
Quantum Logic 
In the quantum theory classical patterns of inference break down. 

Mathematical structures called lattices can model alternative roles 

for the words ({and" and ({or" that may fit the world more coherently 

I
f Aunt Agatha is dead and either the 

butler did it or the gardener did it, 
then surely either Aunt Agatha is 

dead and the butler did it or Aunt Aga­
tha is dead and the gardener did it. If a 
quarter is in a box and it shows either 
heads or tails, then either the quarter is 
in the box and it shows heads or the 
quarter is in the box and it shows tails. 
The reasoning in such sentences com­
pels assent, although the conclusions 
seem rather trivial, given the premises. 
Moreover, the subject matter appears to 
be entirely incidental to the validity of 
the inferences. Neither the wealth of 
Aunt Agatha nor the greed of the butler 
nor the concept of death has any bearing 
on the conclusion reached in the first 
argument; neither the monetary value of 
a quarter nor the definition of heads or 
tails could alter the conclusion of the 
second argument. Because of the irrele­
vance of the subject matter the validity 
of the inferences depends only on the 
rules of logic. In particular it depends 
only on the structural patterns displayed 
by connectives such as and and or. 

Consider now certain physical phe­
nomena of microscopic scale as they are 
described by the quantum theory. Ac­
cording to the theory, the electron (like a 
number of other elementary particles) 
has an intrinsic angular momentum, or 
spin. The spin is quantized: it is always 
found to assume one of only two values, 
either up or down, along any direction in 
which it is measured .  It is impossible, 
however, to specify the spin of an elec­
tron along two spatial axes simulta­
neously. For example, if the spin of an 
electron measured along the x axis is up, 
it is not possible to assign any definite 
val ue to the spin along the y axis. 

Suppose a beam of electrons is com­
pletely spin-polarized along the x axis, 
which means that all the electrons in the 
beam are found to have the same spin 
value (say spin-up) whenever the spin is 
measured along the x aXIs. Because the 
beam has not been polanzed along the )­
axis, one can say of each electron in the 
prepared beam that its spin along the x 

202 

by R. I. G. Hughes 

axis is up and that its spin along the y 
axis is either up or down. Following the 
pattern of reasoning I employed in ana­
lyzing Aunt Agatha's murder, the state­
ment about the electron implies either 
that the spin along the x axis is up and 
the spin along the y axis is up or that the 
spin along the x axis is up and the spin 
along the y axis is down. 

Both clauses of this assertion, how­
ever, violate the principle of quan­
tum mechanics stating that spin cannot 
be specified simultaneously along two 
axes. Since neither clause can be accept­
ed, the assertion itself must be rejected. 
One must therefore either reject the ini­
tial statement about the prepared beam 
of electrons or disallow a logical proce­
dure for defining the consequences of 
the statement, a procedure that seemed 
quite innocuous in ordinary reasoning. 
There is no motive at hand for rejecting 
the initial statement, and so it seems at 
least one law of classical logic cannot be 
applied to quantum phenomena. 

Any proposal to revise the laws of log­
£\. ic, or even to regard them as being 
open to revision, runs counter to central­
ly and universally held beliefs. Never­
theless, the alternative of retaining clas­
sical logic by denying the validity of the 
quantum theory has little appeal. Fifty 
years after its inception quantum me­
chanics is one of the most successful of 
scientific theories. Its versatility and its 
predictive power are such that it has no 
serious rivals. It is applied routinely and 
with high precision to the understanding 
of the interactions of elementary parti­
cles. The theory also provides a means 
of describing a wide range of other phe­
nomena, including the physics and the 
chemistry of atoms, molecules and solid 
materials .

. 

In the opinion of some philosophers 
01 science there is precedent in the hIsto­
ry of physics for the kmd of conceptual 
shift entailed by a modification of clas­
sical logic. It is now commonplace 
to point out that in the development 
of physics since Einstein the notions 

of space, time, energy, momentum and 
mass have been profoundly altered.  The 
change can be expressed in what philos­
ophers call the formal mode of speech 
by stating that the roles of words such as 
space, time, energy, momentum and mass 
are different in the language of modern 
physics from what they were in the lan­
gua

'
ge of classical physics. Similarly, 

one might suggest that if the conceptual 
structure of physics is embodied in the 
language of physics, then even the roles 
of words such as and, or and not are not 
exempt from revision. Because these 
words have traditionally been associat­
ed with logical investigations, and be­
cause the shift in their roles is motivated 
by the development of quantum me­
chanics, it makes sense to call the result 
of the shift quantum logic. 

How might one characterize the role 
played in a language by the words that 
serve as logical connectives? Suppose P 
designates the sentence "Aunt Agatha is 
dead," Q designates the sentence "The 
butler did it" and R designates the sen­
tence "The gardener did it." Then the 
logical structure of my first inference 
can be set forth as follow,S :  

From Pand(Qor R) 
one infers (P and Q) or (P and R). 

Writing the logical form of the reason­
ing in this way is meant to indicate that 
the inference is valid no matter what 
simple declarative sentences are substi­
tuted for the letters p, Q and R. The 
formula is called a distributive law of 
logic. In another distributive law of 
logic the words and and or are in­
terchanged. Such laws of logic closely 
resemble the distributive law of arith­
metic, which states, for instance, that 
the expression 2 X (3 + 4) is equal to 
(2 X 3) + (2 X 4). 

In classical logic the roles of the logi­
cal connectives and and or are at least 
partially and impliCitly defined by the 
patterns they form in the distrIbutive 
law. In the quantum-mechanical de­
script ion of electron spin, however, the 
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logical step from the first line of the dis­
tributive law to the second line is disal­
lowed. Suppose P designates the sen­
tence "The spin along the x axis is up," Q 
designates the sentence "The spin along 
the y axis is up" and R designates the 
sentence "The spin along the y axis is 
down." The formula P alld (Qor R) may 
then be true, but the formula (P alld Q) 

or (P alld R) cannot be maintained. 
Hence the suggestion that quantum me­
chanics may demand the revision of a 
law of logic amounts to the proposal 
that the roles of the connectives and and 
or must be altered so that statements 
about quantum mechanics no longer 
combine logically to satisfy the distribu­
tive law. 

