience or a reasonably reliable informant. 166 

(1) If Johnny does not travel to Manchester, he does not take the train.  167 

We assume that the result of learning or hearing (1) from a reliable source, leads you to revise 168 

your beliefs about Johnny’s travelling habits to the JPD Pr1 in Table 1, in which Pr1(¬q|¬p) = 169 

Pr1(¬p, ¬q)/Pr1(¬p) = .5/.6 = .833.5 In our experiments, we provide people with relevant 170 

experience to revise their beliefs from Pr0 to Pr1, where Pr1 implements manipulations designed 171 

to test our account of the implicit negations effect. In the sequel, we fit the model to previous 172 

data to estimate people’s default prior beliefs, Pr0. 173 

Suppose you then learn that, on a particular journey, Johnny did not take the train. With 174 

what probability should you now believe that he did not go to Manchester? We treat this query as 175 

the probabilistic equivalent of an AC inference having learned (1), and with Johnny did not take 176 

the train as the categorical premise. As we have said, for now, we treat he probability of the 177 

conclusion of an inference as the conditional probability of the conclusion given the categorical 178 

premise calculated over the JPD Pr1 in Table 1 (Anderson, 1995; Oaksford et al., 2000). So for 179 

AC, Pr1(¬p|¬q) = Pr1(¬p, ¬q)/Pr1(¬q) = .5/.6 = .833. As we will see in the sequel, developing 180 

                                                 

 

5  We use “Pr0” to “Pr1” generically in this paper to refer to the JPDs that capture a reasoner’s 

beliefs before, Pr0, and after, Pr1, receiving information relevant to changing their beliefs about the 

conditional premise. 



EXPLAINING THE IMPLICIT NEGATIONS EFFECT IN CONDITIONAL INFERENCE 11 

this approach to provide a theory of inference at the computational and algorithmic levels does 181 

not alter the predictions we now derive for our experiments using the concept of a contrast set. 182 

 183 

Contrary Negation: Contrast Sets  184 

Suppose Peter and Mary are discussing how Johnny travelled to Manchester. Peter says Johnny 185 

travelled to Manchester by car. As we have seen, Mary can deny Peter’s assertion either using an 186 

explicit negation, Johnny did not travel to Manchester by car or an implicit negation, Johnny 187 

travelled to Manchester by train. In speech, for the former to make the same point as the latter, 188 

the stress must fall on car, so that Mary is interpreted to mean that Johnny travelled to 189 

Manchester by some other mode of transport (Oaksford, 2002; Oaksford & Stenning, 1992). It is 190 

a member of this contrast set (other modes of transport) that Mary can use to implicitly deny 191 

Peter’s assertion without using a negation.6 192 

The philosophical and linguistic depiction of negation as otherness—negated statements 193 

make a positive reference to something other than the negated proposition—can be traced back 194 

to Plato and to Aristotle’s account of contrary negation (Horn, 1989). The variety of ways in 195 

which people can use and express negation in natural languages (Horn, 1989) means that 196 

identifying contrast sets could not be their sole function. However, they can explain polarity 197 

biases (Oaksford, 2002; Oaksford & Stenning, 1992; Oaksford, et al., 2000; Schroyens, 198 

                                                 

 

6 Contrast sets are also highly context sensitive and ad hoc (Barsalou, 1983; Oaksford, 2002; Oaksford & 

Stenning, 1992). They may also depend on category structure that relates to individuals like John (Barsalou, 

Huttenlocher, & Lamberts, 1998). So, if John’s trip originated in Dublin or Peter and Mary are talking about it in 

Dublin rather than in London, airplane might more readily come to mind. Conversational pragmatics, cognitive and 

deictic context, and intonation, can all cue the ad hoc reference class (modes of transport for conveying people for 

moderate distances over land or sea) against which various contrast set members that can play the same causal role 

will be more (car) or less (bike) probable (Oaksford & Stenning, 1992).  
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Verschueren, Schaeken & d’Ydewalle, 2000), and they may be able explain the implicit 199 

negations effect. 200 

 201 

Table 2.  202 

A joint probability distribution for implicit negations. 203 

 204 

 q1 q2 q3 Total 

p1 0.30 (15) 0.04 (3) 0.06 (2) 0.40 (20) 

p2 0.10 (5) 0.04 (1) 0.02 (2) 0.16 (8) 

p3 0.00 (0) 0.22 (11) 0.22 (11) 0.44 (22) 

Total 0.40 (20) 0.30 (15) 0.30 (15) 1.00 (50) 

 205 

Note. Frequencies of occurrence in the learning trials in Experiment 1 are shown in brackets. 206 

 207 

Contrast sets explain this effect by their internal probabilistic structure (Oaksford & 208 

Chater, 2007; Oaksford et al., 2000). For example, suppose you know some more details about 209 

Johnny’s travelling habits. You already know that he usually travels to Manchester by train (see, 210 

Contradictory Negation). Suppose you also know that he rarely travels to Paris but mostly goes 211 

by train (but occasionally by plane or ferry), and that when he travels to Dublin, which he does 212 

quite frequently, he only takes the plane or ferry. These facts are captured by the JPD in Table 2, 213 

where, p1 = Manchester, p2 = Paris, p3 = Dublin, q1 = train, q2 = ferry, q3 = plane. This table 214 

expands Pr1 in Table 1 to include knowledge of contrast set members. That is, destinations to 215 

which Johnny travels other than Manchester and modes of transport that he uses other than the 216 

train. 217 

As for Pr1 in Table 1, knowing the distribution in Table 2 may lead someone to accept (1). 218 

On being told Johnny did not travel to Manchester, they should then still endorse the conclusion 219 
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of the MP inference on (1), he did not take the train, quite strongly, because in the JPD in Table 220 

2, Pr(¬q|¬p) = (Pr(p2, q2) + Pr(p2, q3) + Pr(p3, q2) + Pr(p3, q3))/(Pr(p2) + Pr(p3)) = .5/.6 = .833. 221 

However, if told that Johnny travelled to Paris, then the probability that he did not take the train, 222 

Pr(¬q|p2) = (Pr(p2, q2) + Pr(p2, q3))/Pr(p2) = .06/.16 =.375, which predicts much lower 223 

endorsement of MP. We would expect an implicit negations effect.  224 

All other theories of the implicit negation effect argue that it arises solely from using an 225 

implicit negation, regardless of probabilistic structure. However, Table 2 suggests that we should 226 

be able remove the effect even when using an implicit negation in the categorical premise. If q3, 227 

he travelled by plane, is used to affirm the consequent of (1), ¬q1, then Table 2 does not predict 228 

an implicit negation effect for AC for this conditional. In this JPD, Pr(¬p|¬q) = (Pr(p2, q2) + 229 

Pr(p2, q3) + Pr(p3, q2) + Pr(p3, q3))/(Pr(q2) + Pr(q3)) = .833, and Pr(¬p|q3) = (Pr(p2, q3) + Pr(p3, 230 

q3))/Pr(q3) = .24/.30  = .80. Consequently, whether using an explicit negation (AC-Not) or an 231 

implicit negation drawn from the contrast set (AC-Con), people should endorse AC almost 232 

equally often. This prediction, that the implicit negations effect depends on probabilistic 233 

structure, discriminates the probabilistic contrast set theory from all other theories. 234 

 235 

Experience: Manipulating Probabilities 236 

Testing these predictions requires manipulating probabilities. Reasoning researchers have 237 

manipulated probabilities in many ways, using pre-tested content (Oaksford, et al., 2000; 238 

Oaksford, Chater, & Grainger, 1999), frequency formats (Gigerenzer & Hoffrage, 1995) 239 

combined with concrete visualizations (stacks of cards) (Oaksford, et al., 1997, 1999), 240 

contingency tables, or “probabilistic truth tables” (Evans, Handley, & Over, 2003; Oberauer & 241 

Wlihelm, 2003), as in causal judgement (Ward & Jenkins, 1965), a procedure that has also been 242 
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reversed so participants construct the contingency table given a conditional (Oaksford & 243 

Mousakowski, 2004; Oaksford & Wakefield, 2003; Oberauer, 2006; Over, Hadjichristidis, 244 

Evans, Handley, & Sloman, 2007), and sequential tasks where trial frequency reflects the 245 

probabilities (Fugard, Pfeifer, Mayrhofer, & Kleiter, 2011; Oaksford & Mousakowski, 2004; 246 

Oaksford & Wakefield, 2003), and where learning effects are observed (for critiques, see Jubin 247 

& Barrouillet, 2019; Oberauer, Weidenfeld, & Hőrnig, 2004). In these experiments, we used 248 

experiential learning of probabilities, which leads to improved performance in judgment and 249 

decision-making, and which has not used before in reasoning research. 250 

 There is an ongoing debate in judgment and decision-making about the description-251 

experience gap (Hertwig, Barron, Weber, & Erev, 2004). The distinction is between using verbal 252 

descriptions of decision options or prospects, and allowing probabilities and utilities to be 253 

learned trial-by-trial. One key difference is that people’s decision-making seems to be more 254 

rational (optimal) with experiential learning, “people are more likely to maximize the 255 

experienced mean reward than to maximize the expected value in description” (Wulf et al., 2018, 256 

p. 160). Improved performance is also found in probabilistic judgement in general, “even the 257 

statistically naïve achieved accurate probabilistic inferences after experiencing sequentially 258 

simulated outcomes, and many preferred this presentation format” (Hogarth & Soyer, 2011, 259 

p.434). Experiential learning seems to allow people to pick up information about utilities and 260 

probabilities more readily than descriptions.7  261 

 No other theory of the implicit negations effect predicts that learning about 262 

probabilistically structured contrast sets should be able to create or remove this effect. As we 263 

                                                 

 

7 We provided a similar motivation, based on natural sampling (Gigerenzer & Hoffrage, 1995; Kleiter, 

1994), for using sequential selection tasks (Oaksford & Moussakowski, 2004; Oaksford & Wakefield, 2003). 
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show in the sequel, all these theories assume that people are attempting to build a mental 264 

representation of the logical structure of the premises, which include contradictory logical 265 

operators. They are assumed to attempt to draw inferences over these representations using a 266 

learned or innate logical competence. Implicit negations are assumed only to disrupt the process 267 

of building the appropriate logical representation of the surface linguistic forms of the premises. 268 

However, we need some caution about the extent to which experience based learning 269 

leads to performance consistent with normative theories. In probability judgements based on 270 

Bayes’ theorem, samples from the posterior distribution yield close to normative answers 271 

because they are most relevant to the question at hand. That is, for example, what is the posterior 272 

probability of a woman having cancer given a positive mammogram? (Hogarth & Soyer, 2011). 273 

Samples from the prior distribution, showing very few women have breast cancer, are less 274 

relevant and lead to fewer normative responses (Hawkins, Hayes, Donkin, Pasqualino, & 275 

Newell, 2015). Moreover, summary descriptions of the posterior sample produce median 276 

responses even closer to the normative response (Hawkins et al., 2015). 277 

In conditional inference, the most relevant distribution from which we could provide 278 

samples are the conditional probabilities that correspond to people’s predicted degree of belief in 279 

the conclusion of the inferences MP, DA, AC, and MT (see Table 3 below). However, as for 280 

probability judgement, providing such samples is rather too close to giving participants the 281 

probabilistically correct answer (Hawkins et al., 2015). Although we wanted to exploit the 282 

potential benefits of trial-by-trial sampling, we also wanted to assess people’s ability to 283 

extrapolate from information that they might experience in the real world. Therefore, we used 284 

experiential trial-by-trial learning of the JPD in Table 2, to get participants to revise their default 285 
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prior beliefs, Pr0, to a new distribution, Pr1, which implements the focused manipulations that 286 

test our account of the implicit negation effect.  287 

In the sequel, we argue that participants learn a representation like a Bayes net over 288 

which they draw inferences just as in causal judgement people are assumed to learn causal 289 

strengths from similar learning trials (Ward & Jenkins, 1965). We used a discrete learning task 290 

where, using our example, participants observe a series of destination/mode of transport pairs 291 

(Anderson & Sheu, 1995; Hattori & Oaksford, 2007). The trial-by-trial approach has been used 292 

only once before in studying conditional reasoning (Pollard & Evans, 1983). However, those 293 

experiments used a continuous rather than a discrete format (Anderson & Sheu, 1995; Hattori & 294 

Oaksford, 2007) that focuses attention on the conditional probabilities like providing samples 295 

from these distributions (Oaksford & Chater, 1996). We also assess the extent to which people 296 

acquire the appropriate distribution by having them reconstruct the contingency table in Table 2.  297 

  298 

Experiment 1: MP Manipulation 299 

There have been no empirical investigations of the probabilistic contrast set account of the 300 

implicit negation effect. Our first experiment used a learning phase where participants sample the 301 

distribution in Table 2 to revise their beliefs (as in the transition from Pr0 to Pr1). The 302 

experimental design makes it clear that this sample is from the same population as experienced 303 

by an informant who asserts (1) as the major premise of the conditional inferences that 304 

participants must then evaluate. Consequently, after the learning phase, participants should be in 305 

a similar state of belief as the informant asserting the major premise. Following on from our 306 

discussion in Probabilities and Contrast Sets, the first hypothesis we tested was: 307 
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Hypothesis 1. With contrast sets structured as in Table 2, according to the probabilistic 308 

theory, but no other, we should observe an implicit negation effect for MP but not AC. So 309 

an interaction is predicted in which MP-Not > MP-Con, AC-Not = AC-Con, MP-Con < 310 

AC-Con, and AC-Not = MP-Not. 311 

In this experiment, participants drew inferences before and after the learning phase. We 312 

presented single event probability descriptions (e.g., 0.8 or 80%) before the pre-learning 313 

inference task. In this phase, we predicted that we would observe the default implicit negations 314 

effect, based on the default prior (Pr0), for these materials. Previous evidence showed an implicit 315 

negation effect for this conditional (if ¬p, then ¬q) for both MP (MP-Con [44%] < MP-Not 316 

[89%]) and AC (AC-Con [11%] < AC-Not [61%]) (Evans & Handley, 1999, Experiment 3). 317 

Moreover, in a meta-analysis of previous results, the sample size weighted mean decrease in 318 

percentage endorsements for explicit vs implicit negations was 42% for MP, and 57% for AC 319 

(Evans & Handley, 1999; Schroyens et al., 2000). Consequently, in this experiment we also 320 

tested Hypothesis 2: 321 

Hypothesis 2. In the pre-learning inference task, there will be a greater implicit negation 322 

effect for AC than MP.   323 

From our Bayesian perspective, people’s default prior probability distribution, Pr0, causes this 324 

effect because it differs from Table 2. Hypothesis 1 suggests that the learning task will overcome 325 

this default prior and, in the post learning inference task, reveal an effect for MP but not for AC. 326 

We also countenance the possibility that in a novel context, people do not apply informative 327 

priors based on prior knowledge but use relatively weak uninformative priors.  328 

 In decision making, using participants’ subjective estimates of learned probabilities, also 329 

provides better fits to the data than objective values (Jarvstad et al, 2013). Consequently, in these 330 
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experiments, on completing the inference task, we asked participants to perform a probability 331 

verification task where they reconstructed the JPD in Table 2. This procedure allowed us to 332 

check how well participants had learned this distribution by computing the correlation with the 333 

objective values. Splitting participants in to high and low correlation groups will also allow us to 334 

see how well the probabilities are learned affects inference. We also used these joint probabilities 335 

to calculate the relevant conditional probabilities for each inference. We could then test how well 336 

these subjective calculated conditional probabilities predicted inference task performance, which 337 

leads to our third hypothesis: 338 

Hypothesis 3. The subjective probability estimates for Table 2, when used to calculate the 339 

appropriate conditional probabilities, should be good predictors of the odds of endorsing 340 

an inference in the inference task, although how well the JPD is learned might moderate 341 

this effect. 342 

 We also asked participants to rate their confidence in their inference judgements. In these 343 

experiments, we asked participants for a categorical judgement, do you endorse the conclusion or 344 

its negation? In much previous (e.g., Oaksford et al, 2000) and recent research (Skovgaard-345 

Olsen, Collins, Krzyżanowska, Hahn, & Klauer, 2019), participants are asked to rate how sure or 346 

confident they are in, or the extent they agree with, a conclusion. When rescaled, researchers 347 

often treat these ratings as proxies for probabilities in subsequent model fitting exercises. 348 

Research in decision-making has shown that confidence moderates the strength of the relation 349 

between value and choice (e.g., De Martino, Fleming, Garrett, & Dolan, 2013). We therefore also 350 

investigated two further mutually exclusive hypotheses: 351 

Hypothesis 4. Subjective probability will directly predict confidence, or 352 
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Hypothesis 4′. Confidence will moderate the strength of the relation between subjective 353 

probability and inference.  354 

 355 

Analysis Strategy 356 

 We analyzed our data using Bayesian statistics (McElreath, 2016; Gelman, Carlin, Stern, 357 