How can one be sure that such a 
change in the language preserves some 
sense of the traditional logical structure 
and does not lead to inconsistency or 
paradox? The traditional response to the 
question has been to build a mathemati­
cal model that incorporates the change 
but still exhibits reasonable behavior. 
(What is meant by "reasonable behav-

a c 

X-JOIN-Z T-JOIN-Z U-JOIN-Z 

b 

o 

X-MEET-(Y- JOINZ) 

o 
(X-MEET-Y)- JOIN(X-MEET-Z) 

/' 

d 

X-JOIN-Z T-JOIN-Z 

DISTRIBUTIVE LA W OF LOGIC states that for any sentences P, 
Q and R, if the compound sentence P alld (Q or R) is true, then the 

compound sentence (P alld Q) or (P alld R) must also be true. The dis· 
tributive law can be modeled by a lattice: an array of points and a net­

work of lines that connect lower points with upper ones. The points 

represent sentences and the lines represent entailment relations. A 
sentence represented by a given point entails all the sentences repre­

sented by points higher in the lattice that can be reached from the giv­

en point along upward-moving lines. Two operations called lIIeel 

and joill can be defined on the lattice. The lIIeel of two points is the high­
est point to which they are both connected by lines moving down­

ward from at least one of them. The joill of two points is the lowest 
point to which they are both connected by lines moving upward from 

o 

S-MEET-(U- JOIN V) 

o 
(S-MEET-U)- JOIN(S-MEET-V) 

U-JOIN-Z 

at least one of them. If the operation lIIeel is identified with the word 

alld and the operation joill is identified with the word or, the lattice 

can model the logical relations among sentences. The structure of the 
lattice determines whether or not distributive relations hold for the 

operations lIIee1 (black arrows) and joill (colored arrows). For the lat­

tice in panels a and b the operations x-Illeel-(y-joill-z) and (x-Illeel­

y)-joill-(x-Illeel-Z) lead to the same point, so that the operations sat­

isfy a 'form of the distributive law. Such a lattice models classical, or 

distributive, logic. For the lattice in panels c and d the two operations 

do not lead to the same point. The lattice models the nondistributive 

logic that seems to be required for the description of quantum-me­
chanical phenomena. (Thejoill operation in panels band d is not shown 
by an arrow because it does not lead away from the bottom point, 0.) 
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SCREEN 
ELECTROMAGNET 

X SPIN-DOWN 

OBSERVED PROPERTIES OF SPIN, or intrinsic angular momen­
tum, suggest that the distributive law of logic cannot be applied to 
the description of an atomic or a subatomic particle. According to 
classical mechanics, particles whose spins are randomly oriented 
should be deflected along a continuous range of paths by a magnetic 
field that varies from point to point. Otto Stern and Walther Gerlach 
found in 1921 that such a field deflects particles along only two 
paths, indicating that the spin is quantized (a); the component of the 
spin measured along any designated axis is invariably either up or 
down. In each of the deflected beams all the particles have a spin-up 
component along the axis of the magnetic field (say the x axis), and 
they have either a spin-up or a spin-down component along an axis 
perpendicular to the field (say the y axis). In classical logic this is equiva-
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CLASSICAL LOGIC 

OBSERVED 

RESULT 

lent to saying that some particles in the deflected beam are x spin-up 
and y spin-up and some are x spin-up and )' spin-down. A second 
magnetic field at right angles to the first field can split one of the 
beams into its two)' components. One would expect that a third mag­
netic field, oriented along the x axis like the first field, would give rise 
to only one beam, since the particles had previously been exposed to 
spin-polarizing fields first along the x axis and then along the), axis 
(b). Instead two beams emerge from the third field; each beam is po­
larized along the x axis, but the)' component is randomly oriented (c). 

The result indicates it is impossible to simultaneously assign exact 
values to the x and)' components of the spin of a particle. The equiva­
lence derived from the distributive law of classical logic does not 
hold because the x and the)' spins cannot be defined simultaneously. 
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ior" probably cannot be specified in ad­
vance.) An instructive example of this 
process is provided by the development 
of non-Euclidean geometry. 

The development began when mathe­
maticians came to doubt the self-evi­
dence of the fifth postulate of Euclid. 
The fifth postulate states that through 
any point in a plane that does not lie on a 
given line one and only one line can be 
dra\-\rn that is parallel to the given line. 
By denying the fifth postulate and as­
suming instead that either many parallel 
lines or no parallel lines can be drawn 
through the given point, 19th-century 
geometers were able to construct rich 
formal systems. The systems were com­
posed of postulates and theorems that at 
first could not be interpreted as state­
ments about geometry at all. 

In spite of the intrinsic interest of such 
formal systems to mathematicians, it 

is difficult to work with the systems if 
there is no way to interpret their theo­
rems and postulates. Initially geometers 
could not guarantee that all their results 
were free of inconsistencies, nor did 
they perceive that the various formal 
systems are deeply related. After some 
time, however, it was recognized that 
statements in the formal systems could 
be interpreted as statements about the 
geometry of curved surfaces, such as the 
surface of a sphere or the saddle-shaped 
infinite hyperbolic surface. 

The construction of geometric models 
made possible a more intuitive under­
standing. Abstract patterns in the for­
mal systems could be visualized as geo­
metric relations, and one could see at a 
glance whether or not a theorem made 
sense. Moreover, mathematicians came 
to regard each geometric model as being 
merely one case in the more general 
study of curved surfaces; the geometry 
of a particular model could be charac­
terized by specifying the curvature of 
the surface. Euclidean geometry, for ex­
ample, is the study of flat surfaces, that 
is, surfaces whose curvature is zero. In 
this way the geometric interpretation of 
the various formal systems showed that 
they are not unrelated but are members 
of a single family. The theorems within 
each system came to be understood as 
analogues of one another, playing simi­
lar roles in the geometries of different 
surfaces. 

In 1932, in order to construct a similar 
interpretive model for quantum logic, 
John von Neumann of the Institute for 
Advanced Study began investigating the 
properties of mathematical structures 
called lattices. Von Neumann elaborat­
ed his approach in 1936 in an article 
written with Garrett Birkhoff of Har­
vard University. They showed that the 
lattice structure of a physical theory can 
be regarded as a mathematical model of 
the system of logic appropriate to the 
theory. The notion of a lattice is quite 
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PROBABILITY 
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SPIN STATE OF 
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PROBABILITY 
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SPIN STATE OF A PARTICLE gives the probability that the spin measured along a given 
spatial axis is either up or down. By convention, if the fingers of the right hand curl in the same 
sense as tbe spin, tbe right tbumb points in the spin-up direction. The probability of finding 
tbat tbe particle is spin-up along a given axis is the square of the magnitude of a vector called 
tbe spin-up probability amplitude. Similarly, the probability of finding that the particle is spin­
down along a given axis is the square of the spin-down probability amplitude. The probability 
that the particle is eitber spin-up or spin-down is 1, so that the sum of the squares of the two 
probability amplitudes is also 1. If the probability amplitudes are graphed at right angles to 
each other, tbeir vector sum is the bypotenuse of a right triangle; tbe lengtb of tbe bypotenuse 
is 1. Hence any spin state of a particle can be represented by a vector that is the vector sum of 
the two probability amplitudes, and the set of all possible spin states corresponds to a circle of 
radius 1 in an abstract space called phase space. A complete analysis of spin states requires 
the introduction of complex numbers, that is, numbers with both a real and an imaginary part. 
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X COMPONENT 

UNCERTAINTY PRINCIPLE of Werner Heisenberg states that the values of specified pairs 
of variables that characterize tbe state of a particle cannot be known simultaneously with un­
limited precision. The x and y components of the spin of a particle form such a pair: they are 
said to be incompatible. Here the spin-up and spin-down probability amplitudes are given for 
the x and y components of the spin (a). The spin-state vector (gray arrow) can be treated as a 
vector sum of either the two x-component amplitudes (black arrows) or the two y-component 
amplitudes (colored arrows). Tbe diagram is only an approximation; a full representation of 
the spin state would have to include tbe z component and could be drawn only in a space whose 
points represent complex numbers. As the vector rotates away from the y spin-up axis to the x 
spin-up axis the probability of finding that the x component of spin is up increases, but the re­
sult of any measurement of the y component becomes more uncertain. By imagining that the 
spin-state vector continues to be rotated counterclockwise, a graph of the uncertainties asso­
ciated with the two spin components can be constructed (b). Wben the uncertainty in the value 
of one component falls to zero, the uncertainty in the value of the other component is maximal. 
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general. Here I shall apply it to the logi­
cal structure of a simple theory con­
trived for the purpose of illustration, but 
it can also capture the structures of clas­
sical physics and quantum mechanics. 
In the past dozen years physicists and 
philosophers have been returning to the 
lattice analysis introduced by von Neu­
mann and Birkhoff. 

The interpretation of a logical struc­
ture by means of a lattice is analogous to 
the interpretation of a formal system by 
means of a particular geometry. The 
roles of logical connectives in the phys-

ical theory can be identified with the 
roles of some of the operations and rela­
tions defined on the lattice associated 
with the theory. The result is a compre­
hensive view analogous to the more gen­
eral understanding of geometry attained 
by introducing the idea of curvature. 
The abstract logic modeled by differ­
ent lattices in different physical theories 
can encompass the change in the distribu­
tive law required by quantum mechan­
ics while retaining the distributive law 
for the theories of classical physics. 

Before proceeding with a description 

PENNY 
HEADS 

i 
� 

PENNY 
TAilS 

QUARTER � � QUARTER 
TAilS HEADS 

SIMPLE PHYSICAL SYSTEM made up of a box, a penny and a quarter has four states: both 
coins heads, both coins tails, penny tails and quarter heads, and penny heads and quarter tails. 
Each state can be represented by a quadrant of a disk, labeled by a four-digit binary number. 
Areas of the disk made up of various combinations of the quadrants correspond to every pos­
sible collection of the system's states and so to every "theoretical expression" that makes refer­
ence to some state or some combination of states. The disk is the phase space of the system. 
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of lattice structures it is useful to exam­
ine more closely the assertions of the 
quantum theory that have precipitat­
ed such abstract logical investigations. 
Although quantum mechanics makes 
a number of puzzling assertions about 
physical events at microscopic scale, 
such as the duality of waves and parti­
cles, I shall confine my exposition to the 
effects of spin. The concepts req uired 
for an understanding of the quantum 
nature of spin reflect in an uncomplicat­
ed but nontrivial way the basic concep­
tual structure needed throughout quan­
tum mechanics. 

The quantum-mechanical spin of a 
particle is analogous to the rotation 

of an ordinary object such as a top. The 
spin has a component along each of the 
three axes of three-dimensional space; 
the components are called the x, y and z 
components. By convention, if the fin­
gers of the right hand curl in the same 
sense as the spin, the right thumb points 
in the spin-up direction. 

The spin of a particle that carries an 
electric charge can be detected and ma­
nipulated by means of the magnetic mo­
ment generated by the spinning charge. 
The method of detection consists in 
passing the particle through a region in 
which a magnetic field varies greatly 
from point to point. According to classi­
cal physics, such a field gradient will de­
flect a moving particle by an amount 
that depends on the magnetic moment 
of the particle. 

In an experiment done by Otto Stern 
and Walther Gerlach in 192 1 silver was 
vaporized in a furnace and the silver at­
oms were directed by a series of baffles 
into a strongly varying magnetic field. 
Because the magnetic moment of the sil­
ver atoms is effectively randomized by 
the experimental procedure, Stern and 
Gerlach expected the atoms to be spread 
out uniformly by the magnetic-field gra­
dient and to be detected as a smear on 
a photosensitive plate. They found in­
stead that the plate recorded two well­
defined patches where most of the atoms 
were concentrated. The magnetic mo­
ment of the atoms appeared to take on 
only two distinct values. The result has 
since been verified in many other experi­
ments with more sensitive apparatus; in 
all cases the magnetic moment of an el­
ementary particle or of a composite 
structure such as an atom is found to be 
quantized. 

Because of the quantization of mag­
netic moment it is possible to segregate 
particles whose spins have a certain ori­
entation by selecting just one of the 
beams that emerge from the magnetic 
field. The selected beam is spin-polar­
ized in a direction parallel to the field 
gradient. For convenience I shall as­
sume that the beam is moving along the 
z axis and that after passing through the 
magnetic field all the particles have their 
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Mr. Yang 
Zhiding of 
the People's 
Republic of 
China is saying 
''The Allied Fibers 
and Plastics Com-
pany trained engineers and 
technicians from my country in 
Moncure, North Carolina for a 
large polyester complex to be 
built by China near Beijing." 

Mr. Yang and his associates 
traveled around the world to us 
for training because in polyester 
technology, we're a world leader. 
And that's because, as Jim Dun­
bar of Allied is explaining, when 
we do something, we mean 
business. 

But pioneering in polyester 
technology is only one way we 
mean business. 

Carpets that hate dirt. 
We meant business when we 

invented the first carpet fiber 
that actually rejects stains and 
spills. It's named Anso® IV. A 
carpet made with it is easier to 
keep clean because liquids just 
bead up on the surface. Which 

"He means, we mean business:' 

sales. It's been 
one of the most 

consistently 
profitable com­

panies of its kind 

means no more 
crying over spilt milk. 

We can stand the heat. 
We meant business when we 

invented Halar® plastic wire 
insulation. It's a fire-resistant 
alternative to costly metal­
encased wiring, and it can warm 
a contractor's heart by bringing 
down the cost of wiring buildings 
by up t050%. 