Dunson, Vehtari, & Rubin, 2013). 358 

 Data analysis. All analyses used Bayesian regression implemented in the rstanarm 359 

package in R (Goodrich, Gabry, Ali, Brilleman, 2018; R Core Team, 2018). We analyzed 360 

continuous dependent variables (computed conditional probabilities and confidence) using the 361 

stan_lmer function. We analyzed the binary inference data with the stan_glm and stan_glmer 362 

functions with a logit link function depending on whether the experiments introduced additional 363 

random variables.  364 

 Comparing means. We used the R packages tidybayes (Kay, 2019) and emmeans 365 

(Lenth, 2019), to generate samples for each marginal mean. When comparing means, we 366 

assumed a region of practical equivalence (ROPE, Kruschke, 2011) of 0 ± 0.1×SD of the 367 

differences, and report the proportion of the distribution of differences falling outside the ROPE.  368 

This procedure avoids the unrealistic assumption of a point null hypothesis. We report this 369 

statistic, where the proportion is p, as “p ∉ ROPE”.8 We also computed Cohen’s d for each 370 

comparison. For all means and differences, we report the 95% highest density interval (HDI) in 371 

square brackets.  372 

                                                 

 

8 To be precise, we calculated differences as highest minus lowest mean so that the proportion we report is 

always the proportion greater than 0.1×SD.  
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Comparing models. To answer specific research questions, we frequently compare 373 

different models of the data. We do not report Bayes factors for these comparisons (or when 374 

comparing means), because of the problems for this approach created by non-informative 375 

improper priors (see, McElreath, 2016 p. 192; Gelman, et al., 2013, pp. 182-4). We based all 376 

model comparisons on expected predictive accuracy (Gelman, et al., 2013: Ch. 7). We compare 377 

models using the leave-one-out information criterion (LOOIC), which provides an estimate of 378 

the pointwise divergence between the predicted posterior distribution and the data (Vehtari, 379 

Gelman, & Gabry, 2017), using the loo package in R (Vehtari, Gabry, Yao, Gelman, 2019). We 380 

also report Bayesian stacking weights, which are the best fitting weights assigned to the models 381 

if they were averaged to best predict the data (Yao, Vehtari, Simpson, & Gelman, 2018). 382 

 Data visualization. For categorical predictors, estimated marginal means of a posterior 383 

distribution were all plotted using the afex_plot function from the afex package in R (Singmann, 384 

Bolker, Westfall, & Aust, 2019). For continuous predictors, we plotted the data using sjPlot 385 

(Lüdecke, 2018). 386 

 387 

Method 388 

Participants. Participants were recruited via Amazon Mechanical Turk (2017). Sample 389 

size was determined both classically (Chow, Shao, & Wang, 2008) and by Bayesian estimation 390 

using the propdiff.mblacc function from the SampleSizeProportions package in R (Joseph, du 391 

Berger, & Belisle, 1997). Previous data from Evans and Handley (1999) for the AC inference on 392 

if ¬p then ¬q was used to estimate effects size.  Maintaining a 5% chance of a Type 1 error and a 393 

20% chance of Type 2 error, led to very different required sample sizes; classical: 22 (11 in each 394 

group), Bayesian: 244 (122 in each group). One of our key predictions is an interaction, and 395 
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reliably estimating interactions requires sixteen times more data than main effects (Gelman, 396 

2018).  Consequently, recruitment aimed for a sample size of between 250 and 300.  397 

All participants who completed the experiment received a small payment (between 398 

US$0.50 and US$1.00). Some responses were excluded because they may have been duplicates, 399 

either sharing an MTurk ID or an IP address. After exclusions, the sample size was 272. 52% 400 

were female and the sample was aged between 18 and 75 with a median age of 31 years (mean = 401 

34.34, SD = 11.94). English was the first language of 97% of participants. 402 

Design and materials. The experiment was a 6 (Inference and Negation [InfNeg]: MP-403 

Not, MP-Con, AC-Not, AC-Con, DA, MT) by 2 (learning phase: Pre, Post) completely within 404 

subjects design. MP and AC were presented in both explicit (Not) and implicit (Con) forms. DA 405 

and MT were included as filler items in this experiment and as a further check on participants’ 406 

understanding of Table 2. 407 

The materials concerned the proportion of animals that a vet sees of different species 408 

(cats, dogs, rabbits) and colours (black, white, brown). These were varied in accordance with 409 

Table 1, with p1 = cats, p2 = dogs p3 = rabbits, q1 = black, q2 = brown, q3 = white. Participants also 410 

performed a conditional inference task at two points in the experiment. The conditional or major 411 

premise had a negated antecedent and consequent (if ¬p1 then ¬q1). Participants were told: 412 

“The vet is considering the following rule about the animals that she sees: 413 

If it is not a cat, then it is not black. 414 

The vet is told that the next animal she will see is: 415 

One of the following categorical or minor premises was presented for each question: not a cat 416 

(MP-Not), a dog (MP-Con), not black (AC-Not), white (AC-Con), a cat (DA), and black (MT). 417 

Participants were then asked:  418 

SEVEN
Highlight

SEVEN
Highlight
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“Please select the option below that best describes what she should conclude about the 419 

next animal.” 420 

Responses were gathered using a 2AFC procedure with the alternatives determined by the 421 

inference: 422 

 MP and DA alternatives:  AC and MT alternatives: 423 

That the animal is not black  That the animal is not a cat 424 

That the animal is black  That the animal is a cat 425 

The alternatives in each pair were presented in random order. According to Table 1, the 426 

probability that participants should draw each inference is shown in Table 3. 427 

 428 

Table 3 429 

The Probabilities of Drawing Each Inference in Experiment 1 430 

 Negation 

Inf. Explicit (Not) Implicit (Con) 

MP .833 (Pr(¬q1|¬p1)) .375 (Pr(¬q1|p2)) 

AC .833 (Pr(¬p1|¬q1)) .800 (Pr(¬p1|q3)) 

DA .750 (Pr(q1|p1))  

MT .750 (Pr(p1|q1))  

 431 

Note: Inf. = Inference 432 

 433 

The experiment also included a learning phase with 50 trials. Each trial consisted of a 434 

photograph of one of the 50 animal/colour pairings shown in Table 1. Each photograph showed 435 

only the animal against a white background. Each of the 50 photographs was unique. So, for 436 

example, participants would see 15 different black cats, and so on. The photographs were 437 
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cropped and re-sized so that they were the same size and fitted on to a single screen at typical 438 

resolution for online presentation. The pictures were presented in random order. To try and 439 

ensure that participants attended to the stimuli, on each trial, the participant had to answer two 440 

questions with three response options each: What type of animal is this? (Dog, Cat, Rabbit), and 441 

What colour best describes this animal? (Black, White, Brown). 442 

Procedure. This experiment was implemented in surveygizmo 443 

(www.surveygizmo.com), to which participants were directed from MTurk (www.mturk.com). 444 

Participants first saw an information screen and had to confirm consent by clicking a check box 445 

to proceed. All experiments received ethical approval from the Department of Psychological 446 

Sciences, Research Ethics Committee. Participants then provided basic demographic 447 

information. This part of the experiment was common to all experiments reported here. 448 

In the first pre-learning phase of the experiment participants were provided with the 449 

proportion of animals that the vet sees of different species (cats, dogs, rabbits) and colours 450 

(black, white, brown) as in the cell entries in Table 2. Participants then carried out the pre-451 

learning phase inference task. Each of the six inference questions, including the opening 452 

information containing the conditional rule, were presented on a single page in random order. 453 

Participants provided a response and then moved a slider bar to indicate their confidence in their 454 

response. The slider bar was labelled ‘Not at all confident’ at one end and ‘Completely confident’ 455 

at the other. Responses were recorded as a number between 1 and 100. Participants were not able 456 

to move to the next page until both responses had been made.  457 

The participants were then given instructions for the learning phase, as in the Design and 458 

Materials section, where they were told they would see a sample of the animals that the vet sees 459 

in the surgery. Participants then performed the post-learning phase inference task, this time with 460 

http://www.surveygizmo.com/
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no information about the proportion of animals. Finally, participants were presented with a 461 

probability verification task to check how accurately they could reconstruct the probability 462 

distribution in Table 2. Each participants’ subjective conditional probabilities of drawing each 463 

inference could then be calculated. This task consisted of nine response boxes in a three by three 464 

grid labelled animal type (cat, dog, rabbit) on one axis and colour (black, white, brown) on the 465 

other, as in Table 2. Participants were instructed to enter how many of the next 100 animals that 466 

the vet would see would be in each category (a similar procedure was used in Oaksford & 467 

Wakefield, 2003). If participants attempted to proceed without their responses summing to 100, 468 

they were returned to this page with an instruction to make sure their responses did add up to 100 469 

and were provided with the total value they initially entered for guidance. 470 

A final page provided participants with a code to enter in MTurk to confirm that they had 471 

completed the experiment, thanked them for their time, and provided contact details if they had 472 

any questions. 473 

 474 

Results and Discussion 475 

Attention test. The attention test in the learning task involved naming the animal and 476 

colour on each trial. With fifty trials, each participant could make up to 100 errors. The mean 477 

error rate was less than 1% (.70, SD = 2.26). Only 37 participants (13.6%) made more than 1 478 

error and out of these only one made more than 8. This participant made 33 errors. We concluded 479 

that most participants paid attention to the stimuli in the learning task and it was not necessary to 480 

exclude any participant from subsequent analyses.  481 

 482 

 483 

 484 
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Figure 1 485 

Joint Probabilities and Calculated Conditional Probabilities from the Probability Verification 486 

Task in Experiment 1 487 

 488 

Note. A. Box-plots for the verification judgements for all cells of Table 1. B. Mean calculated 489 

conditional probabilities for each inference based on the estimates shown in panel A split by 490 

correlation with the objective values, error bars = 95% HDI; model: Cond ~ InfNeg*Corr . In 491 

both panels, the large dark grey points indicate the objective probabilities based on Table 1. 492 

 493 

Probability verification task. We first report the results of the probability verification 494 

task. Figure 1A shows the box-plots for each cell in Table 2 and the objective values for each 495 

cell. We used the standard letter labelling of cells in a contingency table used in causal learning 496 
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(Hattori & Oaksford, 2007). Errors for low probabilities can only push in one direction and all 497 

cell values must sum to 1. Therefore, unsurprisingly, lower objective values tended to be 498 

overestimated and higher values underestimated. The mean correlation between each 499 

participant’s estimates and the objective values was r(7) = .59 (SD = .33). We split participants 500 

into high and low correlation groups (Corr); high correlation (≥ median): mean r(7) = .81 (SD 501 

= .11, N = 148), and low correlation (< median): mean r(7) = .32 (SD = .30, N = 124). By this 502 

measure, there was a large group of participants who showed a good understanding of the 503 

underlying probabilities, but also a group who did not, sometimes showing negative correlations 504 

with the objective values. 505 

We then used the estimated values from the probability verification task to compute the 506 

conditional probabilities (Cond) for each inference. There were occasional missing data points 507 

because of problems of division by zero. To maintain the coherence of the computed conditional 508 

probabilities, rather than impute the missing values, we added .01 to the offending cell(s) in a 509 

participants subjective JPD and took .01 from the highest cell value(s). We had to make this 510 

adjustment for only 3 participants and 0.49% of cell values and it did not alter the correlations 511 

with the objective values. We show the calculated conditional probabilities in Figure 1B, with the 512 

data split into high and low correlation groups.  513 

Figure 1B shows the estimated marginal means of the posterior distribution (see figure 514 

caption for the model). For the high correlation group, MP-Con (mean = .59, 95% HDI = 515 

[.57, .62]) was lower than MP-Not (mean = .80 [.78, .82], 𝑑̅ = 8.20 [5.88, 10.47], 1.0 ∉ ROPE). 516 

Exactly the same pattern of differences was observed between MP-Con and the remaining four 517 

inferences, AC-Not (mean = .79 [.77, .82], 𝑑̅  = 14.90 [12.65, 17.31]), AC-Con (mean = .77 518 

[.75, .79], 𝑑̅  = 13.64 [11.28, 15.93]), DA (mean = .69 [.67, .72], 𝑑̅  = 7.69 [5.36, 9.98]), and MT 519 
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(mean = .70 [.68, .72], 𝑑̅  = 8.20 [5.88, 10.48]). For all comparisons, 1.0 ∉ ROPE. There were no 520 

differences between MP-Not, AC-Not or AC-Con (< .93 ∉ ROPE for all comparisons). For the 521 

AC-Not vs AC-Con comparison 0 was a credible value for the effect size, 𝑑̅  = 1.55 [-.77, 3.77]. 522 

However, all these inferences differed from DA and MT (1.0 ∉ ROPE for all comparisons), 523 

although DA and MT did not differ from each other (.61 ∉ ROPE). Although the differences 524 

were smaller, the same basic pattern occurred for MP-Not, MP-Con, AC-Not, and AC-Con for 525 

the low correlation group. However, DA (mean = .48 [.45, .50]) and MT (mean = .53 [.51, .55]) 526 

were much lower in the low correlation group than the high correlation group (1.0 ∉ ROPE for 527 

both comparisons). In summary, for the high correlation group, the calculated conditional 528 

probabilities based on the verification task produced the predicted manipulation such that 529 

Pr(¬q1|¬p1) (MP-Not) > Pr(¬q1|p2) (MP-Con), and Pr(¬p1|¬q1) (AC-Not) ≈ Pr(¬p1|q3) (AC-Con).   530 

Inference Tasks. We first looked at the results for the pre-learning inference task with 531 

inference (AC, MP) and negation (Not, Con) as categorical predictors. The effect for AC was 532 

larger than the effect for MP. AC-Con (mean = .82 [.77, .86]) was lower than AC-Not (mean 533 

= .87 [.83, .91]) but zero was still a credible value for the difference (𝑑̅  = 2.14 [-.51, 5.06], .94 ∉ 534 

ROPE) but only marginally. In contrast, although MP-Con (mean = .83 [.79, .88]) was lower 535 

than MP-Not (mean = .86 [.82, .90]) zero was a credible value for the difference (𝑑̅  = 1.3 [-1.31, 536 

4.13], .80 ∉ ROPE). No differences were observed between any of the other inferences (0 was a 537 

credible value for all differences and < .92 ∉ ROPE for all comparisons). The results of the pre-538 

learning inference task were consistent with default expectations derived from previous research 539 

where the implicit negation effect is larger for AC than MP, thereby providing some support for 540 

Hypothesis 2. It means that the learning task based on Table 1 must overcome this default prior 541 

to reveal the effects predicted by Hypothesis 1. 542 
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Figure 2 543 

The Results of the Post-Learning Inference Phase in Experiment 1 544 

 545 

Notes. A The probability of endorsing each inference for the high and low correlation groups, 546 

error bars = 95% HDI; B. The probability of endorsing an inference predicted by the calculated 547 

conditional probability for the high and low correlation groups; C. The relationship between 548 

calculated conditional probability and confidence for the high correlation group showing density 549 

plots for each variable; D. The probability of endorsing an inference predicted by the calculated 550 

conditional probability for the high correlation group with high and low confidence. 551 

 552 

We first fitted a model to the post learning phase inference task, using inference/negation 553 

and correlation as categorical predictors. The estimated marginal means are shown in Figure 2A. 554 

We then looked at the interaction between inference (Inf: MP and AC) and negation (Neg: Not, 555 
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Con) for the high correlation group.  We compared two models, one which included the 556 

interaction (M1), and one with only the main effects (M2) (see, Table 4 Note). Δelpd and the 557 

Bayesian stacking weights converged on identifying M2 as the best model. It provides the most 558 

efficient compression of the data by minimizing the loss of information using the fewest 559 

parameters. This result suggests that we have failed to observe the predicted interaction.  560 

However, Δelpd indicates that there was only a small difference between models. M2 is 561 

weighted more heavily because it is simpler, having fewer parameters. Moreover, estimating 562 

interactions requires sixteen times more data than main effects (Gelman, 2018), as we noted in 563 

the Participants section. The simple effects were as predicted. MP-Con (mean = .84 [.79, .88]) 564 

was lower than MP-Not (mean = .93 [.89, .97]) ]) (𝑑̅ = 3.71 [.63, 4.46], .99 ∉ ROPE) and AC-565 

Con (mean = .94 [.90, .98])  (𝑑̅ = 4.03 [1.22, 6.75], .99 ∉ ROPE). However, zero was a credible 566 

value for the difference between AC-Not (mean = .97 [.94, .99]) and AC-Con (𝑑̅ = 1.57 [-1.30, 567 

4.24], .85 ∉ ROPE) and MP-Not (𝑑̅ = 1.86 [-.91, 4.75], .89 ∉ ROPE).  568 

 569 

Table 4 570 

Model Comparison for Predicting Post-Learning Inference Endorsement Rates in Experiment 1 571 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

M1 324.1 32.3 4.1 1.8 .9 .5 0 

M2 322.3 32.0 3.0 0 0 0 1.0 

 572 

Note. M1: Endorse ~ Inf*Neg, M2: Endorse ~ Inf + Neg. Estimated number of parameters (k), 573 

the difference (ΔLOOIC), the difference in expected log posterior predictive density (Δelpd) and 574 

its standard error (Δse), and the Bayesian stacking weights (LOOIC-weight).  575 

 576 
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There was only one difference for the low correlation group. AC-Con (mean = .79 577 

[.72, .86]) was lower than AC-Not (mean = .89 [.83, .94]) (𝑑̅ = 2.15 [.13, 4.02], .98 ∉ ROPE). 578 