Victory at sea. 
The old salts at Allied meant 

business when they produced 
polyester fiber so seaworthy it 
was chosen to be woven into the 
official foul-weather gear and 
lines aboard the America's Cup 
racing yachts. 

We mean g ood  business. 
Last year, Allied Fibers and 

Plastics had over $1 billion in 

in the U.S., earning 
an average return 

on assets of over 
20% for the past 

5 years. See what 
we mean? 

We are not alone. 
We're woven 

together with other 
major businesses 

like chemicals, elec­
trical products, and oil 

and gas to form the fabric of 
Allied Corporation. 

You'll find Allied's technology 
threaded through everything 
from firemen's rope to high fash­
ions. When we say fibers and 
plastics, we mean business. Or, 
as Mr. Yang puts it:·ftfm�iA.;· 

�!�!?n 
We mean business. 
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spin component along the x axis point­
ing up. The spin-polarized beam can 
then be passed through a second mag­
netic field at right angles to the first one 
and parallel to the y axis. One would 
suppose the beam would thereafter be 
polarized in both the x and the y direc­
tions. If either of the beams emerging 
from the second magnetic field were 
passed through a third field oriented in 
the x direction, oQe would expect to de­
tect only the up value for the x compo­
nent of the spin. Instead two patches 
again appear on the screen. The beam 
has somehow lost its spin-polarization 
along the x axis, and the measurement 
yields a random mixture of up and down 
values [see illustration on page 204]. 

This somewhat idealized experiment 
illustrates several fundamental prin­

ciples of quantum mechanics. The pas­
sage of a beam polarized along the x axis 
through a magnetic field oriented so that 
it polarizes the y component destroys 
the polarization of the x component. It 
can be stated more generally that any 
operation on an elementary particle that 
determines the value of some quantum­
mechanical variable must simultane­
ously randomize the value of at least 
one other variable; two variables that 
are linked in this way are said to be in­
compatible. If the y component of the 
spin is known with certainty, the value 
of the x component must remain com­
pletely unknown: it is therefore a max­
imally randomized quantity, with an 
equal probability (namely 112) of being 
either up or down. 

In general as the probability of mea­
suring a particular value of one variable 
increases, the probability of measuring 
a particular value of an incompatible 
variable decreases. For example, if the y 
component of the spin became only par­
tially polarized by the passage of the 
beam through the second magnetic field, 
the probability that the x component is 
up would be less than I but greater than 
112. The uncertainty principle formu­
lated by Werner Heisenberg specifies in 
a quantitative way how the probability 
of detecting a particular value of a vari­
able depends on the probability assigned 
to an incompatible variable. 

I shall now describe how the theoreti­
cal structure of a simple physical system 
can be represented by a lattice and how 
a logical structure can be grafted onto 
the lattice. Imagine a box containing a 
penny and a quarter and covered by a 
transparent lid. One can regard the box 
as a physical system whose state is deter­
mined by the upper face of each coin. 
The system can be in any one of four 
states: both coins heads, both coins tails, 
the penny heads and the quarter tails 
and the penny tails and the quarter 
heads. (The idea of discussing a system 
with just four possible states, although 
not this example, lowe to Ariadna 
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P 0 P AND NOT-P P 0 NOT-O 
a a 

a a a 

a 1 a a a 

a a a a a 

0000 0101 

P 0 P AND O P 0 
(P AND NOT-O) OR 

(NOT-P AND 0) 
a 

a a a 

a a a 

a a a a a a 

1000 0110 

P 0 P AND NOT-O P 0 NOT-P 
a a 

a a a 

a a a 

a a a a a 

0100 0011 

P 0 NOT-P AND NOT-O P 0 P OR NOT-O 
a 

1 a a a 

a a a a 

a a a a 

0001 1101 

P 0 NOT-P AND 0 P 0 NOT-P OR NOT-O 
a a 

1 a a a 

a a 

a a a a a 

P 0 P P 0 NOT-P OR 0 

a a a 

a a a 

a a a a a 

1100 

P 0 (P AND 0) OR 
(NOT-P AND NOT-O) P 0 P OR O  

a a a 

a a a 

a a a a a 

1001 

P 0 0 P 0 P OR NOT-P 

1 a a a 

a a 

a a a a a 

1010 1111 

TRUTH TABLES show how the truth values of sentences can be nectives depends on the truth or the falsity of P and Q alone. There 
associated one to one with the binary numbers that correspond to are four ways in which the sentences P and Q, taken together, can be 
areas of a disk. Each quadrant of the disk represents a single state either true or false. For each of the four ways the derived sentence 
of the penny-quarter system, and every possible area is represented can be either true or false. Hence there are 24, or 16, possibl� truth 
uniquely by the binary sum of the numbers assigned to the quadrants tables. For each truth table it is possible to find a sentence whose de-
that constitute the disk. For any sentences P and Q a truth table pendence on the truth values of P and Q is given by the table. For ex-
shows how the truth (represented by a 1) or the falsity (represented ample, the sentence P or Q is true when either P or Q is true or both 
by a 0) of a derived sentence composed of P, Q and certain logical con- P and Q are true; it is false only if both sentences P and Q are false. 
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P OR NOT-P 

1111 

0000 
PANDNOT-P 

Chernavska of the University of British 
Columbia.) 

In a simple representation each possi­
ble state of the system can be assigned a 
quadrant of a disk. If the disk is divided 
by a horizontal and a vertical line, the 
upper right quadrant can correspond to 
the state in which both coins are heads, 
the upper left to the state in which the 
penny is heads and the quarter is tails, 
the lower left to the state in which both 
coins are tails and the lower right to the 
state in which the penny is tails and the 
quarter is heads. The quadrants can be 
labeled in this sequence with the binary 
numbers 1000, 0 100, 000 1 and 00 10. 
Any area of the disk that includes an 
integral number of quadrants can also 
be designated by a four-place binary 
number. In each place the digit is a 1 if 
any quadrant included in the area has a 
1 in that place; otherwise the digit is a O. 
For example, the area of the disk that 
includes all but the lower right quadrant 
is labeled 1 10 1. Each quadrant must be 
defined so that it has no points in com­
mon with the other quadrants except the 
point at the center of the disk. I shall 
therefore assume that only the radius on 
the clockwise side of each quadrant be­
longs to that quadrant. 

Any physical theory can be viewed as a 
I\. statement about the possible or the 
actual states of a physical system. The 
theory may single out states or collec­
tions of states for commentary. In the 
penny-q uarter system I shall suppose 
any combination of the four states can 
be referred to by a "physical theory" 
pertaining to the system. There are 16 
combinations of the states, formed by 
combining the quadrants of the disk in 
all possible ways. 