This effect is consistent with the default prior effect we derived from previous results and the 579 

results of the pre-learning inference task. It suggests that even though most participants attended 580 

to the learning task, the low correlation group did not learn from it and reverted to the default 581 

prior.  582 

The results for the high correlation group confirmed Hypothesis 1. An implicit negation 583 

effect can be created (MP) and removed (AC) by varying the underlying probability distribution 584 

from which the relevant conditional probabilities are computed. These results are not consistent 585 

with other theories of the implicit negations effect. 586 

Calculated conditional probabilities. We next tested whether the calculated conditional 587 

probabilities (Cond) were good predictors of responses in the inference task (Endorse). We also 588 

tested whether these probabilities were better predictors of participants’ responses than the 589 

logical categorization of the inferences involved. According to other theories, peoples’ responses 590 

are driven solely by the logical characterization of the inference involved and whether an explicit 591 

or implicit negation is used to express the categorical premise, which is the model we fitted to 592 

test Hypothesis 1 (M1). We can compare M1 to a model that uses only the calculated conditional 593 

probabilities to predict responses (M3). Fitting this model is equivalent to a repeated measures 594 

regression as each participant provides multiple pairs of values (for the current data the six 595 

Cond/Endorse pairs for each level of InfNeg) (Bakdash & Marusich, 2017). In hierarchical 596 

mixed effects models this is achieved by specifying a different intercept for each participant with 597 

the same slope, the population slope (see, Table 5, Note for model specifications). We also fitted 598 
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a foil model (M4), which included just the intercepts to test that including calculated conditional 599 

probability provided more accurate predictions. 600 

 601 

Table 5.  602 

Model Comparison for Predicting Endorsement Rates from Calculated Conditional Probabilities 603 

in Experiment 1 604 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

M3 1010.7 50.9 92.5 0 0 0 .89 

M4 1038.7 51.8 90.3 -28.0 -14.0 6.0 0 

M1 1099.3 52.9 12.6 -88.6 -44.3 11.1 .11 

 605 

Note. M3: Endorse ~ Cond*Corr + (1|Participant). M4: Endorse ~ Corr + (1|Participant). 606 

Estimated number of parameters (k), the difference (ΔLOOIC), the difference in expected log 607 

posterior predictive density (Δelpd) and its standard error (Δse), and the Bayesian stacking 608 

weights (LOOIC-weight).  609 

 610 

Table 5 shows the results of the model comparison. The stacking weights and Δelpd 611 

converged on identifying M3 as the best model.  One could argue that M3 provides the better fit 612 

because it contains more parameters (k). However, Bayesian indices of fit, like LOOIC and BIC, 613 

heavily penalize model complexity (many parameters), and far more than conventional fit 614 

indices, like AIC9. Consequently, that M3 still provides a much better fit is impressive. 615 

Moreover, the calculated conditional probabilities are parameter free estimates of the probability 616 

                                                 

 

9 There is a balance to be struck between too many parameters and too few (McElreath, 2016). Too few 

means important patterns in the data cannot be captured. Too many leads to overfitting, which means that removing 

data points can lead to large changes in the model’s predictions. LOOIC assesses  this balance by systematically 

testing fits by leaving one out and ensuring predictions do not radically alter. So that M3 produces the lowest 

LOOIC value indicates that overfitting is not a problem despite having a greater number of parameters. 
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of endorsing each inference according to the probabilistic contrast set model. It provides a much 617 

better fit because it uniquely predicts the difference between MP-Con and AC-Con. These results 618 

confirm Hypothesis 3. 619 

Figure 2B shows the relation between calculated conditional probability and endorsement 620 

rates for the high and low correlation groups for M3. Interpreting slopes and interactions is 621 

problematic in generalized linear models (Tsai & Gill, 2013). Parameters are estimated after a 622 

non-linear logit (i.e., log-odds) transformation of the model. Describing the effects is most 623 

interpretable by transforming the dependent variable to odds. The slope for the high correlation 624 

group was 129.86 [5.25, 393.63] (b > 0, .97 ∉ ROPE), that is, a .1 increase in calculated 625 

conditional probability increases the odds that an inference will be endorsed by 13. For the low 626 

correlation group, the slope was 4.02 [.75, 9.02] (b > 0, 1.0 ∉ ROPE), that is, a .1 increase in 627 

calculated conditional probability increases the odds by .4. The intercept for the high correlation 628 

group was 1.29 [.21, 2.94], indicating that when the calculated conditional probability was zero, 629 

an inference was still marginally more likely to be endorsed than rejected. For the low 630 

correlation group the intercept was 4.74 [.41, 12.28]. Intercepts did not differ between groups (𝑑̅ 631 

= -1.19 [-.4.32, 1.22], .78 ∉ ROPE), but the slope for the high correlation group was steeper than 632 

for the low (𝑑̅ = 1.11 [.002, 3.44], .95 ∉ ROPE). 633 

These results suggest that correlation plays a moderating role. Participants in the high 634 

correlation group were more sensitive (lower intercept, higher slope) to changes in the predicted 635 

conditional probability when deciding whether to endorse a conclusion than those in the low 636 

correlation group. However, there was considerable uncertainty about this relationship for low 637 

conditional probabilities. The right hand subplot in Figure 2C shows the density plot for the 638 

calculated conditional probabilities. It is skewed towards the upper end of the scale. 639 
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Consequently, there were far fewer responses at the lower end explaining the increased 640 

uncertainty. 641 

Confidence. We next assessed the relationship between confidence and the calculated 642 

conditional probabilities using the model Confidence ~ Cond + (1|Participant). Figure 2C shows 643 

that they are linearly related. The population slope was 15.38 [10.22, 20.15] (b > 0, 1.0 ∉ ROPE) 644 

indicating that a 0.1 increase in conditional probability lead to 1.54 [1.5, 3.1] point rise in 645 

confidence. Both distributions were skewed to the high end of the scale (see subplots in Figure 646 

2C), and they had median values at the same point (conditional probability: .69; confidence: 69). 647 

Consistent with this correlation, Figure 2D shows that the median split on confidence (ConfSplit) 648 

produced a slightly higher intercept when confidence was high without a change in slope (model: 649 

Endorse ~ Cond*ConfSplit + (1|Participant)). However, zero was a credible value for the 650 

differences between high and low response groups for both the slope and the intercept.  These 651 

results were not consistent with confidence moderating the effect of conditional probability on 652 

endorsements. These results, therefore, confirm Hypothesis 4, but disconfirm Hypothesis 4′. 653 

Possible criticisms. Before summarising, we consider two possible criticisms of this 654 

experiment.  First, the 2AFC response mode may result in more polarized results, perhaps 655 

favouring a probabilistic explanation. Response mode can alter response patterns in conditional 656 

inference, but not by very much (Evans, Clibbens, & Rood, 1995; Evans & Handley, 1999; 657 

Oaksford & Chater, 2010a; Schroyens, Schaeken, & d’Ydewalle, 2001). The 2AFC procedure is 658 

similar to evaluation tasks where participants see the valid conclusion and its negation separately 659 

and are asked for an endorse decision (Marcus & Rips, 1979; Oaksford, et al., 2000). The current 660 

procedure combines these separate choices (which, in the aggregate, sum to 1, see Oaksford, et 661 
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al., 2000), into a single decision, and provides no reason to expect endorsement decisions to 662 

diverge from previously used response modes.   663 

Second, one could argue that in the inference tasks, people are ignoring the conditional 664 

premise and are responding solely based on their learned knowledge of the situation. However, 665 

one could level this criticism at any attempt to manipulate people’s subjective probabilities prior 666 

to an inference task in the previous literature. Moreover, the learning phase was short (and were 667 

made even shorter in subsequent experiments) and required only that people labelled the items in 668 

the attention check, but not learn the probabilistic structure to any criterion of accuracy before 669 

proceeding. Finally, of course, this criticism simply begs the question against our Bayesian 670 

account, which assumes that to draw inferences people assign relevant conditional probabilities 671 

to conditionals based on what they know. They are not applying learned or innate logical rules 672 

either syntactically as in mental logic (Rips, 1994), or semantically as in mental models 673 

representations (Johnson-Laird, 1983).  674 

 Summary. The results of Experiment 1 supported our main hypotheses. Providing single 675 

event probabilities for the JPD in Table 2, in the pre-learning phase, led to the standard default 676 

effect predicted from previous research confirming H2. There was an implicit negation effect for 677 

AC but not MP. In contrast, providing experience of these probabilities, via a brief learning 678 

phase, overcame the default priors for the high correlation group consistent with H1. There was 679 

an implicit negation effect for MP but not for AC for participants who had learned the JPD. The 680 

low correlation group continued to draw inferences consistent with the default prior. The 681 

calculated conditional probabilities for each inference, derived from participants’ JPD estimates, 682 

was also the best predictor of the probability of endorsing an inference (H3). Moreover, 683 

confidence was predicted by calculated conditional probability and did not moderate its effect on 684 
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inference endorsement (H4). These results are not consistent with other theories of the implicit 685 

negation effect, which all predict an implicit negation effect for both MP and AC. 686 

 687 

Experiment 2: MP and AC Manipulations 688 

Experiment 1 had some limitations. First, the effects, although statistically reliable with good 689 

effect sizes, were not of the same magnitude observed in the literature on implicit negations. 690 

Moreover, they only occurred for the high correlation group. The low correlation group 691 

continued to show the default effect also seen in the pre-learning inference task. Second, 692 

although the simple effects were all in the predicted direction, we did not observe the predicted 693 

interaction. Third, the distribution of calculated conditional probabilities was skewed toward the 694 

upper end of the scale. Such an effect is difficult to avoid when the objective distribution in the 695 

JPD (Table 2) were constructed to lead to mainly high conditional probabilities.  696 

 697 

Table 6 698 

The distributions of pi (animals/colours) and qi (colours/vehicles) used in Experiment 2. 699 

 MP-Manipulation AC-Manipulation 

 q1 q2 q3 Total q1 q2 q3 Total 

p1 0.27 (8) 0.00 (0) 0.00 (0) 0.27 (8) 0.27 (8) 0.00 (0) 0.06 (2) 0.33 (10) 

p2 0.06 (2) 0.00 (0) 0.00 (0) 0.06 (2) 0.00 (0) 0.33 (10) 0.00 (0) 0.33 (10) 

p3 0.00 (0) 0.33 (10) 0.33 (10) 0.67 (20) 0.00 (0) 0.33 (10) 0.00 (0) 0.33 (10) 

Total 0.33 (10) 0.33 (10) 0.33 (10) 1.00 (30) 0.27 (8) 0.67 (2) 0.06 (20) 1.00 (30) 

Note. p1 = cats/white, p2 = dogs/blue, p3 = rabbits/red, q1 = black/van, q2 = brown/car, q3 = 700 

white/motorbike. Frequencies of occurrence in the learning trials using these materials are 701 

shown in brackets. 702 

 703 
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In Experiment 2, we used a more extreme probability manipulation using the JPDs in 704 

Table 6. We also manipulated the JPDs to produce an implicit negation effect for both MP and 705 

AC. These changes address all of the limitations of Experiment 1. According to probabilistic 706 

contrast set theory a stronger probability manipulation should produce a stronger implicit 707 

negation effect. No other theory predicts that this manipulation should have this effect, as they do 708 

not make graded predictions. Moreover, by manipulating probabilities in line with the default 709 

prior for AC, we should be able to produce a stronger effect, one that may reveal the predicted 710 

interaction. By using a more extreme probability manipulation, such that very low calculated 711 

conditional probabilities (i.e., zero) are predicted, we may also be able to produce a less skewed 712 

distribution, allowing less uncertainty about what is happening at the low end of the scale.  713 

We also reduced the number of learning trials from fifty to thirty. The rationale was part 714 

theoretical and part methodological. Theoretically, we have argued that people only build very 715 

limited small-scale statistical models related to their immediate deictic or linguistic context 716 

(Oakford & Chater, 2020a). These models are constructed on the fly (Chater, 2018) based on 717 

linguistic information and prior knowledge, in particular, from immediate past experience, as in 718 

decision by sampling models (Stewart, et al., 2006). People’s need to predict their immediate 719 

environment suggests that they can do so using very few samples (Vul, Goodman, Griffiths, & 720 

Tenenbaum, 2014). Methodologically, this experiment used two learning phases. Reducing the 721 

number of trials made the experiment more comparable in length to Experiment 1 and less likely 722 

to lead to fatigue effects.  723 

We used two sets of materials and participants performed learning phases following by an 724 

inference phase for each set of materials in counterbalanced order. We did not use pre-learning 725 

inference tasks in this experiment. Consequently, this experiment, and the next, did not evaluate 726 
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Hypothesis 2. Participants performed on the MP manipulation for one set of materials and the 727 

AC manipulation for the other set of materials. The second set of materials used the colours of 728 

motor vehicles and also varied the position of the colour predicates from the consequent to the 729 

antecedent clause (see, Table 6), so that the target double negation rule read if it is not white, then 730 

it is not a van. According to the JPDs in Table 6, the conditional probabilities with which 731 

participants should draw each inference for each manipulation are shown in Table 7.  732 

 733 

Table 7 734 

The Probabilities of Drawing Each Inference in Experiments 2 and 3 735 

 736 

  Negation 

Inf. Manip. Explicit (Not) Implicit (Con) 

MP (DA) MP (DA) 0.91 (Pr(¬q1|¬p1)) 0.00 (Pr(¬q1|p2)) 

 AC (MT) 1.00 (Pr(¬q1|¬p1)) 1.00 (Pr(¬q1|p2)) 

AC (MT) MP (DA) 1.00 (Pr(¬p1|¬q1)) 1.00 (Pr(¬p1|q3)) 

 AC (MT) 0.91 (Pr(¬p1|¬q1)) 0.00 (Pr(¬p1|q3)) 

DA (MP) MP (DA) 1.00 (Pr(q1|p1))  

 AC (MT) 0.80 (Pr(q1||p1))  

MT (AC) MP (DA) 0.80 (Pr(p1|q1))  

 AC (MT) 1.00 (Pr(p1|q1))  
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Note: Inf. = Inference; Manip. = Manipulation. The same probability distribution was used in 737 

Experiment 3, where it implements the inferences and manipulations shown in parentheses. 738 

 739 

Method  740 

Participants. 334 participants were recruited via MTurk after some were excluded 741 

because they may have been duplicates or participated in Experiment 1. All participants who 742 

completed the experiment received a small payment (between US$0.50 and US$1.00). 53.6% 743 

were female and the sample was aged between 18 and 83 with a median age of 36 years (mean = 744 

39.44, SD = 13.32). English was the first language of 96.4% of participants. 745 

Design and Materials. The experiment was a 6 (Inference and Negation: MP-Not, MP-746 

Con, AC-Not, AC-Con, DA, MT) by 2 (Manipulation: MP, AC) completely within subjects 747 

design. For each manipulation, participants first carried out a learning task, then the inference 748 

task, followed by the probability verification task as in the learning phase of Experiment 1. One 749 

set of materials was the same as in Experiment 1. The second set of materials involved vehicles 750 

and colours and the new target rule if it is not white, then it is not a van. All the relevant 751 

substitutions are shown in Table 6 (Note). The order in which participants conducted the task, 752 

MP- or AC-manipulation first (Path), and the order of materials, animals or vehicles first 753 

(Group), was determined randomly at the beginning of the experiment for each participant. The 754 

randomization worked well with roughly equal numbers of participants in the four possible Path 755 

by Group conditions (77, 85, 85, 87).  Possible artifacts produced by Path or Group were dealt 756 

with by treating the four possible Path by Group combinations as a four item random variable 757 

(PaGr) in mixed effects analyses. In this experiment, the learning phase used only 30 trials.  758 
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Procedure. The change from Experiment 1 was that in the two parts of the experiment, 759 

participants performed the learning, the inference, and the probability verification tasks in that 760 

order. In each part, this procedure was the same as in the learning phase of Experiment 1. 761 

 762 

Results and Discussion 763 

Attention test. With two learning tasks with thirty trials in each, each participant could 764 

make up to 120 errors. The mean error rate was less than 1% (.80, SD = 4.24). Most participants 765 

paid attention to the stimuli in the learning task and no participant was excluded from subsequent 766 

analyses.  767 

Probability verification task. Figure 3A and B shows the box-plots for each cell in 768 

Table 6 for both the MP- (3A) and the AC-manipulations (3B). The mean correlation between 769 

each participant’s estimates and the objective values was r(7) = .74 (SD = .32). We split 770 

participants into high and low correlation groups; high correlation (≥ median): mean r(7) = .96 771 

(SD = .04, N = 167), and low correlation (< median): mean r(7) = .52 (SD = .34, N = 167). The 772 

average correlations were higher for this cohort than in Experiment 1. If we used the same value 773 

for the median as Experiment 1 (.66), then the high group would contain 241 participants and the 774 

low group 93. The stronger probability manipulation led to more participants understanding the 775 

manipulation. Consequently, we analysed the data without splitting participants in to high and 776 

low correlation groups (except when we tested whether the calculated conditional probabilities 777 

were good predictors of responses in the inference task). 778 

 779 

 780 

 781 

 782 

 783 
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Figure 3 784 

Joint Probabilities and Calculated Conditional Probabilities from the Probability Verification 785 

Task in Experiment 2 786 

 787 
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Note. A. Box-plots for the verification judgements for all cells of Table 6:MP-Manipulation. B. 788 

Box-plots for the verification judgements for all cells of Table 6:AC-Manipulation. C. Mean 789 

calculated conditional probabilities for each inference based on the estimates shown in panels A 790 

and B, error bars = 95% HDI. In these panels, the large dark grey points indicate the objective 791 

probabilities for the MP-Manipulation and the large light grey points indicate the objective 792 

probabilities for the AC-Manipulation. 793 

 794 

We made the same correction for missing values because of division by zero when 795 

calculating conditional probabilities as in Experiment 1, which affected 29 participants (8.7%) 796 

and 2.5% of cell values in participants subjective JPDs. Again, this correction did not alter the 797 

correlations with the objective values. Figure 3C show the estimated marginal means of the 798 

calculated conditional probabilities for each inference split by manipulation (Manip). The means 799 

were estimated using a linear mixed model, Cond ~ InfNeg*Manip + (InfNeg*Manip|PaGr) with 800 

the Path and Group variable (PaGr) as a random effect to rule out materials and order artifacts. 801 

For the MP-manipulation, MP-Con (mean = .33 [.28, .37])  was lower than MP-Not 802 

(mean = .84 [.79, .88]), 𝑑̅  = 18.67 [16.80, 20.69], 1.0 ∉ ROPE), but zero was a credible value for 803 

the difference between AC-Con (mean = .90 [.87, .94])  and AC-Not (mean = .92 [.88, .92]), 𝑑̅  804 

= .63 [-1.12, 2.32], .70 ∉ ROPE). These results reversed for the AC-manipulation, zero was a 805 

credible value for the difference between MP-Con (mean = .91 [.86, .97])  and MP-Not (mean 806 

= .91 [.86, .97]), 𝑑̅  = .03 [-1.81, 1.90], .46 ∉ ROPE), but AC-Con (mean = .29 [.25, .33]) was 807 

lower than AC-Not (mean = .82 [.77, .87]), 𝑑̅  = 19.01 [17.28, 20.59], 1.0 ∉ ROPE). We did not 808 

further analyze the results for DA and MT, but note that the calculated conditional probabilities 809 

followed the cross over pattern predicted by the objective values. In summary, the calculated 810 

conditional probabilities based on the verification task produced the predicted MP-manipulation 811 

such that Pr(¬q1|¬p1) (MP-Not) > Pr(¬q1|p2) (MP-Con), and Pr(¬p1|¬q1) (AC-Not) ≈ Pr(¬p1|q3) 812 
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(AC-Con) and the predicted AC-manipulation such that Pr(¬q1|¬p1) (MP-Not) ≈ Pr(¬q1|p2) (MP-813 

Con), and Pr(¬p1|¬q1) (AC-Not) > Pr(¬p1|q3) (AC-Con). 814 

Inference Tasks. We first fitted a model to the inference task, using inference/negation 815 

and manipulation as categorical predictors with PaGr as a random effect (see, Figure 4A: Notes 816 

for the model). We show the estimated marginal means in Figure 4A. We then looked at the 817 

interaction between inference (Inf: MP and AC) and negation (Neg: Not, Con) for each 818 

manipulation.  As in Experiment 1, we compared two models, one which included the interaction 819 

(M1), and one with only the main effects (M2) (see, Table 8: Notes). Table 8 shows the results of 820 

the model comparison. The stacking weights and Δelpd converged on identifying M1, which 821 

includes the interaction, as the best model for both manipulations.  822 

We also assessed the critical simple effects. For the MP-manipulation, the probability of 823 

endorsing MP-Con (mean = .68 [.60, .76])  was lower than MP-Not (mean = .97 [.96, .99]), 𝑑̅  = 824 

7.63 [5.60, 9.57], 1.0 ∉ ROPE), but zero was a credible value for the difference between AC-Con 825 

(mean = .96 [.94, .98])  and AC-Not (mean = .94 [.91, .97]), 𝑑̅  = -1.23 [-3.24, 1.00], .81 ∉ 826 

ROPE). These results reversed for the AC-manipulation, zero was a credible value for the 827 

difference between MP-Con (mean = .94 [.92, .96])  and MP-Not (mean = .94 [.91, .96]), 𝑑̅  = 828 

-.43 [-2.58, 1.76], .58 ∉ ROPE), but AC-Con (mean = .55 [.50, .60]) was lower than AC-Not 829 

(mean = .93 [.91, .96]), 𝑑̅  = 15.37 [13.23, 17.61], 1.0 ∉ ROPE). 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 
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Figure 4 840 

The Results of the Inference Tasks in Experiment 2 841 

 842 

Notes. A. The probability of endorsing each inference for the MP- and AC-manipulations 843 

(Endorse ~ InfNeg*Manip + (InfNeg*Manip|PaGr)), error bars = 95% HDI; B. The probability 844 

of endorsing an inference predicted by the calculated conditional probability for the high and 845 

low correlation groups; C. The relationship between calculated conditional probability and 846 

confidence for the high correlation group showing density plots for each variable; D. The 847 

probability of endorsing an inference predicted by the calculated conditional probability for the 848 

high correlation group with high and low confidence. 849 

 850 

In this experiment, we observed the predicted interactions confirming Hypothesis 1. An 851 

implicit negation effect only occurs when the contrast set member used to implicitly negate the 852 

antecedent or consequent indicates a low conditional probability of the conclusion. This analysis 853 
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directly addresses the possible criticism of Experiment 1 that we observed these effects only for 854 

the high correlation group. In analyzing these key predictions, in this experiment and the next, 855 

we did not split participants by high or low correlation groups. 856 

 857 

Table 8 858 

Model Comparison for Predicting Inference Endorsement Rates in Experiment 2 859 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

MP-Manipulation       

M1 772.8 44.7 8.3 0 0 0 .96 

M2 816.4 47.9 7.5 43.6 -21.8 7.1 .04 

AC-Manipulation       

M1 934.3 44.8 5.6 0 0 0 .95 

M2 971.1 47.0 4.9 36.8 -18.4 6.8 .05 

 860 

Notes. M1: Endorse ~ Inf*Neg + (Inf*Neg|PaGr), M2: Endorse ~ Inf + Neg + (Inf + Neg|PaGr). 861 

Estimated number of parameters (k), the difference (ΔLOOIC), the difference in expected log 862 

posterior predictive density (Δelpd) and its standard error (Δse), and the Bayesian stacking 863 

weights (LOOIC-weight).  864 

 865 

Calculated conditional probabilities. We next tested whether the calculated conditional 866 

probabilities (Cond) were good predictors of responses in the inference task (Endorse). We 867 

compared the same models as in Experiment 1 but with PaGr as a random variable (see Table 9: 868 

Notes for the models compared) preserving the maximal random effect structure for each model 869 

(Baayen, Davidson, & Bates, 2008). M5 is the model used to generate Figure 4A.  870 

 871 
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Table 9.  872 

Model Comparison for Predicting Endorsement Rates from Calculated Conditional Probabilities 873 

in Experiment 2 874 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

M3 2170.3 75.7 142.8 0 0 0 .78 

M5 2451.1 80.2 16.4 280.8 -140.4 24.7 .22 

M4 2751.2 81.9 137.2 580.9 -290.5 26.8 0 

 875 

Notes. M3: Endorse ~ Cond*Corr + (1|Participant) + (Cond*Corr|PaGr), M4: Endorse ~ Corr 876 

+ (1|Participant) + (Corr|PaGr), M5: Endorse ~ InfNeg*Manip + (InfNeg*Manip|PaGr). 877 

Estimated number of parameters (k), the difference in LOOICs (ΔLOOIC), the difference in 878 

expected log posterior predictive density (Δelpd) and its standard error (Δse), and the Bayesian 879 

stacking weights (LOOIC-weight).  880 

 881 

Table 9 shows the results of the model comparison. The stacking weights and Δelpd 882 

converged on identifying M3 as the best model, confirming the results of Experiment 1 that most 883 

information relevant to drawing these inferences is in the predicted conditional probabilities. 884 

Figure 4B shows the relation between calculated conditional probability and endorsement rates 885 

for the high and low correlation groups for M3. The slope for the high correlation group was 886 

65.57 [34.88, 100.81] (b > 0, 1.0 ∉ ROPE), that is, a .1 increase in calculated conditional 887 

probability increases the odds that an inference will be endorsed by 6.60.  For the low correlation 888 

group, the slope was 18.56 [8.88, 30.02] (b > 0, 1.0 ∉ ROPE), that is, a .1 increase in calculated 889 

conditional probability increases the odds by 1.9. The intercept for the high correlation group 890 

was .92 [.59, 1.26], indicating that when the calculated conditional probability was zero, an 891 

inference was marginally more likely to be rejected than endorsed. For the low correlation group 892 

the intercept was 2.02 [1.10, 3.16]. The intercept was higher for the low correlation group than 893 
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for the high (𝑑̅ = -2.67 [-6.01, .01], .97 ∉ ROPE), and the slope was steeper for the high 894 

correlation group than for the low (𝑑̅ = 3.57 [1.27, 6.30], 1.0  ∉ ROPE).  895 

Replicating Experiment 1, calculated conditional probability was the best predictor of 896 

inference endorsement. This experiment also confirmed that correlation had a moderating effect. 897 

With the stronger probability manipulation, better understanding of the probability distribution 898 

(high correlation) led to greater sensitivity (a lower intercept and higher slope). The stronger 899 

probability manipulation also led to reduced uncertainty at the lower end of the scale, revealing 900 

that the intercepts also differed.  901 

Confidence. We next assessed the relationship between confidence and the predicted 902 

conditional probabilities. Figure 4C shows that they are linearly related, which we again assessed 903 

with separate intercepts for each participant and PaGr as a random effect. The population slope 904 

was 38.33 [33.44, 43.39] (b > 0, 1.0 ∉ ROPE) indicating that a 0.1 increase in conditional 905 

probability lead to 3.83 point rise in confidence. Both distributions were skewed to the high end 906 

of the scale (see subplots in Figure 4C), and their median values were .89 (conditional 907 

probability) and 81 (confidence). Figure 4D shows that in Experiment 2, confidence did not 908 

moderate the effect of conditional probability on inference endorsement. Figure 4D is explained 909 

by the high correlation between confidence and calculated conditional probability (Figure 4C). 910 

Because of this correlation, most of the high calculated conditional probabilities were associated 911 

with high confidence. In contrast, the low calculated conditional probabilities were associated 912 

with low confidence but also, because of the median split (.89), with many high probability 913 

responses. Consequently, only low confidence responses had the spread to reveal the sensitivity 914 

of endorsement judgements to variation in calculated conditional probability. 915 
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 Summary. The stronger probability manipulation used in the learning phase of 916 

Experiment 2 strongly confirmed Hypothesis 1. There was an implicit negation effect for MP but 917 

not for AC for the MP manipulation, and an implicit negation effect for AC but not for MP for 918 

the AC manipulation. Not only were the simple effects significant, a model containing the 919 

interaction was a more accurate predictor of the data than a model with only the main effects. 920 

The calculated conditional probabilities for each inference derived from participants’ JPD 921 

estimates, were also the best predictor of the probability of endorsing an inference, confirming 922 

Hypothesis 3. Moreover, understanding the probability manipulation moderated the effect, with 923 

the high correlation group’s inference endorsements showing greater sensitivity to calculated 924 

conditional probability (lower intercept, higher slope). In contrast, confidence, although highly 925 

correlated with calculated conditional probability, confirming Hypothesis 4, did not moderate its 926 

effect on inference endorsement. This result is consistent with previous research that treated 927 

judgements of confidence as proxies for probabilities. These results are not consistent with other 928 

theories of the implicit negations effect, which all predict an implicit negation effect for both MP 929 

and AC regardless of the learned probability manipulation used in these experiments.  930 

 931 

Experiment 3: MT and DA Manipulation 932 

We have demonstrated that we can produce or eliminate the implicit negation effect by varying 933 

the learned probabilistic structure of the relevant contrast sets for MP and AC. In Experiment 3, 934 

we attempted to replicate and generalize these findings to the MT and DA inferences. In this 935 

experiment, we also used abstract material to show that we can produce the same probabilistic 936 

effects for the materials that first demonstrated the implicit negations effect. We used abstract 937 

content involving shapes and colours. The same probability manipulation as in Table 6 achieves 938 
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the desired result using the conditional if it is white, then it is a van. The AC-manipulation then 939 

generates an MT-manipulation and the MP-manipulation generates a DA-manipulation. We show 940 

the probability of drawing each inference in Table 7. In Experiment 3, p1 = red/white, p2 = 941 

yellow/blue, p3 = blue/red, q1 = circle/van, q2 = triangle/car, and q3 = square/motorbike.  942 

 943 

Method  944 

Participants. 168 participants were recruited via MTurk after some were excluded 945 

because they may have been duplicates or participated in Experiments 1 or 2. All participants 946 

who completed the experiment received a small payment (between US$0.50 and US$1.00). 947 

56.0% were female and the sample was aged between 19 and 75 with a median age of 34 years 948 

(mean = 38.05, SD = 13.75). English was the first language of 96.4% of participants. 949 

Design and Materials. The experiment was a 6 (Inference and Negation: MT-Not, MT-950 

Con, DA-Not, DA-Con, AC, MP) by 2 (Manipulation: MT, DA) completely within subjects 951 

design. One set of materials was the same as in Experiment 2 but using the new target 952 

conditional if it is white, then it is a van. The second set of materials involved coloured shapes 953 

and the target conditional if it is red, then it is a circle. For the abstract materials, participants 954 

were provided with a back story involving a quality control manager checking the output of a 955 

machine printing cards of different shapes and colours (as in Oaksford et al. 2000: Experiment 956 

1). Other than these changes, the design of Experiment 3 was the same as Experiment 2. The 957 

randomization worked well with roughly equal numbers of participants in the four possible Path 958 

by Group conditions (35, 37, 45, 51).  959 

Procedure. The procedure was the same as in Experiment 2. 960 

 961 
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Figure 5 962 

Joint Probabilities and Calculated Conditional Probabilities from the Probability Verification 963 

Task in Experiment 3 964 

 965 

 966 
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Note. A. Box-plots for the verification judgements for all cells of Table 6:MT-Manipulation. B. 967 

Box-plots for the verification judgements for all cells of Table 6:DA-Manipulation. C. Mean 968 

calculated conditional probabilities for each inference based on the estimates shown in panels A 969 

and B, error bars = 95% HDI. In these panels, the large dark grey points indicate the objective 970 

probabilities for the MT-Manipulation and the large light grey points indicate the objective 971 

probabilities for the DA-Manipulation. 972 

 973 

Results and Discussion 974 

Attention test. The mean error rate (out of 120) was less than 1.0 % (1.10, SD = 4.24). 975 

Most participants paid attention to the stimuli in the learning task and so we did not exclude any 976 

participants from the subsequent analyses.  977 

Probability verification task. Figure 5A and B shows the box-plots for each cell in 978 

Table 5 for both the MT- (5A) and the DA-manipulations (5B). The mean correlation between 979 

each participant’s estimates and the objective values was r(7) = .75 (SD = .32). We split 980 

participants into high and low correlation groups; high correlation (≥ median): mean r(7) = .95 981 

(SD = .04, N = 87), and low correlation (< median): mean r(7) = .47 (SD = .34, N = 81). As for 982 

Experiment 2, we analysed the data without splitting participants in to high and low correlation 983 

groups, except when we tested whether the calculated conditional probabilities were good 984 

predictors of responses in the inference task. 985 

We made the same correction for missing values because of division by zero when 986 

calculating conditional probabilities as in Experiments 1 and 2, which affected 19 participants 987 

(11.3%) and 2.4% of cell values in participants subjective JPDs. Again, this correction did not 988 

alter the correlations with the objective values. Figure 5C shows the estimated marginal means of 989 

the calculated conditional probabilities for each inference split by manipulation (Manip). We 990 

estimated these means using the same linear mixed model as in Experiment 2. 991 

 992 
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Figure 6 993 

The Results of the Inference Tasks in Experiment 3 994 

 995 

Notes. A. The probability of endorsing each inference for the MT- and DA-manipulations 996 

(Endorse ~ InfNeg*Manip + (InfNeg*Manip|PaGr)), error bars = 95% HDI; B. The probability 997 

of endorsing an inference predicted by the calculated conditional probability for the high and 998 

low correlation groups; C. The relationship between calculated conditional probability and 999 

confidence for the high correlation group showing density plots for each variable; D. The 1000 

probability of endorsing an inference predicted by the calculated conditional probability for the 1001 

high correlation group with high and low confidence. 1002 

 1003 

For the MT-manipulation, MT-Con (mean = .35 [.25, .46])  was lower than MT-Not 1004 

(mean = .81 [.73, .89]), 𝑑̅  = 9.62 [7.12, 11.99], 1.0 ∉ ROPE), but zero was a credible value for 1005 

the difference between DA-Con (mean = .92 [.84, 1.00])  and DA-Not (mean = .91 [.83, .98]), 𝑑̅  1006 
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= -.34 [-2.62, 1.92], .59 ∉ ROPE). These results reversed for the DA-manipulation, zero was a 1007 

credible value for the difference between MT-Con (mean = .93 [.86, .99])  and MT-Not (mean 1008 