Suppose each combination of states is 
represented by a point. The 16 points 
can then be connected by a network of 

LATTICE OF POINTS AND LINES dis­
plays the subset relations among the areas of 
the four-part disk. Each point represents a 
distinct area of the disk. The colors of the con­
centric circles around each point match the 
colors of the disk quadraJlts that make up the 
corresponding area (see il/ustratioll 011 pre­
cedillg page). Points in the lattice that lie in a 
given plane all represent areas of the disk that 
include the same number of disk quadrants. 
The area represented by a lower point is a sub­
set of any area represented by a higher point 
to which the lower point is connected by up­
ward-moving lines. Binary numbers associat­
ed with the points correspond to the areas of 
the disk and to the truth tables of the sen­
tences that label the points (see illustratioll 011 
precedillg page). The lines in the lattice also 
have a logical interpretation. Wherever they 
represent subset relations for the areas of the 
disk, they also represent entailment relations. 
A sentence represented by a lower point en­
tails all sentences represented by higher points 
that can be reached by upward-moving lines. 
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lines to show how some areas of the disk 
can be considered subsets of other areas 
[see illustration on opposite page]. A line 
connecting two points indicates that the 
lower point is a subset of the higher 
point. More precisely, the area repre­
sented by the lower point is included in 
the area represented by the higher point. 

The lowest point in the network repre­
sents the zero area (0000), the area of the 
point at the center of the disk that all the 
quadrants have in common. From the 
zero point, lines in the network travel 
upward to the four points (1000, 0100, 
0001 and 0010) that represent the areas 
of each of the four quadrants of the disk. 
As the connecting lines indicate, each of 
these areas includes the central point as 
a subset. Above the four points repre­
senting the quadrants are points repre­
senting larger areas of the disk, each of 
which includes at least two quadrants 
and the central point. At the top of the 
network is the point 1111, which repre­
sents the area of the entire disk. Subset 
relations can be indicated not only by 
a direct upward line but also by a line 
that passes through intermediate points. 
Thus the uppermost point is linked to all 
the points below it. One can also think of 
each point as being connected to itself. 

It is now possible to define two opera­
tions on the network of points and lines 
that make the network a lattice of the 
kind defined by von Neumann and Birk­
hoff. Given any two points a and b in the 
network, the lowest point in the lattice 
to which a and b are both connected by 
lines moving upward from at least one 
of them is referred to as a-join-b. If both 
a and b are directly linked to the same 
higher point, that point is a-join-b. If a 
and b are connected to each other, then 
a-join-b is the higher of the two points. 
For the lattice representing areas of the 
disk the join of two areas is the point 
representing the smallest area that in­
cludes both of them; in set theory the 
same concept is called the union. The 
join of 0000 (the central point of the 
disk) and 1000 (the upper right quad­
rant) is 1000, since the quadrant in­
cludes the central point. The join of 
1000 and 0100 (the upper left quadrant) 
is 1100: the upper half of the disk. 

A second operation on the lattice is 
defined by selecting the highest point to 
which both a and b are connected by 
lines moving downward from at least 
one of them; such a point is called a­
meet-b. On the disk the meet of two areas 
is the largest area they have in common; 
in set theory it is called the intersection. 
The meet of 1100 (the upper half) and 
1010 (the right half) is 1000: the upper 
right quadrant. The meet of 1000 and 
0000 is the point 0000. 

The lattices I shall discuss are called 
complemented ones: for any point a in 
the.network it must be possible to find its 
complement a', which has the property 
that a-join-a' is the top point of the net-

work (1111) and a-meet-a' is the bottom 
point (0000). On the disk the comple­
ment of an area is another area that has 
no points except the center of the disk in 
common with the first area, but whose 
area taken together with the first area 
makes up the entire area of the disk. The 
points 0100 (the upper left quadrant) 
and 1011 (the area composed of the up­
per right, lower right and lower left 
quadrants) are complements of each 
other. The analogous operation in set 
theory is also called complementation. 

The behavior of the lattice operations 
join and meet depends on the lattice on 
which they are defined. For the lat­
tice representing the areas of the disk, 
however, they function in a familiar 
way. They obey the same laws as their 
counterparts in set theory: union and 
intersection. In particular the distrib­
utive laws hold. For any points a, b 
and c in the lattice, a-meet-(b-join-c) 
is the same point as (a-meet-b)-join-(a-

a 

v = 2A 

b 

v 

c 

V INDEPENDENT 
OFA 

meet-c). Similarly, a-join-(b-meet-c) is 
the same point as (a-join-b)-meet-(a­
join-c). The resulting mathematical 
structure is called a complemented dis­
tributive lattice; it is also known as a 
Boolean algebra, after the 19th-centu­
ry British logician George Boole. 

I have described the properties of an 
abstract representation of the penny­

quarter system, namely the set relations 
among the areas of a disk. What kinds of 
statement might be employed to de­
scribe the physical system itself? Sup­
pose P stands for the statement "The 
penny is heads," Qstands for "The quar­
ter is heads," not-P stands for "The pen­
ny is tails" and not-Q stands for "The 
quarter is tails." Any property of the 
penny-quarter system that a physicist 
might want to describe by means of a 
theory about the system can then be de­
fined by writing a compound sentence. 
For example, the compound sentence P 

d 

e 

f 

V=A+B 

v = V2A + 2B 

V : xA + yB 

SPAN OF 
A ANDB 

SPAN OF A VECTOR SPACE is the set of all vectors that can be obtained by adding any 
vectors in the space or by multiplying them by a scalar quantity (a quantity that has only a 
magnitude and not a direction). The span of the single vector A (blue arrows) is a straight line 
passing through A, because additional vectors (red arrows) can be generated only by scalar 
multiplication or by the addition of vectors pointing along the line (panels a and b). Vectors that 
cannot be generated by such operations are independent vectors (panel c). Two independent 
vectors A and B combine by vector addition and scalar multiplication according to the paral­
lelogram law (panels d and e). Their span is a plane because any point in the plane can be 
reached by vectorially adding some scalar multiple of A to some scalar multiple of B (panel f). 
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INCLUSION RELATIONS among vector snbspaces of the three-dimensional physical space 
(R3) can be represented by lattices. In a the subspaces represented by the lines s and t span the 
subspace represented by the plane s-join-t. Similarly, the lines s and z span the plane s-joill-z 
and the lines t and z span the plane t-join-z. In b the lines u, v and z span corresponding planes, 
where the lines u and v are in the same plane as the lines s and t. The points in lattices c and d 
represent the vector subspaces formed by the lines and planes, by the zero subspace (the single 
point where the three lines in each diagram intersect) and by the vector space R3 itself. Vectors 
in a subspace represented by a lower point in a lattice also lie in any subspace represented by a 
higher point to which the lower point is connected by upward-moving lattice lines. The two lat­
tices can be linked at points that represent the same subspaces, namely the points R3, s-join-t 
(equivalent to the point u-join-v), z and O. The resulting lattice (e) is a nondistributive one, 
identical with the lattices at the right in the illustration on page 203. The compound lattice 
displays the inclusion relations that would hold among the vector subspaces if the two planes 
S-jOill-t and u-jOill-v were coincident and the lines s, t, u, v and z all crossed at the origin. 
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and Q makes the assertion "Both coins 
show heads." The sentence not-P or Q 
says that in the present state of the sys­
tem "Either the penny is showing tails or 
the quarter is showing heads"; in other 
words, it specifies that the state is any­
thing but the penny showing heads and 
the quarter showing tails. 