= .91 [.85, .97]), 𝑑̅  = -.45 [-2.84, 1.80], .62 ∉ ROPE), but DA-Con (mean = .26 [.20, .32]) was 1009 

lower than DA-Not (mean = .84 [.79, .91]), 𝑑̅  = 19.47 [17.20, 22.14], 1.0 ∉ ROPE). We did not 1010 

further analyze the results for AC and MP, but note that the calculated conditional probabilities 1011 

followed the cross over pattern predicted by the objective values. In summary, the calculated 1012 

conditional probabilities based on the verification task produced the predicted MT-manipulation 1013 

such that Pr(¬q1|¬p1) (MT-Not) > Pr(¬q1|p2) (MT-Con), and Pr(¬p1|¬q1) (DA-Not) ≈ Pr(¬p1|q3) 1014 

(DA-Con) and the predicted DA-manipulation such that Pr(¬q1|¬p1) (MT-Not) ≈ Pr(¬q1|p2) (MT-1015 

Con), and Pr(¬p1|¬q1) (DA-Not) > Pr(¬p1|q3) (DA-Con). 1016 

Inference Tasks. We observed no differences for the abstract materials and so we first 1017 

fitted the same model to the inference task as in Experiment 2 (see, Figure 6A: Notes for the 1018 

model) with the combined Path and Group variable as a random factor. We show the estimated 1019 

marginal means in Figure 6A. We then looked at the interaction between inference (Inf: MT and 1020 

DA) and negation (Neg: Not, Con) for each manipulation.  As in Experiments 1 and 2, we 1021 

compared s model which included the interaction (M1) with one with only the main effects (M2) 1022 

(see, Table 10: Notes), and we show the results in Table 10. The stacking weights and Δelpd 1023 

converged on identifying M1, which includes the interaction, as the best model for both 1024 

manipulations. 1025 

We also assessed the critical simple effects. For the MT-manipulation, MT-Con (mean 1026 

= .62 [.51, .71])  was lower than MT-Not (mean = .95 [.91, .98]), 𝑑̅  = 8.96 [6.34, 11.57], 1.0 ∉ 1027 

ROPE), but zero was a credible value for the difference between DA-Con (mean = .96 [.92, .99])  1028 

and DA-Not (mean = .92 [.88, .97]), 𝑑̅  = -1.73 [-4.61, .87], .88 ∉ ROPE). These results reversed 1029 
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for the DA-manipulation, zero was a credible value for the difference between MT-Con (mean 1030 

= .95 [.91, .98])  and MT-Not (mean = .96 [.93, .99]), 𝑑̅  = .71 [-2.05, 3.51], .66 ∉ ROPE), but 1031 

DA-Con (mean = .55 [.50, .60]) was lower than DA-Not (mean = .93 [.91, .96]), 𝑑̅  = 11.10 1032 

[8.34, 13.70], 1.0 ∉ ROPE). 1033 

 1034 

Table 10 1035 

Model Comparison for Predicting Inference Endorsement Rates in Experiment 3 1036 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

MT-Manipulation       

M1 453.0 32.4 5.7 0 0 0 .93 

M2 478.1 34.2 4.8 25.1 -12.6 5.6 .07 

DA-Manipulation       

M1 444.3 32.2 7.1 0 0 0 .86 

M2 454.1 33.2 5.9 9.8 -4.9 3.9 .14 

 1037 

Notes. M1: Endorse ~ Inf*Neg + (Inf*Neg|PaGr), M2: Endorse ~ Inf + Neg + (Inf + Neg|PaGr). 1038 

Estimated number of parameters (k), the difference (ΔLOOIC), the difference in expected log 1039 

posterior predictive density (Δelpd) and its standard error (Δse), and the Bayesian stacking 1040 

weights (LOOIC-weight).  1041 

 1042 

Replicating Experiment 2, but now for MT and DA, we observed the predicted 1043 

interactions confirming Hypothesis 1. An implicit negation effect only occurs when the contrast 1044 

set member used to implicitly negate the antecedent or consequent indicates a low conditional 1045 

probability of the conclusion. 1046 
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Calculated conditional probabilities. We next tested whether the calculated conditional 1047 

probabilities (Cond) were good predictors of responses in the inference task (Endorse). We 1048 

compared the same models as in Experiment 2 (see Table 11: Notes for the models compared). 1049 

M5 is the model used to generate Figure 6A. Table 11 shows the results of the model 1050 

comparison. The stacking weights and Δelpd converged on identifying M3 as the best model, 1051 

confirming the results of Experiments 1 and 2 that most information relevant to drawing these 1052 

inferences is in the predicted conditional probabilities. Figure 6B shows the relation between 1053 

calculated conditional probability and endorsement rates for the high and low correlation groups 1054 

for M3. The slope for the high correlation group was 365.68 [101.45, 716.17] (b > 0, 1.0 ∉ 1055 

ROPE), that is, a .1 increase in calculated conditional probability increases the odds that an 1056 

inference will be endorsed by 36.5.  For the low correlation group, the slope was 8.09 [2.25, 1057 

15.30] (b > 0, 1.0 ∉ ROPE), that is, a .1 increase in calculated conditional probability increases 1058 

the odds by .81. The intercept for the high correlation group was .64 [.33, 1.00], indicating that 1059 

when the calculated conditional probability was zero, an inference was marginally more likely to 1060 

be rejected than endorsed. For the low correlation group the intercept was 7.63 [2.63, 14.48]. The 1061 

intercept was higher for the low correlation group than for the high (𝑑̅ = -2.92 [-5.86, -.76], 1.0 ∉ 1062 

ROPE), and the slope was steeper for the high correlation group than for the low (𝑑̅ = 2.64 [.67, 1063 

5.21], 1.0  ∉ ROPE).  1064 

Replicating Experiments 1 and 2, calculated conditional probability was the best 1065 

predictor of inference endorsement. This experiment also confirmed that correlation had a 1066 

moderating effect. With the stronger probability manipulation, better understanding of the 1067 

probability distribution (high correlation) leads to greater sensitivity (lower intercept, steeper 1068 
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slope). Replicating Experiment 2, the stronger probability manipulation led to reduced 1069 

uncertainty at the lower end of the scale, revealing that the intercepts also differed.  1070 

 1071 

Table 11.  1072 

Model Comparison for Predicting Endorsement Rates from Calculated Conditional Probabilities 1073 

in Experiment 3 1074 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

M3 930.2 50.7 85.9 0 0 0 .85 

M5 1173.7 57.5 16.1 243.5 -121.7 21.0 .15 

M4 1324.1 58.1 78.8 393.9 -197.0 21.5 0 

 1075 

Notes. M3: Endorse ~ Cond*Corr + (1|Participant) + (Cond*Corr|PaGr), M4: Endorse ~ Corr 1076 

+ (1|Participant) + (Corr|PaGr), M5: Endorse ~ InfNeg*Manip + (InfNeg*Manip|PaGr). 1077 

Estimated number of parameters (k), the difference in LOOICs (ΔLOOIC), the difference in 1078 

expected log posterior predictive density (Δelpd) and its standard error (Δse), and the Bayesian 1079 

stacking weights (LOOIC-weight).  1080 

 1081 

Confidence. We next assessed the relationship between confidence and the predicted 1082 

conditional probabilities. Figure 6C shows that they are linearly related, which we again assessed 1083 

with separate intercepts for each participant and PaGr as a random effect. The population slope 1084 

was 42.88 [30.80, 55.51] (b > 0, 1.0 ∉ ROPE), indicating that a 0.1 increase in conditional 1085 

probability led to a 4.28 point rise in confidence. Both distributions were skewed to the high end 1086 

of the scale (see subplots in Figure 6C), and their median values were .88 (conditional 1087 

probability) and 83 (confidence). Figure 6D shows that, replicating Experiment 2, confidence did 1088 

not moderate the effect of conditional probability on inference endorsement. As for Experiment 1089 
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2, Figure 6D is explained by the high correlation between confidence and calculated conditional 1090 

probability (Figure C6).  1091 

 Summary. Experiment 3 confirmed Hypothesis 1 for MT and DA. There was an implicit 1092 

negation effect for MT but not for DA for the MT manipulation, and an implicit negation effect 1093 

for DA but not for MT for the DA manipulation. Not only were the simple effects significant, a 1094 

model containing the interaction was a more accurate predictor of the data than a model with 1095 

only the main effects. The calculated conditional probabilities for each inference derived from 1096 

participants’ JPD estimates, were also the best predictor of the probability of endorsing an 1097 

inference, confirming Hypothesis 3. Moreover, understanding the probability manipulation 1098 

moderated the effect, with the high correlation group’s inference endorsements showing greater 1099 

sensitivity to calculated conditional probability (lower intercept, higher slope). In contrast, 1100 

confidence, although highly correlated with calculated conditional probability, confirming 1101 

Hypothesis 4, did not moderate its effect on inference endorsement. This result is consistent with 1102 

previous research that treated judgements of confidence as proxies for probabilities. These results 1103 

are not consistent with other theories, which all predict an implicit negation effect for both MT 1104 

and DA regardless of the probability manipulation used in these experiments.  1105 

 1106 

General Discussion 1107 

Experiments 1 to 3 provided focused experimental tests of the new paradigm probabilistic 1108 

explanation of the implicit negation effect in conditional inference. We used short discrete 1109 

learning tasks to impart probabilistic information about contextually limited sets of objects and 1110 

their properties to manipulate whether an implicitly negated premise would lead to a high or low 1111 

conditional probability of the conclusion. In Experiment 1, for the high correlation group we 1112 
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observed an implicit negation effect for MP but not for AC, consistent with the probability 1113 

manipulation. The effects were large in terms of effect size but not of the same apparent 1114 

magnitude as previously observed. In Experiment 2, we strengthened the probability 1115 

manipulation and added an AC manipulation to test whether we could elicit and suppress the 1116 

effect for both inferences. This manipulation produced a much larger effect on calculated 1117 

conditional probabilities and a correspondingly larger implicit negation effect. We also observed 1118 

the key interaction showing an implicit negation effect only when predicted by the probability 1119 

manipulation. Experiment 3 replicated these findings for MT and DA inferences. Across all three 1120 

experiments, the calculated conditional probability was the best predictor of the odds of 1121 

endorsing an inference and this effect was moderated by the strength of the correlation between 1122 

people’s judgements of the joint probabilities (Tables 2 and 6) and the objective values. 1123 

Participants who had better learned the probability distribution (high correlation group) showed 1124 

greater sensitivity (lower intercept, higher slope) to the calculated conditional probability when 1125 

endorsing inferences. Calculated conditional probability predicted confidence in whether 1126 

participants endorsed an inference or not, but confidence did not moderate its effect on inference 1127 

endorsement. This result is consistent with previous research that used confidence judgements as 1128 

proxies for probabilities. These results raise a number of issues that we now address. We begin 1129 

by looking at Bayesian New Paradigm approaches that can implement the predictions that we 1130 

have just tested.  1131 

 1132 

New Paradigm Probabilistic Approaches 1133 

In deriving our predictions we have assumed that the probability of the conclusion of an 1134 

inference is the conditional probability of the conclusion given the categorical premise. 1135 
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However, as we indicated in the introduction, this rubric does not provide an account of what 1136 

people are doing when they learn the categorical premise that provides a theory of inference at 1137 

either the computational or algorithm level. Fortunately, as we also observed, both approaches 1138 

we now consider lead to exactly the same predictions that our experiments have just tested.  1139 

 Belief revision. One approach is to treat inference as belief revision by conditionalization 1140 

(Eva & Hartmann, 2018; Oaksford & Chater, 2007, 2010b, 2013). This approach provides a 1141 

computational level theory that justifies our predictions. As we have argued, learning from 1142 

experience or a reliable informant leads people to revise their degrees of belief from a 1143 

distribution like Pr0 to new a distribution like Pr1 in Table 1. Conditionalization similarly treats 1144 

learning the categorical premise as belief revision to a new distribution Pr2. By Jeffrey 1145 

conditionalization this is achieved via the law of total probability. For example, (2) shows how to 1146 

calculate the new probability of the conclusion for the MP inference, where you learn a new 1147 

probability of p, Pr2(p), that is you come to believe that Johnny travelled to Manchester more 1148 

strongly (> .4).  1149 

   Pr2(q) = Pr1(q|p)Pr2(p) + Pr1(q|¬p)Pr2(¬p)  (2) 1150 

If, however, learning p leads to Pr2(p) = 1 (perhaps you think your informant is completely 1151 

reliable, i.e., Johnny is definitely travelling to Manchester), then (2) reduces to Bayesian 1152 

conditionalization, where Pr2(¬p) = 0. Consequently, MP on the conditional if p then q in Pr1 in 1153 

Table 1 leads to: 1154 

   Pr2(q) = Pr1(q|p)Pr2(p) = Pr1(q|p) = .75  (3) 1155 

That is, the new probability of the conclusion is the old conditional probability of the conclusion 1156 

given the categorical premise. Consequently, treating inference as Bayesian conditionalization 1157 

justifies all our predictions. 1158 
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 However, it could be argued that there is a problem with this approach. Take MT on Pr1 1159 

in Table 1, which leads to (4). 1160 

  Pr2(¬p) = Pr1(¬p|¬q)Pr2(¬q) = Pr1(¬p|¬q) = .833  (4) 1161 

In the new distribution Pr2, Pr2(q) = 0, and hence Pr2(q|p) = 0. So in Pr2, we should no longer 1162 

find the conditional premise acceptable. That the probability of the conditional premise is not 1163 

invariant across the belief update means that it is difficult to regard the revision to Pr2 as 1164 

capturing what it means to draw these inferences. This set of four logical inferences concern 1165 

what follows from the premises assumed true or highly probable. Indeed, given (4), this 1166 

approach seems to imply that we should now believe that Johnny never travels anywhere by 1167 

train. 1168 

However, this argument turns on an equivocation between our enduring beliefs versus 1169 

how they allow us to draw inferences from the momentary and changing flow of information we 1170 

experience. Learning about the conditional premise involves adjusting your enduring beliefs 1171 

about Johnny’s travelling habits (the transition from Pr0 to Pr1). However, learning the 1172 

categorical premise in inference does not have this effect. In this example, Pr1 represents your 1173 

enduring beliefs about Johnny’s travelling habits, however acquired. In contrast, Pr2 concerns 1174 

how you revise your beliefs about a specific journey based on this knowledge, in which you 1175 

learn he travelled to Manchester, or he did not take the train, and so on. So what remains 1176 

invariant in the revision from Pr1 to Pr2 is the target conditional probability, Pr(¬q|¬p) for 1177 

DA…etc. However, this revision, required for inference, does not mean that people abandon 1178 

their enduring beliefs about Johnny’s travelling habits in Pr1. Although nothing intrinsic to 1179 

probability theory enforces this distinction, it is enforced in algorithms for implementing 1180 

probabilistic inference, for example, Bayes nets. 1181 
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Bayes nets. A simple Bayes net implementing the JPD Pr1 in Table 1, consists of two 1182 

nodes, p and q, corresponding to Bayesian random variables each with two possible states, 1 1183 

(True) and 0 (False), and a directional link from p to q. Inference over the net consists of variable 1184 

instantiation, that is, setting p or q to one of their states, say, p = 1, and belief propagation across 1185 

the link to the q node or backwards to the p node. The probability that the q node is in either of 1186 

its two states is determined by its conditional probability table (CPT), which includes Pr(q = 1|p 1187 

= 1) = .75 (and so Pr(q = 0|p = 1) = .25) and Pr(q = 1|p = 0) = .167 (and so Pr(q = 0|p = 0) 1188 

= .833). Together with the marginal for p, Pr(p = 1) = .4, the parameters Pr(q = 1|p = 1) = .75, 1189 

and Pr(q = 1|p = 0) = .167 implements the JPD Pr1 in Table 1 in the network. These parameters 1190 

encode our enduring beliefs about Johnny’s travelling habits and remain invariant across 1191 

different instantiations of its variables to their states.  1192 

In this framework, the evidence provided by the categorical premise need not persuade us 1193 

that, for example, the probability that Johnny travels to Manchester is 1, Pr(p) = 1, and so we 1194 

should now believe he travels nowhere else. Rather it provides hard evidence to instantiate p to 1195 

1, and to read off the probability that q = 1, in an MP inference. Hard evidence always 1196 

instantiates a variable to just one of its states. This process is like performing a Ramsey test, 1197 

supposing the categorical premise by instantiating the relevant state of a random variable, 1198 

adjusting (i.e., forward and backward belief propagation), and then reading off the probability of 1199 

the conclusion, which for MP will be the conditional probability Pr(q = 1|p = 1). This process is 1200 

the same for the remaining inferences by forward (MP, DA) or backward belief propagation (MT, 1201 

AC). Like Bayesian conditionalization, it also justifies all our predictions and can be extended to 1202 

provide an algorithmic level account of inference with contrast sets. 1203 
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Bayes nets, negative evidence, and contrast sets. We can implement the JPD in Table 2 1204 

in a Bayesian network with ternary, rather than binary states, with the CPT in Table 12. This CPT 1205 

contains two random variables p (travel destinations) and q (modes of transport) with states {p1, 1206 

p2, p3} and {q1, q2, q3} respectively. The assertion Johnny did not travel to Manchester (p = ¬p1), 1207 

does not provide hard evidence concerning to which other destination, Paris or Dublin, he did 1208 

travel. Rather, it provides negative evidence that p can only be instantiated to states p2 or p3 but 1209 

not to p1 (Bilmes, 2004; Mrad, Delcroix, Piechowiak, Leicester, Mohamed, 2015; Pearl, 1988).  1210 

 1211 

Table 12 1212 

Conditional probability table for a Bayes Net with ternary states implementing the JPD in Table 1213 

2 showing the conditional probabilities Pr(qi|pi) and marginals for pi. 1214 

 1215 

 p =  p1 (.40) p =  p2 (.16) p =  p3(.44) 

q =  q1 0.750 0.625 0 

q =  q2 0.100 0.250 0.500 

q =  q3 0.150 0.125 0.500 

 1216 

Note: p1 = Manchester, p2 = Paris, p3 = Dublin, q1 = train, q2 = ferry, q3 = plane. 1217 

 1218 

Following Pearl (1988), we can implement updating on negative evidence using virtual 1219 

nodes for each state of p and q. These virtual nodes are the children of the ternary nodes p and q 1220 

in a Bayes net (see Figure 7) with Table 12 as the CPT for the q node (see also, Bilmes, 2004; 1221 

Mrad et al., 2015). Figure 7 also shows the CPTs for the virtual nodes Vxy. For the state p1 of 1222 

node p Pr(Vp1 = 0|p = p1) = 0. Consequently, if Vp1 = 0, then the travel destination (p) cannot be 1223 

Manchester (p1), p ≠ p1. So the categorical premise Johnny did not travel to Manchester provides 1224 

evidence that Vp1 = 0, and consequently that state p1 is no longer a possible state of p but that 1225 

both p2 and p3 are possible because Pr(Vp1 = 0|p = p2) = 1 and Pr(Vp1 = 0|p = p3) = 1. This Bayes 1226 
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net implements exactly the calculations we carried out over the JPD in Table 2 to derive our 1227 

predictions.10 Once this Bayes net is learned, inference is easy, and carried out by variable 1228 

instantiation and belief propagation, without the need for any conscious mental calculation. For 1229 

example, MP on (1), with the categorical premise Johnny did not travel to Manchester, involves 1230 

instantiating Vp1 = 0, updating the network, and reading off the probability that Vq1 = 0.11  1231 

 1232 

Figure 7 1233 

Bayes Net implementing the CPT in Table 12 with virtual nodes implementing updating on 1234 

negative evidence 1235 

 1236 

 1237 

 1238 

It could be argued that this Bayes net would only work well for small contrast sets. 1239 

Nonetheless, given that on any particular occasion of using a negation, context and other 1240 

                                                 

 

10 It could be argued that this process does not capture the logical inferences that we purport to study. 

Nonetheless, our experiments, and many others, present participants with versions of the standard logical inference 

patterns (MP, MT, AC, & DA). Whether or not belief propagation in Bayes nets adequately characterizes these 

inference patterns from a logical point of view, this process may nonetheless account for how people respond to 

these inference patterns when presented in experimental tasks and in the real world. Moreover, this may be because 

people are not particularly interested in what logically follows from some premises, what they want to know is how 

to update, revise, or otherwise change their beliefs so that they can act appropriately (Harman 1986; Oaksford & 

Chater, 2020a). 
11 In contrast, calculating Pr(¬q1|¬p1) over the JPD in Table 2 involves the following calculation: (Pr(p2, q2) 

+ Pr(p2, q3) + Pr(p3, q2) + Pr(p3, q3))/(Pr(p2, q1) + Pr(p2, q2) + Pr(p2, q3) + Pr(p3, q1) + Pr(p3, q2) + Pr(p3, q3)), which 

we used to derive our predictions. 
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pragmatic factors will strongly constrain the contrast set, this may be all that is needed (Oaksford 1241 

& Stenning, 1992). Moreover, as we have argued (see introduction to Experiment 2), in inference 1242 

people only build very limited small-scale generative models related to their immediate deictic or 1243 

linguistic context (Oakford & Chater, 2020a).12 These models are constructed on the fly (Chater, 1244 

2018) based on linguistic information and prior knowledge, in particular, from immediate past 1245 

experience, as in decision by sampling models (Stewart, et al., 2006). 1246 

The Bayes net in Figure 7 also captures many of our intuitions about contrast sets; in 1247 

particular, that their internal probabilistic structure will render some contrast set members more 1248 

likely than others. Take the following examples with the word in bold stressed in speech. 1249 

 Johnny did not travel to Manchester by train  (5) 1250 

Johnny did not travel to Paris by train   (5′) 1251 

The cat was not black     (5′′) 1252 

The cat was not black     (5′′′) 1253 

In (5) Johnny travelled somewhere else by train, not Manchester, in (5′′) Johnny travelled to 1254 

Paris by some other mode of transport, not train,  in (5′′) some other animal was black, not the 1255 

cat, and in (5′′′) the cat was some other colour, not black. Identifying the most likely contrast set 1256 

member for destination (5) involves instantiating p to ¬p1, on negative evidence, and q to q1. The 1257 

model then identifies Paris as the most likely contrast set member, because Pr(p = p2|Vp1 = 0, q = 1258 

q1) = 1 and Pr(p = p3|Vp1 = 0, q = q1) = 0. In (5′), the model identifies ferry as the most likely 1259 

contrast set member because Pr(q = q2|p = p2 Vq1 = 0) = .67 but Pr(q = q3|p = p2, Vq1 = 0) = .33. 1260 

Directly analogous effects will occur for (5′′) and (5′′′). These effects suggest that the Bayes net 1261 

                                                 

 

12 In this, we agree with mental models theory, although, we disagree on the nature of the small scale 

models people construct. 
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in Figure 7 may provide a more general theory of contrary negation and the effects of negative 1262 

focus in speech.  1263 

Causal Bayes nets. We have previously argued that people mentally represent 1264 

conditionals in causal Bayes nets (Ali, Chater, & Oaksford, 2011; Ali, Schlottman, Shaw, Chater, 1265 

& Oaksford, 2010; Chater & Oaksford, 2006; Oaksford & Chater, 2010b, 2013, 2016, 2017). 1266 

However, to capture the implicit negation effect, we have not needed to assume any general 1267 

probabilistic independencies and so the Bayes net in Figure 7 has been sufficient. 13 However, 1268 

our account of how people compute contrast sets borrows partly from causal approaches to 1269 

category structure, in which intrinsic properties of a category cause the various features it 1270 

possesses (Rehder, 2003a, 2003b, 2017). Moreover, we have suggested that people think about 1271 

habits like causes, so, for Johnny, travelling to Manchester causes him to travel by train 1272 

(Oaksford & Chater, 2010, 2020b). We may acquire habits and dispositions from our parents, 1273 

peers, culture or by intention, but they are rapidly sedimented into the unconscious causes of our 1274 

actions. All the elements of the ad hoc superordinate category (Barsalou, 1983)—places to which 1275 

Johnny travels (p)—are causally related to travel destinations considered as features (q). It is a 1276 

desiderata, therefore, to investigate models integrating CBNs with negative evidence in 1277 

modelling conditional reasoning.   1278 

 A minor complication is that if we model contrast sets causally then the direction of 1279 

causality matters. Some of our materials were diagnostic conditionals, for example, in the 1280 

vehicles materials the conditional was if it is not white, then it is not a van. We think of objects 1281 

like vans as having features like colour and that it is some intrinsic property of the object that 1282 

                                                 

 

13 See Supplementary Online Materials: Section for an example CBN with parameters corresponding to the 

JPD in Pr1 in Table 1.  
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causes its colour.14 A CBN representation would require representing the consequent (q) as the 1283 

cause and the antecedent (p) as the effect. This complication is minor, because we already know 1284 

from their patterns of discounting and augmentation inferences that people recode diagnostic 1285 

conditionals in this way (Ali et al., 2011).  1286 

 A possible argument against the appeal to CBNs, concern recent demonstrations that 1287 

people violate the independence assumptions of these models (Rehder, 2014; Rottman & Hastie, 1288 

2016). However, there are models that can account for these violations (Rehder, 2018). 1289 

Moreover, the empirically most adequate model may arise from limited sampling from initially 1290 

preferred states of the underlying generative causal model (Davis & Rehder, 2017; Rehder, 1291 

2018). It remains to be seen whether similar violations occur when identifying contrast set 1292 

members, but the theoretical machinery may be in place to explain them. Processing accounts 1293 

based on limited sampling from an underlying generative model have also been used to explain 1294 

away a variety of other biases (Dasgupta, et al., 2017; Hattori, 2016; Sanborn & Chater, 2016; 1295 

Stewart, et al., 2006) 1296 

 1297 

Alternative Theories 1298 

There are three alternative theories of the implicit negations effect, the matching heuristic 1299 

(Evans, 1998; Thompson, Evans & Campbell, 2013), mental models theory (MMT; Johnson-1300 

Laird & Byrne, 2002; Khemlani, Orenes, & Johnson-Laird, 2012), and the cardinality of the 1301 

                                                 

 

14 White is the cheapest “vanilla” option that manufacturers provide for vans, and white vans are therefore 

very common. In the UK, there is even a phenomenon of the “white van driver,” usually fast and discourteous. 

Consequently, it is a reasonable claim to make that if the vehicle was not white it probably was not a van. Of course, 

although these are reasons for why many vans are white, philosophically reasons are not causes. However, we have 

argued that people think about most dependencies as if they were causal (Oaksford & Chater, 2010, 2020b). 
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contrast set hypothesis (Schroyens & Schaeken, 2000; Schroyens, Verschueren, Schaeken, & 1302 

d’Ydewalle, 2000). MMT implements the double hurdle theory proposed by proponents of the 1303 

heuristic approach. Consequently, these theories stand, and fall, together. The first hurdle is to 1304 

see an implicit negation as relevant, that is, as an instance of the negated antecedent or 1305 

consequent of a conditional.15 In MMT, negations are represented using explicit contradictory 1306 

negation tags. The first hurdle is that, unless people can recode the implicitly negated categorical 1307 

premise using such a tag, they do not realize that a constituent in a mental model has been denied 1308 

or affirmed. The second hurdle requires a double negation inference, so MT on (1), requires the 1309 

inference from it is not the case that he did not travel to Manchester (¬¬p) to he travelled to 1310 

Manchester (¬¬p → p). This inference is only required for DA and MT. Both theories locate the 1311 

problem with implicit negations solely as a difficulty in seeing them as denying or affirming a 1312 

negated antecedent or consequent. Consequently, they do not predict any of the probabilistic 1313 

effects we observed.  1314 

Binary sets, where there are, say, just two letters {A, K} and the contrast set is a singleton, 1315 

remove the implicit negation effects in comparison to larger sets {A, K, W} where the contrast set 1316 

has more than one member (Schroyens, Schaeken, Verschueren, & d’Ydewalle, 2000). The 1317 

cardinality of the contrast set hypothesis (CCS) is that a contrast set with more than one member 1318 

causes the implicit negation effect. According to this hypothesis with larger contrast sets, 1319 

participants find it difficult to regard the specific instance, K, as representing the superordinate 1320 

                                                 

 

15 The matching heuristic describes peoples’ apparent inability to deal with mis-matching cases. So, for a 

conditional, if A then not 2, they find it difficult to recognise K as denying the antecedent or 7 as affirming the 

consequent. In Wason’s selection task (Evans & Lynch, 1973), this inability leads participants to match, that is, they 

select instances named in the conditional, A and 2, as the cards they need to turn over to verify or falsify it 

(assuming it describes what is on the faces of double sided cards, of which they can only see one side). Although 

logically correct for this conditional, they also select A and 2 for if A then 2. 
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category, letters that are not A. Schroyens et al. (2000) observed implicit negation effects for 1321 

contrasts sets with two or more members (overall sets sizes of three or more) but not for 1322 

singleton sets. Although CCS exploits the notion of a contrast set, it does not appeal to their role 1323 

in computing probabilities. All the contrast sets in our experiments had two members. 1324 

Consequently, our probabilistic manipulations removed the implicit negation effect even for 1325 

contrast sets whose cardinalities were greater than one (we refer to this situation as “contrast 1326 

set(s) > 1”), which is not consistent with the CCS hypothesis. We now briefly consider some 1327 

recent further evidence supportive of the matching heuristic or mental models.  1328 

 In the Wason selection task, the matching heuristic response (see, Footnote 15) seems 1329 

meta-cognitively fluent (Thompson, et al., 2013).  That is, participants’ “answers consistent with 1330 

a matching heuristic (i.e., selecting cards named in the rule) were made more quickly than other 1331 

answers, were given higher FOR [feeling of rightness] ratings, and received less subsequent 1332 

analysis as measured by rethinking time and the probability of changing answers” (Thompson, et 1333 

al., 2013, p. 431). From a probabilistic perspective, this is not surprising as the probabilistic 1334 

contrast set account makes the same predictions in this evidence acquisition task (Oaksford & 1335 

Chater, 2003; 2007; Oaksford, Chater, Grainger & Larkin, 1997). It, therefore, provides a 1336 

rational analysis of why in data acquisition a matching heuristic is rational. The question of 1337 

whether this rational analysis is implemented by a heuristic or a probabilistic algorithm depends 1338 

on whether behaviour can be changed by probabilistic manipulations and the results show that 1339 

this is possible (e.g., Oaksford et al., 1997). We know of no similar demonstration of fluency for 1340 

the matching responses in conditional inference. However, we would speculate that if people 1341 

deploy such a heuristic in the conditional inference task, it is probably learned rather than hard-1342 

wired and so can be overridden by subsequent learning, as our experiments demonstrated.  1343 
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The motivation for an explicit negation tag in MMT derives from the psycholinguistic 1344 

literature where it is hypothesized that people construct two representations of a negated 1345 

assertion like “the door is not open” (Kaup, Zwaan, & Lüdtke, 2007; Khemlani et al., 2012, 1346 

Orenes, Beltran, & Santamaria, 2014).  In the first representation, the door is open and in the 1347 

second, it is closed. This strategy works for binary opposites or antonyms, like open and closed, 1348 

but what about “the dot is not blue” presented in an array of four coloured dots (Orenes et al. 1349 

2014)? Here the second representation would have to include all the other three dots. The 1350 

negations tag therefore acts as a short hand for the opposites when the overall set size is greater 1351 

than two. If people represent opposites (contrast sets) for the contrast set > 1 case using a 1352 

negations tag, then the content of both representations still includes the affirmative statement 1353 

(e.g., blue dot). Using a visual world array like this, Orenes et al. (2014) used an innovative eye 1354 

tracking experiment to show that visual attention switches to the alternative when sets are binary 1355 

(singleton contrast set) but remains on the affirmative item when the contrast set > 1. A finding 1356 

that is consistent with the use of a negation tag for non-binary opposites.  1357 

There are several points to make. First, in these visual world tasks, participants did not 1358 

have to draw inferences, nothing depended on what the contrast set members might predict. 1359 

Second, unlike our more real world materials, the contrast sets had no probabilistic structure. So, 1360 

if the coloured dot was not blue it was equally likely to be one of the other three dots in the 1361 

display. In our materials, for example, if Johnny did not travel to Manchester, he was far more 1362 

likely to travel to Dublin than to Paris.  Third, our experiments showed that people do not seem 1363 

to have any trouble representing structured contrast sets with more than one member and 1364 

drawing appropriate inferences over whatever mental representations of this situation they 1365 

construct. Fourth, it also seems theoretically incongruous to argue that people automatically 1366 
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recode contrasts sets > 1 with negation tags but also argue that the use of a member of a contrast 1367 

set > 1 to deny (affirm) a (negated) proposition causes a recoding problem. If people 1368 

automatically recode these sets with negations tags, then why do they not automatically recode 1369 

members of one of these sets when encountered in inference? If these contrast sets are 1370 

automatically recoded with a negation tag, then the first hurdle in the mental model 1371 

implementation of double hurdle theory has been jumped. Moreover, the second hurdle, double 1372 

negation inferences for MT and DA, is probably a red herring. Our mini meta-analysis showed 1373 

strong implicit negations effects also for MP and AC (see the introduction to Experiment 1), 1374 

which our experiments replicated. 1375 

Although it is unclear how it could integrate with the MMT account of the implicit 1376 

negation effect, MMTs have been extended to capture probabilistic effects by annotating the 1377 

possibilities they represent with probabilities (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & 1378 

Caverni, 1999). To model the current data this would involve representing the nine possible 1379 

states in the JPDs in Tables 2 and 6 and their associated probabilities. The resulting mental model 1380 

would be a notational variant of these tables. People would then have to calculate the relevant 1381 

conditional probabilities by summing over the annotations to the relevant models (cells) and 1382 

using the ratio formula (see Footnote 11).  Prima facie, it seems unlikely that people are 1383 

performing these calculations during inference, rather than compiling a representation as in 1384 

Figure 7 during learning. Of course, because either theory would predict the same subjective 1385 

calculated conditional probabilities they would predict the odds of people endorsing an inference 1386 

equally well. The problem for MMT is that this is not its theory of the implicit negation effect. 1387 