In ordinary circumstances (unlike 
those encountered in quantum mechan­
ics) logical intuition is a fairly reliable 
guide to the ways in which the truth or 
falsity of a compound sentence depends 
on the truth or falsity of its constituents. 
The sentence P and Q is true only if both 
P is true and Q is true, and hence only if 
both coins show heads; otherwise the 
compound sentence is false. The truth 
value of the compound sentence must 
be evaluated separately for each possi­
ble combination of truth and falsity of 
the constituent sentences. 

A complete account of how the truth 
value of a compound sentence is deter­
mined by its constituent sentences is 
called a truth function, and logicians 
customarily display the evaluation of 
the truth function in an array called a 
truth table. Suppose 1 stands for true 
and 0 for false. Then any compound 
sentence made up of the two constituent 
sentences P and Q can be represented as 
a four-digit binary number in the same 
way as the areas of the disk were classi­
fied. There is a r or a 0 in the truth table 
for each of the four possible pairs of 
truth values for P and Q. Thus the truth 
function for every possible sentence 
having two constituents is given by one 
of 16 possible truth tables. The truth 
values of the sentence P and Q, for ex­
ample, are given by the truth function 
1000; the sentence is true only in the 
quadrant of the disk labeled 1000. 

The relation between the truth func­
tion of a compound sentence and the 
number for the area of the disk in which 
the compound sentence is true is a gen­
eral one. The binary numbers are the 
same [see illustration on page 207]. Hence 
to each area of the disk, and so to each 
point on the lattice, one can attach some 
sentence made up of the elements p, Q, 
not, and and or. More strictly one can 
associate with each point in the lattice 
an equivalence class of sentences, made 
up of all the sentences that have the 
same truth table. The sentence not-(P 
and Q), for example, is associated with 
the same point in the lattice as the sen­
tence not-P or not-Q. 

The most important outcome of the 
association of sentences with lattice 
points is that it shows how the lattice can 
display logical relations. If the sentences 
A and B are represented by the points a 
and b in the lattice, then the sentences A 
and B and A or B are represented respec­
tively by the points a-meet-b and a-join­
b. Moreover, the lines connecting lower 
points in the lattice to higher points rep­
resent the logical relation of entailment. 
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Sentence A entails sentence B provided 
that B is true whenever A is true. The 
truth table for B must include a I on 
every line where a I appears in the truth 
table for A. (The truth table for B may 
include other I 's as well . )  Therefore en­
tailment on the lattice that describes the 
logical structure of the penny-quarter 
system is represented by the same lines 
that represent the subset relation. 

The lattice for the penny-quarter sys­
tem shows the same logical relations 

as the lattice that corresponds to Newto­
nian, or classical, mechanics. The state 
of a Newtonian particle is characterized 
by the position of the particle at a spec­
ified time and by its momentum (the 
product of its mass and its velocity) .  For 
simplicity suppose the Newtonian sys­
tem consists of a single particle con­
strained to move in only one dimension. 
Just as a state of the penny-quarter sys­
tem can be represented by an area on a 
disk, so the state of the Newtonian parti­
cle can be represented by a point on a 
plane. The coordinate axes of the plane 
are labeled with values of position and 
momentum, so that every point on the 
plane corresponds to some pair of val­
ues for position and momentum. The 
plane is called the phase space of the 
system. 

What is the mathematical structure of 
the phase space to which the simplified 
Newtonian theory conforms? The state­
ments of Newtonian physics make refer­
ence to regions, or subsets, of the phase 
space, just as statements about the pen­
ny-quarter system make reference to ar­
eas of the disk. A statement corresponds 
to a region of the plane whenever the 
statement holds true for every point in 
the region and for no other points. For 
example, the statement that a particle 
has position a corresponds to a line of 
points in the phase space; the line is a 
units from the origin along the position 
axis and parallel to the momentum axis. 

The class of regions of Newtonian 
phase space is an infinite class, and so 
the corresponding lattice has an infinite 
number of points. In other respects, 
however, the mathematical structure of 
the lattice is the same as the structure of 
the lattice for the penny-quarter system. 
The regions of the phase space and 
hence the points in the Newtonian lat­
tice are ordered by set inclusion, and as 
before the operations on the lattice are 
equivalent to set union and set intersec­
tion. Moreover, the logical relations de­
fined by the structure of the lattice and 
by the operations meet and join remain 
the relations of classical logic. The dis­
tributive laws are valid. The extension 
of the phase space and the lattice to 
three-dimensional Newtonian systems 
with many particles is complicated but 
not different in principle from the one­
dimensional, single-particle case. 

In quantum mechanics the situation is 

altogether different. The state of a parti­
cle is no longer specified by its position 
and its momentum because position and 
momentum are incompatible variables, 
which cannot be determined simulta­
neously. Instead the state of a particle 
is defined by the theoretical construct 
called a wave function, which gives the 
probability of finding that the particle 
has a certain value of a physical varia­
ble . For example, the spin state of an 
electron is given by a wave function that 
specifies the probabilities that the x. y 
and z components of the spin are either 
up or down. 

Consider the y component of the spin. 
The probability that the y component is 
spin-up can vary from I to 0 while the 
probability that it is spin-down varies 
from 0 to 1. For any spin state the sum 
of the two probabilities is equal to 1. It is 
mathematically convenient to represent 
the spin state as a vector: a quantity that 
has both a magnitude and a direction. 
The spin vector is the vector sum, calcu­
lated according to the parallelogram 
law of vector addition, of two other vec­
tors. The latter two vectors lie along two 
perpendicular lines that represent the 
two possible values the spin can assume 
along the y axis. They are called the 
spin-up and the spin-down probability 
amplitudes. The square of the magni­
tude of the vector representing the spin­
up probability amplitude gives the prob­
ability of finding the y component of the 
spin in the up state. Similarly, the square 
of the magnitude of the vector corre­
sponding to the spin-down probability 
amplitude gives the probability of find­
ing that the y component of the spin­
state vector points down [see top illustra­
tion on page 205]. 