Moreover, it proposes an implausibly direct implementation of the joint probability distributions 1388 

in Tables 2 and 6 and of the operations defined over them. 1389 
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We do not need to deny that our mental representations use negation tags on occasion. As 1390 

we have pointed out, identifying contrast sets does not exhaust the way people used negations in 1391 

natural language (Horn, 1989), and some may require people to represent information with a 1392 

negation tag. We would argue, however, that our normally shallow knowledge of the world (Keil 1393 

& Rozenblit, 2004; Sloman & Fernbach, 2017), like someone’s knowledge of Johnny’s 1394 

travelling habits, means that most contrast sets are not large and are not much like the abstract 1395 

domains of letters, numbers or coloured dots. 1396 

 1397 

Modelling the Default Prior Pr0.  1398 

Our focus has been on showing that targeted experimental manipulations of probabilities can 1399 

produce or remove the implicit negation effect. However, can our account model the original 1400 

implicit negations effect? The data have been reported in two different ways. Evans and Handley 1401 

(1999) contrast whole tasks using explicit negations only (the explicit negations paradigm) with 1402 

whole tasks using implicit negations only (the implicit negations paradigm). Eight of the possible 1403 

sixteen conditions can reveal implicit negations effects. For example, MP on if ¬p1 then q1 can 1404 

use an explicit, ¬p1, or an implicit, p2, categorical premise.  The implicit paradigm alone also has 1405 

eight conditions that reveal implicit negations effects (Schroyen et al. 2000). For example, MP 1406 

on if p1 then q1 must use p1 to assert the affirmative antecedent, whereas MP on if ¬p1 then q1 can 1407 

use a contrast set member p2 to assert the negative antecedent. Both cases produce an implicit 1408 

negations effect. For the same inference (e.g., MP) endorsements of the conclusion (q1) fall 1409 

compared to using the explicit negation (¬p1) on the same rule (if ¬p1 then q1) or the affirmative 1410 

(p1) on a different rule (if p1 then q1) where the target clause is affirmative. Here we modelled the 1411 

data from the implicit negations paradigm. 1412 
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 We modelled the six implicit negations paradigm conditions in Evans and Handley (1999: 1413 

Experiments 1: conditions: no-pictures, pictures, & Experiment 3) and Schroyens et al. (2000: 1414 

Experiment 1: conditions: set sizes 3, 5, and 9). There were 131 participants and 96 data points. 1415 

There is one complication. We had to model each of the four rules as if they involved different 1416 

content. First, this is always the case experimentally because the intention was to see what 1417 

follows from each rule independently. Second, if the same content is used, as it has been in 1418 

examples apparently questioning the probabilistic interpretation (Schoyens & Schaeken, 2003), 1419 

various conceptual absurdities result (Oaksford & Chater, 2003b). Third, the probability 1420 

conditional does not allow certain pairs of conditionals to be true (or to have high probability) at 1421 

the same time. The probability conditional respects the law of conditional excluded middle. In 1422 

standard binary logic if p then q and if p then ¬q are consistent. They can both be true if the 1423 

antecedent is false. In contrast, for the probability conditional, for which Pr(if p then q) = Pr(q|p), 1424 

these conditionals cannot be true together because if Pr(q|p) = 1, then Pr(¬q|p) = 0.16 So, if these 1425 

conditionals shared the same content then they cannot both have a high probability. The same 1426 

argument applies to the pair if ¬p then q and if ¬p then ¬q. Finally, the four conditionals in the 1427 

negations paradigm are also related by necessity and sufficiency. So, if they share content, then if 1428 

p then q suggests that p is sufficient for q and if ¬p then ¬q suggests that p is necessary for q. If 1429 

p is necessary and sufficient for q then this should affect endorsements of DA and AC, which 1430 

would now be valid inferences. In summary, using the same content creates unwanted 1431 

dependencies between the four conditionals that we can rule out only by using different content 1432 

as is typically done in these experiments. 1433 

                                                 

 

16 However, many advocates of the probability conditional hold that they do not have truth conditions, and, 

consequently, it would be more accurate to say that these two conditionals cannot both be acceptable. 
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Figure 8 1434 

Modelling the Implicit Negation Effect 1435 

  1436 

 We fitted the model using the minimal contrast set structure of two members (overall set 1437 

size = three) for both antecedent and consequent as in Tables 2 and 6. We modelled each 1438 

conditional separately thereby assuming different content. The parameters were the nine joint 1439 

probabilities (a – i), which, because they must sum to one, meant there were eight free 1440 

parameters, to model 24 data points. Because the data constitute six replications of 16 data 1441 

points, the best a model can do is predict the mean across replications. With this number of free 1442 

parameters, this was indeed the outcome of the model fitting (see, Figure 8), the model 1443 

accounted for 78% of the variance in the data (coefficient to determination R2 = .78). 1444 

Figure 8 also separates out the data points for which a contrast set member (implicit) 1445 

affirms a negative or denies an affirmative (unfilled dots) and those where the negated 1446 

constituent (explicit) affirms a negative or denies an affirmative (filled dots). Figure 8 shows that 1447 

the implicit data and the predicted conditional probability were always lower than the explicit 1448 

cases. So, the explicit cases (if p then q, if p then ¬q) for MP, always had higher probabilities of 1449 
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the conclusion/proportion of endorsements than the implicit cases (if ¬p then q, if ¬p then ¬q). 1450 

We show the best fitting parameter values in the Appendix, Table A1. They will allow us to 1451 

calculate various quantities to see whether these results conform to recent proposals about 1452 

conditional inference called “inferentialism.”  1453 

In summary, our account of the implicit negation effect can account for the original 1454 

effects observed using all four rules in the negations paradigm. The fundamental insight is that 1455 

the use of a contrast set member raises the possibility that it does not predict the conclusion as 1456 

strongly as the explicitly negated categorical premise of a conditional inference. In this sense, the 1457 

cardinality of the contrast set account is correct in that any contrast set > 1 will raise this 1458 

possibility (Schroyens, et al., 2000). However, the internal probabilistic structure of the ad hoc 1459 

categories suggested by the assertion of the conditional causes the effect, not a difficulty in 1460 

recognizing the contrast set member as an instance of the negated category.  1461 

  1462 

Probabilities 1463 

The calculated conditional probabilities predicted the odds of endorsing an inference well. 1464 

However, even for those participants who understood the probability manipulation (high 1465 

correlation) very low probabilities still frequently led people to endorse an inference. We could 1466 

not expect people’s subjective probabilities to track the objective probability manipulation 1467 

exactly. On the Bayesian view of probabilities, they are always relative to what somebody knows 1468 

or believes, so the general form of a subjective probability statement is Pr(p|B), where B stands 1469 

for an individual’s background beliefs. People know more about the domains of animals and 1470 

vehicles and their colours than is given in the probability-learning task. Although the subjective 1471 

estimates did follow the objective probabilities quite well.  1472 
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One reason why endorsement rates may be high even for low calculated conditional 1473 

probabilities, is that across all conditions the mean conditional probability was high at around 0.7 1474 

(Expt. 1: Objective = .72, Subjective = .68(.19); Expt. 2: Objective = .71, Subjective = .75(.32); 1475 

Expt. 3: Objective = .71, Subjective = .75(.32)). Consequently, on average, participants should 1476 

endorse an inference, although this will depend on their personal criterion or cut-off. Moreover, 1477 

they should endorse five out the six inferences they experienced in each manipulation, which 1478 

again may bias participants towards endorsement. Given this potential bias toward endorsement, 1479 

it is impressive that our results nonetheless showed a strong effect of calculated conditional 1480 

probability on the odds of endorsing an inference.  1481 

 Another reason why the calculated conditional probabilities may not be better predictors 1482 

of inference endorsement is the indirect method of computation and the reliance on the ratio 1483 

formula to compute the conditional probabilities (Pr(q|p) = Pr(p, q)/Pr(p)). The probability 1484 

verification task is similar to versions of the probabilistic truth table task (Over et al, 2007). This 1485 

task has been criticized as perhaps not revealing people’s probabilistic interpretations of the 1486 

conditional (Jubin & Barrouillet, 2019). The precise reasons do not matter, but an immediate 1487 

response is that (a) these tasks (especially our task which involves filling in 9 cells of the JPD) 1488 

creates a lot of room for error, and (b) the subjective Bayesian approach rejects the frequentist 1489 

method and the ratio formula for calculating conditional probabilities. On the Bayesian 1490 

interpretation, conditional probabilities are basic and suppositional, that is, they based on the 1491 

Ramsey test (see, Probabilities and Contrast Sets).  1492 

 1493 

 1494 

 1495 

 1496 

 1497 

 1498 



EXPLAINING THE IMPLICIT NEGATIONS EFFECT IN CONDITIONAL INFERENCE 75 

Figure 9 1499 

Predicting Endorsement Rates from Confidence for High and Low Correlation Groups 1500 

 1501 

Notes: A: Experiment 2, B: Experiment 3. For both experiments the model fitted was Endorse ~ 1502 

Conf*Corr + (1|Participant) + (Conf *Corr|PaGr). 1503 

 1504 

People’s probability judgements are more coherent when queried while drawing 1505 

inferences (Evans, Thompson, & Over, 2015). We have already shown that in our experiments, 1506 

calculated conditional probability directly predicts confidence in endorsing an inference. 1507 

Therefore, people’s confidence judgements, which we obtained when people are actually 1508 
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drawing inferences, may provide a more direct measure of the relevant conditional probabilities.  1509 

As we have argued, during inference people effectively perform a Ramsey test, supposing the 1510 

categorical premise to be true (see, Bayes nets). If their degree of belief in the conclusion goes 1511 

above criterion, then they endorse the inference and report this degree of belief as how confident 1512 

they are. If this is the right interpretation, then the suppositional account would predict that using 1513 

confidence as a predictor should lead to a much steeper response curve showing sensitivity at 1514 

both the high and the low ends of the scale. Moreover, if the probability-learning task has 1515 

influenced people’s subjective conditional probabilities as measured by the confidence 1516 

judgements, then we would expect to see a moderating effect of high or low correlation (Corr).   1517 

Figure 9 shows how the odds of endorsing an inference varied with confidence for the 1518 

high and low correlation groups in Experiments 2 and 3. As predicted, the response curves are 1519 

much steeper than for calculated conditional probability, and correlation in the probability 1520 

verification task moderated the effect, especially in Experiment 3. Table 13 shows that in both 1521 

Experiments 2 and 3, using confidence (M1) as a predictor yielded a much better fit to the data 1522 

than calculated conditional probability (M2). However, even in the high correlation group in 1523 

Experiment 3, people still seem biased to endorse an inference as revealed by the left-shift in the 1524 

response curve (see, Figure 9). One would expect the odds of endorsing an inference to be one 1525 

(probability = 0.5) when conditional probability was 0.5. As we observed, this may be because, 1526 

on average, inferences in this task should be endorsed. De-biasing may be possible by balancing 1527 

inferences so that equal numbers should be endorsed or rejected. The moderating effect of 1528 

correlation demonstrates that the effects of the learning-phase endured to affect people’s 1529 

subjective probability judgements, as measured by confidence, in the inference tasks.  1530 

 1531 

 1532 
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Table 13 1533 

Model Comparison for Predicting Inference Endorsement Rates from Confidence vs. Calculated 1534 

Conditional Probability 1535 

 LOOIC SE k ΔLOOIC Δelpd Δse Weight 

Experiment 2       

M1 1852.0 75.2 6.6 0 0 0 .72 

M2 2170.3 75.7 5.8 318.3 -159.2 33.4 .28 

Experiment 3       

M1 788.4 50.9 6.1 0 0 0 .73 

M2 930.2 50.7 5.7 141.8 -70.9 23.2 .27 

 1536 

Notes. M1: Confidence, M2: Calculated Conditional Probability.  Estimated number of 1537 

parameters (k), the difference (ΔLOOIC), the difference in expected log posterior predictive 1538 

density (Δelpd) and its standard error (Δse), and the Bayesian stacking weights (LOOIC-weight).  1539 

 1540 

Inferentialism 1541 

A recent development in the psychology of reasoning is the realization that people tend to 1542 

endorse conditionals only when they believe there is some kind of inferential link between the 1543 

antecedent and the consequent. So for example, they do not regard conditionals like, if the moon 1544 

is made of cheese, Corbyn will be elected Prime Minister as candidates for truth. Although, given 1545 

that the moon is not made of cheese, we would logically have to endorse this conditional as true. 1546 

This is one of the so-called “paradoxes of material implication.” There are two versions of 1547 

inferentialism. On the semantic version, indicative conditionals express inferential or reason 1548 

relations between the antecedent and consequent which are part of the truth conditions of the 1549 
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conditional (Douven, Elqayam, Singmann, & van Wijnbergen-Huitink, 2018; Douven & 1550 

Mirabile, 2018; Mirabile & Douven, in press). On the probabilistic version reason relations are 1551 

probabilistic and part of the acceptability conditions of indicative conditionals (Krzyżanowska, 1552 

Collins, & Hahn, 2017; Skovgaard-Olsen, Collins, Krzyżanowska, Hahn, & Klauer, 2019; 1553 

Skovgaard-Olsen, Kellen, Hahn, & Klauer, 2019; Skovgaard-Olsen, Kellen, Krahl, & Klauer, 1554 

2017; Skovgaard-Olsen, Singmann, & Klauer, 2016, 2017). Antecedent and consequent are 1555 

positively probabilistically relevant when Pr(q|p) > Pr(q|¬p), that is, when Delta-P (ΔP, Ward & 1556 

Jenkins, 1965) is positive. ΔP was found to moderate whether the Equation (Pr(if p then q) = 1557 

Pr(q|p)) holds. Only when ΔP > 0, that is, p and q are positively inferentially relevant, does the 1558 

Equation adequately predict whether a conditional is acceptable. 1559 

 The data from the probability verification task and the best fitting parameter values from 1560 

the model fits (see, Modelling the default prior Pr0) allow us to check whether the materials in 1561 

these tasks show positive relevance. For Experiment 2, the objective probabilities for the if ¬p, 1562 

then ¬q rule respected positive relevance. For the MP-manipulation, ΔP (Pr(¬q|¬p) - Pr(¬q|p)) 1563 

= .91 , and for the AC-Manipulation, ΔP = .80. Aggregating across manipulations, for the 1564 

subjective probabilities, mean ΔP = .64 (SD = .36). Only 54 out of 668 calculated ΔPs (7.8%) 1565 

were zero or negative and 52 of these came from the low correlation group. For Experiment 3, 1566 

the objective probabilities for the if p then q rule respected positive relevance. For both the DA- 1567 

and the MT-manipulations, ΔP (Pr(q|p) - Pr(q|¬p)) = .80. Aggregating across manipulations, for 1568 

the subjective probabilities, mean ΔP = .51 (SD = .46). 59 out of the 336 calculated ΔPs (17.6%) 1569 

were zero or negative and all came from the low correlation group. We also checked the best 1570 

fitting parameter values for the four rules in the implicit negations paradigm task and they also 1571 

all showed positive relevance (if p then q: ΔP = .43; if p then ¬q: ΔP = .11; if ¬p then q: ΔP = .19; 1572 
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if ¬p then ¬q: ΔP = .09). It would appear that for abstract conditionals (implicit negations 1573 

paradigm) and those used in these experiments, people assume positive relevance between 1574 

antecedent and consequent.  1575 

 Our results are relevant to an ongoing debate over the truth or acceptability conditions of 1576 

conditionals. On the suppositional view of the conditional, judging whether a conditional is true 1577 

or acceptable should depend on the conditional probability. According to semantic inferentialism 1578 

(Douven, et al., 2018), in addition people must believe that there is an inferential link between 1579 

antecedent and consequent. The existence of this inferential link explains why the antecedent 1580 

explains the consequent for if you turn the key the car starts, but the antecedent of if the moon is 1581 

made of cheese, Corbyn will be elected Prime Minister does not explain the consequent. Another 1582 

example is the contrast between if the sun rises, then the cock crows and if the cock crows then 1583 

the sun rises. Only in the former does the antecedent explain the consequent.17 This hypothesis 1584 

has been tested by asking people how well the antecedent of an abductive or diagnostic 1585 

conditional (e.g, if the cock crows then the sun rises) is explained by its consequent (Mirabile & 1586 

Douven, in press: Experiment 3), thereby providing a measure of explanation quality. 1587 

Participants also judged how strongly they believed the truth of the conclusion of an MP 1588 

inference using the same abductive conditionals. Finally, they completed a probabilistic truth 1589 

table task to obtain a measure of conditional probability. Explanation quality was a better 1590 

predictor of how strongly someone believed that the conclusion of the MP inference was true 1591 

than conditional probability. Explanation quality and conditional probability were also 1592 

correlated, indeed they were more correlated than either was individually with truth. 1593 

                                                 

 

17 Although, the inverse could be regarded as an abductive inferential link (Krzyżanowska, Wenmackers, & 

Douven, 2013). 
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 In looking at the relation between confidence and inference endorsement in the last 1594 

section, we interpreted the fact that calculated conditional probability and confidence were 1595 

highly correlated as indicating that confidence provided a more direct measure of conditional 1596 

probability. That was why confidence was a better predictor of inference endorsement. The same 1597 

argument applies to Mirabile and Douven’s (in press; see also, Douven & Mirabile, 2018) 1598 

measure of explanatory goodness, which they also assessed directly for each conditional. 1599 