The abstract vector space with its per­
pendicular axes labeled "spin-up 

probability amplitude" and "spin-down 
probability amplitude" is a phase space 
of quantum mechanics. By superposing 
on the phase space an additional pair of 
perpendicular axes at a 45-degree angle 
to the first pair, it is possible to represent 
the essential features of the uncertainty 
principle as it applies to spin [see bottom 
illustration on page 205]. The additional 
axes can be designated the spin-up and 
spin-down probability amplitudes for 
the x component of the spin, j ust as the 
original axes designate the amplitude of 
the y component. If the spin-state vector 
lies along the spin-up axis for the x com­
ponent (and so predicts the result of a 
measurement of the x component with 
certainty), the vector lies halfway be­
tween the spin-up and the spin-down 
axes for the y component. The length of 
the projection of the vector onto the 
spin-up axis for the y component is 
therefore v'2/2, and so the probability 
of finding that the y component of the 
spin is up is the square of v'2/2, or 1/2. 
Similarly, the probability of finding that 

the y component of the spin is down is 
also 1/2 .  Thus, in accord with the prin­
ciple of uncertainty, there is no spin 
state in which a probability of I .can be 
assigned both to some value of the x 
component and to some value of the y 
component. 

The kind of inclusion relation that is 
defined on a vector space is the relation 
of being a subspace, rather than of be­
ing merely a subset, of the given vector 
space. It is the subspaces of a vector 
space that correspond to the proposi­
tions of the quantum theory. 

What is a vector subspace? The sub­
space must itself be a vector space. 

The most important property of a vec­
tor space is that adding any two vectors 
in the space generates a third vector that 
lies in the same space. Similarly, multi­
plying any vector by a scalar quantity 
(one that has only a magnitude, not a 
direction) also yields another vector in 
the space. In mathematical terms the 
vector space is said to be closed under 
vector addition and the multiplication 
of a scalar. 

The closure criterion can be em­
ployed to construct a vector space. The 
complete vector space can be generated 
from vectors called basis vectors if ev­
ery vector in the space can be obtained 
by adding the basis vectors according to 
the parallelogram rule, perhaps after 
each basis vector has been multiplied by 
a suitable constant. (Scalar multiplica­
tion can lengthen or shorten a vector 
and can make it point in the diametrical­
ly opposite direction, but it cannot oth­
erwise alter its direction.)  The vector 
space generated in this way by two basis 
vectors A and B is called the span of A 
and B [see illustration on page 209]. 

A subspace is said to be a proper sub­
space if there is at least one vector in the 
vector space that does not lie within the 
span of any basis vectors of the sub­
space. For example, the u-v plane is a 
vector space that can be spanned by two 
vectors directed along the positive u and 
v axes. There is no way to add the two 
vectors to get a third vector that points 
out of the u-v plane. Hence the u-v plane 
is a proper subspace of the vector space 
constituted by three-dimensional space. 

In order to form a lattice whose points 
correspond to the propositions of quan­
tum mechanics one must form the lat­
tice of vector spaces and their proper 
subspaces. Consider three-dimensional 
physical space with a designated point 0 
as the origin. The subspaces of the space 
incl ude the origin itself, all straight lines 
that can be drawn through 0, all planes 
that include 0 and the entire three-di­
mensional space. Some of the subspaces 
are ordered by inclusion, so that logical 
entailment on the lattice can still be a 
matter of subspace inclusion. 

A crucial difference, however, is that 
the join operation on the lattice of sub-
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spaces is not the union operation of set 
theory but rather the span of two sub­
spaces. For example, the u axis and the 
v axis are both one-dimensional sub­
spaces. Their union is the set of all the 
vectors that begin at the origin and ter­
minate at any point on one of the two 
lines. The set is not a subspace, however, 
because it is not closed under vector ad­
dition. Therefore the union of the axes 
cannot be represented by a point in the 
lattice of subspaces. The u-v plane is a 
subspace, namely the span of the two 
one-dimensional subspaces. Moreover, 
the span of u and v is the smallest sub­
space that includes all the vectors on 
both lines. The point in the lattice of 
subspaces that is the result of the opera­
tion u-join-v is therefore the point that 
represents the u-v plane. 

Because of the peculiar properties of 
the operation of vector spanning, 

the lattice of subspaces is not distribu­
tive. Suppose the lattice includes points 
representing the four lines s, t, u and v; all 
the lines lie in the u-v plane and they all 
pass through the origin. Then s-join-t 
and u-join-v are both represented by the 
same point in the lattice, namely the 
point that corresponds to the u-v plane. 

The point s-meet-(u-join-v) is by defi­
nition the largest subspace that s and 
u-join-v have in common; since u-join­
v is the u-v plane and s lies in the plane, 
the largest subspace they have in com­
mon is the line s itself. On the other 
hand, s-meet-u and s-meet-v both in­
clude only the origin, or point 0 on the 
lattice, and the join or span of these 
expressions-that is, (s-meet-u)-join-(s­
meet-v)-is also the point O. It follows 
that the point designated s-meet-(u-join­
v) and the point (s-meet-u)-join-(s-meet-v) 
are not identical in the lattice of vector 
subspaces. 

If the logical connectives and and or 
and the relation of entailment are de­
fined on the lattice of subspaces as they 
were on the lattice of subsets for the 
penny-quarter system, the structure of 
the lattice is the same as the structure of 
nondistributive quantum logic. The sub­
space s can be identified with the sen­
tence "The x component of the spin is 
up" and the subspace t with the sentence 
"The x component of the spin is down." 
Similarly, the subspaces u and v corre­
spond to the analogous sentences for the 
y component. The compound sentence 
"The x component of the spin is up and 
the y component is either up or down" is 

X SPIN - UP AND X SPIN - DO WN 

X SPIN · 

UP 

X COMPONENT IS UP AND Y COMPONENT IS EITHER UP OR DO WN 

Y SPIN - UP OR Y SPIN - DO WN 

X SPIN - UP AND X SPIN - DO WN 

EITHER X COMPONENT IS UP AND Y COMPONENT IS UP 

OR X COMPONENT IS UP AND Y COMPONENT IS DO WN 

Y SPIN ­
DOWN 

LOGICAL RELATIONS among the statements describing the spin of a particle can be mod­
eled in a highly simplified form by lattices identical with the one outlined in heavy black lines 
at the bottom of the illustration on page 210. The lattice points correspond to sentences de­
scribing pure spin states. On each lattice the word and is identified with the meet of two points 
(black arrows), and the word or is identified with the join of two points (colored arrows). The 
sentences below the lattices, which are logically equivalent according to the distributive law, 
are modeled by the operations shown by the arrows. Because the structure of the lattices de­
rives from the structure of the inclusion relation for vector spaces, the lattices are nondistribu­
tive. The two compound sentences are not represented by the same point in the lattice. Hence 
the lattices model the failure of the distributive law of logic to hold for statements about spin. 