Consequently, explanatory goodness and confidence may just be better more direct measures of 1600 

conditional probability than the probabilistic truth table task because they more closely follow 1601 

the Ramsey test. So, contradicting Mirabile and Douven (in press), a construct of explanatory 1602 

goodness distinct from conditional probability may not be required to explain the data. 1603 

 However, although this is a plausible line of argument, we would suggest that when you 1604 

believe a conditional you believe it describes some underlying, usually causal, dependency in the 1605 

world (Oaksford & Chater, 2010, 2017, 2020a, 2020b), which is why we suggested modelling 1606 

these data using causal Bayes nets may be a fruitful line of research. That ΔP was positive for the 1607 

main conditionals in our experiments showed that people believed the antecedent was positively 1608 

causally relevant to the consequent because ΔP is the numerator of causal power (Cheng, 1997), 1609 

which provides the weights on the links in a CBN (see Supplementary Online Material). 1610 

Consequently, like semantic inferentialism, we would argue that the reason why confidence and 1611 

explanation quality are better predictors of the odds of endorsing an inference is that people 1612 

directly consider the causal or inferential link, which they do not need to do in the probabilistic 1613 

truth table task. Indeed, if they learn a Bayes net during the learning phase, which requires them 1614 

to consider the inferential link and its direction, then it would be difficult to reconstruct the 1615 

individual cell values of the JPD in the probability verification task. It would require recording 1616 
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the prior over p, instantiating p to each of p1 – 3 and reading off the nine conditional probabilities 1617 

Pr(q = q1 – 3|p =  p1 - 3) and multiplying them by the priors Pr(p = p1 - 3). That people seem capable 1618 

of doing something like this with some degree of accuracy in the probability verification task is 1619 

quite impressive. However, we learn about the world in order to predict and explain it and we 1620 

argue that this requires setting up mental representations that facilitate inference, like the Bayes 1621 

net in Figure 7.  1622 

 1623 

Learning 1624 

Our probability manipulations used brief experiential learning phases, shown in research in 1625 

judgement and decision making to improve performance (Hogarth & Soyer, 2011; Wulf, et al., 1626 

2018). It is worth emphasizing that these learning experiences were short, only 30 trials in 1627 

Experiments 2 and 3, and no attempt was made to get participants to learn the distributions to 1628 

any criterion of accuracy. Nonetheless, these learning experiences profoundly influenced 1629 

participants’ behavior when presented with verbal conditional inference problems. All other 1630 

theories attribute the implicit negations effect to errors in constructing a mental representation of 1631 

the logical form of the premises. In contrast, we have argued that conditionals describe the 1632 

dependencies in the world that allow us to predict and explain it (e.g., Oaksford & Chater, 2010, 1633 

2020b). It should not be surprising that people are adept at rapidly acquiring the information they 1634 

need from their immediate environment to build small scale models that allow them to do this 1635 

and so to act in that environment.  1636 

The importance of sampling from the environment is also emphasized in decision by 1637 

sampling models (Sanborn & Chater, 2016; Stewart, et al. 2006). Samples may be derived from 1638 

memory, but in novel contexts, where previous experience is little guide, people must sample 1639 
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from the environment. Moreover, the structure of samples or choice options can strongly 1640 

influence decision making (Stewart, Chater, Stott, & Reimers, 2003). Models like Bayes nets, 1641 

include information about structure (directed links and independence relations) and strength 1642 

(causal strength or the relevant CPT). The probabilities that are used to compute strength can 1643 

come from memory or, in novel contexts, must be sampled from the immediate environment. In 1644 

Bayes nets there also are algorithms for learning not just the relevant probabilities but also the 1645 

network structure of these models (Korb & Nicolson, 2010). That is, learning is integral to these 1646 

models, in a way that it is not in other non-probabilistic theories of verbal reasoning. Moreover, 1647 

as we have seen, how well participants learned the distribution strongly moderated the effect of 1648 

calculated conditional probability and confidence on the odds of endorsing as inference.  1649 

It could be argued that the reliance of our account, and its implementation in Bays nets, 1650 

on learning is a limitation as it only applies when probabilities are learned. However, we have 1651 

shown that the contrast set model also fits the base-line implicit negation effect (see, Modelling 1652 

the Default Prior Pr0). So the same model applies whether the probabilities are provided by 1653 

memory or learned from the immediate environment. Although, of course, the default prior was 1654 

also, presumably, learned, at least in part, from experience. Other probabilistic manipulations 1655 

may be less effective in producing the discriminatory effects we observed in these experiments. 1656 

So, Experiment 1 only showed minimal changes to the default prior when participants were 1657 

given descriptions of the distribution in Table 2 as single event probabilities (e.g., 0.8 or 80%) in 1658 

the pre-learning inference task. Single event probabilities, it would appear, do not update 1659 

people’s default-priors as effectively as experience, as many have argued (e.g., Gigerenzer & 1660 

Hoffrage, 1995). However, it remains to be seen if frequency formats (80 out of a 100) 1661 

(Gigerenzer & Hoffrage, 1995), lead to a more effective update as observed in some previous 1662 
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research (Oaksford, et al., 1997, 1999). Sample summaries (Hawkins et al., 2015) are closely 1663 

related to frequency formats. It would be interesting to see whether sample summaries of the 1664 

parameters of the CPT in Table 12 could produce similar effects. These distributions are the most 1665 

relevant to inference but they relate directly only to the forward inferences (MP and DA). An 1666 

interesting prediction of the Bayes net implementation is that when presented with only these 1667 

samples, the backwards inferences (AC and MT) should still track the inverse conditional 1668 

probabilities.  1669 

 1670 

Rationality  1671 

Is people’s behavior on these tasks rational? Answering this question depends on what you think 1672 

people should do when confronted with these inference tasks. Clearly, people are not rational 1673 

with respect to standard conditional logic. Regardless of the whether the negation in the 1674 

categorical premise is explicit or implicit, all that is logically relevant is whether it affirms or 1675 

denies the antecedent or consequent. If it affirms the antecedent (MP) or denies the consequent 1676 

(MT), the inference should be endorsed otherwise it should not be endorsed. Clearly, people are 1677 

not rational with respect to this standard as they happily reject inferences when a clause is denied 1678 

(affirmed) implicitly that they happily accept when it is denied (affirmed) explicitly.  1679 

 People can deduce probabilistic conclusions from uncertain premises (Cruz, Baratgin, 1680 

Oaksford, & Over, 2015; Evans, Thompson, & Over, 2015; Pfeifer & Kleiter, 2009; Politzer & 1681 

Baratgin, 2016; Singmann, Klauer, & Over, 2014). In coherence-based probability logics (Coletti 1682 

& Scozzafava, 2002), we can deduce a probability interval from the probabilities of the major 1683 

and minor premise. So, for example, suppose that in Experiments 1 and 2 Pr(¬q|¬p) = 0.8 and 1684 

Pr(¬p) = .8, then the probability of the conclusion of MP must lie in the interval .64 ≥ Pr(¬q) 1685 
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≤ .84. These intervals respect probabilistic coherence assuming only the information given in the 1686 

premises. From this probabilistic logic point of view, again the only significance an implicit 1687 

negation has is being an instance of the relevant negated category. In this paper, we have 1688 

interpreted the evidence given by the categorical premise as either hard (affirmative) or virtual 1689 

(negations) evidence concerning the states of the random variables in a Bayes net, which 1690 

includes full knowledge of the JPD. Probability logic does not typically assume full knowledge 1691 

of the JPD but allows for uncertainty in the categorical premise. Take for example AC, and 1692 

assume that the probability of each categorical premise is the relevant marginal probability in 1693 

Table 2. According to probabilistic coherence, for the explicit negation (AC-Not) the probability 1694 

of the conclusion of this inference on (1) should be in the interval [0, .278] and for implicit 1695 

negation (AC-Con) it should be [0, .937]. However, the mean computed conditional probabilities 1696 

and probabilities of endorsement (in brackets) of each inference was AC-Not: .79 (.97) and AC-1697 

Con: .77 (.94). For AC-Not both probabilities fell well outside of the coherence interval. 1698 

Consequently, people’s behavior in these experiments is not rational with respect to the standards 1699 

of coherence-based probability logic.18  1700 

 From our perspective, reasoning is about rational change of belief (Eva & Hartmann, 1701 

2018; Harman, 1986; Oaksford & Chater, 2007, 2020a). Here we have modelled inference as 1702 

belief propagation or update in Bayes nets, which respect the laws of probability theory. The 1703 

                                                 

 

 18 It remains possible that probability logic can predict these results by including the information in the 

learning trials as additional premises. However, to explain the implicit negation effects would seem to require an 

account of contrary negation, unavailable logically, but readily implemented using virtual nodes in the Bayes net in 

Figure 7 (Pearl, 1988). 
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extent to which the relevant conditional probabilities predict inference endorsements show the 1704 

extent to which we can view peoples’ reasoning as rational.  In our experimental tasks, the 1705 

learning samples were taken from the same population of experiences as the informant (e.g., the 1706 

vet) asserting the conditional, so the premises should not lead to any changes in the probabilities 1707 

that define people’s enduring beliefs in the CPT of their Bayes net representation.. However, 1708 

there are situations where learning the premises suggests revisions to our degree of belief in a 1709 

conditional premise (Oaksford & Chater, 2007, 2013). Such situations seem to require revising 1710 

our beliefs not just updating them supposing the categorical premise is true. Although beyond the 1711 

scope of our current discussion, guaranteeing the rationality of inference in these dynamic 1712 

contexts remains a more challenging problem (Douven & Romeijn, 2011; Eva & Hartmann, 1713 

2018, Hartmann & Rafiee Rad, 2012; Oaksford & Chater, 2013). 1714 

 1715 

Common Mechanisms 1716 

In explaining our results, we have not appealed to any mechanisms that are unique to deductive 1717 

reasoning. Rather we have argued that mechanisms like Bayes nets may provide an account of 1718 

the representations and processes underlying the implicit negation effect by providing an 1719 

implementation of how people learn, represent and access contrast sets. We have previously 1720 

argued that CBNs may provide an account of conditional inference, not just with causal 1721 

conditionals (Ali et al., 2011), but with conditionals generally (Oaksford & Chater, 2010a,b). We 1722 

have also argued that they may provide an implementation of inferentialism (Oaksford & Chater, 1723 

2020b). More generally, we have argued that common mechanisms may underlie, inductive, 1724 

deductive and causal reasoning and these are likely to be similar in kind to those that underlie 1725 

judgement and decision-making (Oaksford & Chater, 2020a). Proposals for closer relations 1726 
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between deductive inference and other areas of higher cognition are not new: with judgement 1727 

and decision-making (Manktelow & Over, 1991) and with causal reasoning (Oaksford & Chater, 1728 

1994).  1729 

 However, there is a contrast with the mental models approach, which also provides 1730 

explanations of inductive, deductive, and causal reasoning (Johnson-Laird, Goodwin, & 1731 

Khemlani, 2018; Johnson-Laird, & Khemlani, 2017). Mental models treats discrete 1732 

representations of possibilities as basic. These possibilities are closely related to the truth table 1733 

cases allowed by the binary logical connectives, but they can be modulated by prior knowledge 1734 

or labelled to capture other forms of inference. Following many other areas of perception and 1735 

cognition, we regard the mind/brain’s task to be the extraction of useful regularities from the flux 1736 

of experience in order to predict and ultimately explain the world. The fundamental mode of 1737 

representation is probabilistic and continuous, and it is only by sampling the brain’s underlying 1738 

stochastic models that we come to represent discrete possibilities. Usually these are just the 1739 

deliverances to consciousness of the results of the processes that actually drive our behavior. If 1740 

we do anything more with them it seems as likely to lead to error as to successful reasoning. So, 1741 

while there is agreement on common mechanism, the new paradigm in reasoning generalizes in 1742 

the opposite direction to mental models, from other areas of cognition to deduction and not from 1743 

accounts of deductive reasoning elsewhere. 1744 

  1745 

Conclusion 1746 

Psychologists are beginning to uncover the rational basis for many of the biases discovered over 1747 

the last 50 years in deductive and causal reasoning, judgement and decision-making. In this 1748 

paper, we have argued that using a manipulation, experiential learning, shown to be effective in 1749 



EXPLAINING THE IMPLICIT NEGATIONS EFFECT IN CONDITIONAL INFERENCE 87 

judgement and decision-making may elucidate the rational underpinning of the implicit negation 1750 

effect in conditional inference. In three experiments, we created and removed the effect by using 1751 

probabilistically structured contrast sets acquired during a brief learning phase. No other theory 1752 

of the implicit negations effect makes these predictions. We could model our findings well using 1753 

Bayes nets similar to causal approaches to category structure, which also captured further 1754 

intuitions about how contrast sets can identify the most likely opposites. We also showed that our 1755 

results and our Bayes net approach aligns closely to a recent development in the psychology of 1756 

reasoning called inferentialism. A key feature is that we have not appealed to any cognitive 1757 

mechanism or module whose specific task is logical reasoning. This approach is consistent with 1758 

the conclusion of our recent review of new paradigm probabilistic theories, which treats 1759 

argumentation, deduction and induction alike within a probabilistic framework similar in kind to 1760 

processes involved in other areas of cognition (Oaksford & Chater, 2020a).  1761 

 1762 

Context 1763 

We have been explaining biases in human deductive reasoning using Bayesian rational analysis 1764 

for 25 years (Oaksford & Chater, 1994, 2020a). This pattern of explanation had seemed 1765 

paradoxical because Bayesian reasoning in judgement and decision-making had always seemed 1766 

similarly biased. Recently, however, it has been shown that people’s judgement and decision-1767 

making can be surprisingly rational when probabilities and utilities are learned by experience. 1768 

We used experiential learning phases to allow participants to acquire information about 1769 

probability distributions that should create and remove the implicit negation effect in conditional 1770 

reasoning. This is the first time that discrete experiential learning has been used to manipulate 1771 

probabilities in deductive reasoning tasks. We had already shown that our Bayesian approach 1772 
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could rationally explain polarity biases in conditional inference using the concept of a contrast 1773 

set. Our current experiments show that this account generalises to the implicit negations effect. 1774 

We could also model the effects well using Bayes nets. We show how these data also apply 1775 

directly to recent inferentialist accounts of conditional inference. Our results suggest that similar 1776 

cognitive mechanisms may underlie causal, inductive and deductive reasoning as proposed in our 1777 

recent review of the new paradigm in the psychology of reasoning (Oaksford & Chater, 2020a). 1778 
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Appendices 2168 

Appendix A1 2169 

Table A1 shows the best fitting parameter values for the implicit negations data from the 2170 

studies cited in the section Modelling the default prior. We used the DEoptim function in R 2171 

(Ardia, Mullen, Peterson, & Ulrich, 2016) to find the globally optimal cell values of the JPD 2172 

providing the best fits to the overall frequency of inference endorsements in these studies. 2173 

 2174 

Table A1 2175 

The best-fit parameter value for the four rules in the implicit negations paradigm task. 2176 

 If p1 then q1 If p1 then ¬q1 

 q1 q2 q3 Total q1 q2 q3 Total 

p1 0.568 0.000 0.015 0.583 0.028 0.224 0.102 0.354 

p2 0.163 0.084  0.011 0.258 0.049 0.136 0.159 0.344 

p3 0.061 0.089 0.007 0.157 0.075 0.011 0.216 0.302 

Total 0.792 0.173 0.033 1.000 0.152 0.371 0.477 1.000 

 If ¬p1 then q1 If ¬p1 then ¬q1 

p1 0.106 0.041 0.146 0.293 0.260 0.052 0.219 0.531 

p2 0.260 0.026 0.096 0.382 0.170 0.094 0.063 0.327 

p3 0.132 0.005 0.189 0.326 0.017 0.080 0.045 0.142 

Total 0.498 0.072 0.431 1.000 0.447 0.226 0.327 1.000 

 2177 

 2178 

 2179 

 2180 
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Supplementary Online Material 2181 

Causal Bayes nets.  2182 

We have argued that people mentally represent conditionals in a similar way to causal 2183 

Bayes nets (Ali, Chater, & Oaksford, 2011; Ali, Schlottman, Shaw, Chater, & Oaksford, 2010; 2184 

Chater & Oaksford, 2006; Oaksford & Chater, 2010b, 2013, 2016, 2017). Figure S1 shows how 2185 

we can implement the JPD Pr1 in Table 1 in a Causal Bayes net where the weights on the directed 2186 

links correspond to causal powers, Wp (Cheng, 1997). In this network travelling to Manchester is 2187 

treated as the cause of Johnny taking the train, although there may be alternative causes, a, of 2188 

him travelling by train.  2189 

Figure S1 2190 

Causal Bayes Net implementing the JPD Pr1 in Table 1 interpreted causally 2191 

 2192 

In this causal Bayes net, the cause (p) and its alternative (a) are combined using the 2193 

noisy-OR integration rule (Pearl, 1988): 2194 

Pr(q  = 1|p = 1) = 1 – (1 – Wa)(1 – Wp)ind(p)  (Eq. S1) 2195 

Where ind(p) = 1 when the cause is present (p = 1) and ind(p) = 0 when the cause is absent (p = 2196 

0). 2197 