2 1 2  

associated with the point in the lattice s­
meet-(u-join-v). The compound sentence 
"Either the x component of the spin is 
up and the y component is up or the x 
component of the spin is up and the y 
component is down" is associated with 
the point (s-meet-u)-join-(s-meet-v). Since 
these lattice points are not identical, the 
logical structure associated with the lat­
tice is nondistributive. Moreover, the 
lattice shows that (s-meet-u)-join-(s-meet­
v) entails s-meet-(u-join-v) but not vice 
versa [see illustration on this page]. 

Confronted by the success of lattice 
theory in modeling logical relations 

within various physical theories, one 
tends to forget that the approach pre­
supposes the resolution of an important 
philosophical issue. A dominant theme 
in philosophy during the past 200 years 
has been the thesis that there are two 
kinds of true statement: contingent facts 
about the world and truths of logic that 
would hold no matter what the condi­
tion of the world. The Scottish philoso­
pher David Hume called the two kinds 
of statement "matters of fact" and "re­
lations of ideas." The notion that the 
quantum theory might call for a revision 
of logic presupposes a denial of Hume's 
thesis that there are two kinds of truth. 

Nevertheless, philosophers are now 
inclined to agree with Willard Van Or­
man Quine of Harvard University that 
no sharp distinction of this kind can be 
maintained. The laws of logic, Quine ar­
gues, have a central place in our web of 
beliefs, but a strong pull on that web at 
the periphery of observation can cause 
even the center of the web to become 
distorted. Logical considerations cannot 
themselves justify a revision of logic 
(how could they?), but one can (again to 
adopt a metaphor of Quine's) gerryman­
der the language when the fit becomes 
too strained between the natural world 
and the language we have inherited to 
describe it. 

Even if it is granted that logic can 
be revised, there are many possible re­
sponses to quantum logic. One extreme 
is to deny that quantum logic is a logic 
and to say that what is going on is mere­
ly algebra under another name. The oth­
er extreme is to say that because quan­
tum mechanics deals with particles that 
are the fundamental constituents of the 
universe, one should replace classical 
logic with quantum logic and learn to 
"think quantum logically," hard though 
that might be. 

With respect to the first response one 
can say the following. Logic, although 
notoriously hard to define, deals with 
certain kinds of relations between sen­
tences: what follows from what, what is 
consistent with what, and so on. Quan­
tum logic does this too. What makes 
quantum logic peculiar is that it deals 
entirely with sentences stating that some 
vector lies in some subspace. The oddi-
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CLASSICAL TWO-VALUED LOG IC 

P T T F F 

Q T F T F 

NOT-P F F T T 

NOT-Q F T F T 

P OR Q  T T T F 

P AND Q T F F F 

P IMPLIES Q T F T T 

P IS EQUIVALENT TO Q T F F T 

REICHENBACH'S THREE-VALUED LOG I C  

P T T T I I I F F F 

Q T I F T I F T I F 

NOT-P (CYCLICAL) I I I F F F T T T 

NOT-P (DIAMETRICAL) F F F I I I T T T 

NOT-P (COMPLETE) I I I T T T T T T 

P OR Q  T T T T I I T I F 

P AND Q T I F I I F F F F 

P IMPLIES Q 
T F F T T T T T T 

(STANDARD) 

P IMPLIES Q 
T F F T T T T T T 

(ALTE RNATIVE) 

P IMPLIES Q T I F I I I I I I 
(QUASI) 

P IS EQUIVALENT TO Q 
T I F I T I F I T 

(STANDARD) 

P IS EQUIVALENT TO Q 
T F F F T F F F T 

(ALTERNATIVE) 

THREE-VALUED LOGIC proposed by Hans Reichenbach in 1944 maintains that some sen-
tences describing quantum-mechanical phenomena are neither true nor false but indetermi-
nate. For example, if the x component of the spin of a particl� is known to be up, a statement 
asserting that the y component has a specific value would be classified as indeterminate in 
Reichenbach's scheme. Instead of focusing on the distributive law, Reichenbach defined en-
riched patterns of logical connectives by means of truth tables. The tables assign one of the 
three truth values-true ( T), false ( F) or indeterminate (I)--to each of the nine possible com-
binations of truth values for the sentences P and Q. Ten truth functions are designated as hav-
ing a special place in the logic of quantum mechanics. The truth functions of ordinary two-
valued logic are special cases of the extended truth functions (color). In three-valued logic 
there are 39, or 19,683, possible truth functions for derived sentences with two constituents. 

ties of quantum logic are consequences of the overall theory of the world; it 
of two requirements that must be met by is doubtful that such a simplification 
any sentence to which the logic' pertains. would be achieved. Even within quan-
First, the sentences must be among tum mechanics the logico-algebraic ap-
those that ascribe quantum-mechanical proach, although valuable, has not 
properties to individual systems. Sec- cleared away all the perplexities. Fur-
ond, when two such sentences are linked thermore, even if quantum logic were 
by means of the quantum-mechanical totally successful in its own domain, the 
analogues of and and or, the resulting extension of it to other realms would 
sentence must still be descriptive of the seem peculiar. One arrives at quantum 
physical system. In dealing with this logic by considering the mathematical 
closed set of sentences the logical rela- structure of the formalism of quantum 
tions among them are not those of clas- mechanics. That mathematical struc-
sical logic. ture, however, is based on the deductive 

Is one therefore forced to adopt the patterns of classical logic. Hence classi-
second stance and think quantum logi- cal logic is presupposed in the develop-
cally? In part the answer is yes. Certain ment of quantum logic. 
kinds of statements met with in a physi- One is left, therefore, with a family of 
cal theory fit together in ways that do logics that includes classical logic, quan-
not conform to classical logic. By no tum logic and perhaps other logics as 
means, however, does this finding imply welL Among them one logic still has pri-
that classical logic should everywhere ority. Although the nonclassical logics 
be replaced by quantum logic. Such a may have specialized applications, the 
drastic revision of everyday ways of logic employed for abstract reasoning, 
thinking could be justified only if it including reasoning about logic, will 
brought with it a vast simplification probably continue to be classical logic. 
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