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The theory of mental models postulates that conditionals and disjunctions refer to possibilities, real or
counterfactual. Factual conditionals, for example, “If there’s an apple, there’s a pear,” parallel counter-
factual ones, for example, “If there had been an apple, there would have been a pear.” A similar parallel
underlies disjunctions. Individuals estimate the probabilities of conditionals by adjusting the probability
of their then-clauses according to the effects of their if-clauses, and the probabilities of disjunctions by
a rough average of the probabilities of their disjuncts. Hence, the theory predicts that estimates of the joint
probabilities of these assertions with each of the four cases in their partitions will be grossly subadditive,
summing to over 100%. Five experiments corroborated these predictions. Factual conditionals and
disjunctions were judged true in the same cases as their counterfactual equivalents, and the sum of their
joint probabilities with cases in the partition ranged from 240% to 270% (Experiments 1a, 1b). When
participants were told these probabilities should not sum to more than 100%, estimates of the probability
of A and C, as the model theory predicts, were higher for factual than counterfactual conditionals,
whereas estimates of the probability of not-A and not-C had the opposite difference (Experiment 1c).
Judgments of truth or falsity distinguished between conditionals that were certain and those that might
have counterexamples (Experiment 2a), whereas judgments of the likelihood of truth reflected the
probabilities of counterexamples (Experiment 2b). We discuss implications for alternative theories based
on standard logic, suppositions, probabilistic logic, and causal Bayes networks.
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Consider these two assertions:

If there is an apple, then there is a pear.

There isn’t an apple and there isn’t a pear.

Could they both—the conditional and the conjunction—be true at
the same time? If so, what’s their joint probability (from 0% to

100%)? Now, consider the following pair of assertions, where the
conditional makes a counterfactual claim:

If there had been an apple, then there would have been a pear.

There isn’t an apple and there isn’t a pear.

Could they both be true, and what’s their joint probability? If you
know that there might be an apple without a pear, do you think that
the two conditionals above are true, false, or impossible to deter-
mine?

The answers to these questions reveal the possibilities to which
factual and counterfactual assertions refer. They are the focus of
the present article. It begins with an outline of the theory of mental
models—the model theory, for short—as it applies to compound
assertions, such as the conditionals above, and disjunctions, such
as “There is an apple in the bowl or there is a pear in the bowl, or
both.” The theory bases the meanings of such assertions on pos-
sibilities, which in turn underlie their probabilities: Numerical
probabilities are possibilities plus numbers. After a summary of the
theory and its three principal predictions, the article outlines alter-
native theories (see Nickerson, 2015)—those based on standard
logic, suppositions, probabilistic logic, and causal Bayesian net-
works. It then describes five experiments that tested the three
predictions. Finally, it considers the implications of the results for
the model theory and for the alternative theories.
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The Model Theory

The Meanings of Disjunctions

The model theory postulates that people construct models that
simulate the situations that assertions describe (e.g., Johnson-
Laird, 1983). Models are iconic in that they have a structure that
corresponds to the structure of what they represent (e.g., Johnson-
Laird, 2006). The theory provides a general account of reasoning,
but here we describe only its explanation of sentential connectives,
such as if and or. It treats such compound assertions as referring to
real possibilities or counterfactual possibilities, which are those
that were once real but that did not in fact happen (e.g., Byrne,
2005, 2016; Johnson-Laird & Byrne, 1991, p. 68). It distinguishes
between their representations in mental models, which underlie
intuitive reasoning (in System 1), and in fully explicit models,
which underlie deliberations (in System 2). A factual disjunction,
such as:

There is beer, or there is wine, or both

has three mental models (in System 1), which represent only the
clauses that are true in each possibility:

beer

wine

beer wine

The fully explicit models of the disjunction (in System 2) represent
in addition what is false in each possibility, using negation to do
so:

beer not-wine

not-beer wine

beer wine

These three possibilities are exhaustive, and so they imply that
given the disjunction the fourth case is impossible:

not-beer not-wine

The four cases based on the affirmation or negation of each
clause in a compound assertion are known as its “partition’” A &
C, A & not-C, Not-A & C, and Not-A & not-C, in which “&”
denotes a conjunction in which A & C is equivalent to C & A. Of
course, mental models are not words or sentences, which we use
for convenience. They are actual models of the relevant entities or
events. The two systems of the theory are both implemented in the
computer program mSentential at https://mentalmodels.princeton
.edu/models/.

An earlier version of the theory proposed that models were
disjunctive alternatives—it is possible that there is beer alone, or
it is possible that there is wine alone, or it is possible that there are
both (e.g., Johnson-Laird & Byrne, 2002; Johnson-Laird, Byrne, &
Schaeken, 1992). In a recent significant advance, however, the
theory proposes that the models are exhaustive conjunctions of
possibilities, which hold in default of knowledge to the con-
trary—it is possible that there is beer alone, and it is possible that

there is wine alone, and it is possible that there is both beer and
wine (e.g., Khemlani, Byrne, & Johnson-Laird, 2018):

possible (beer & not-wine)

& possible (not-beer & wine)

& possible (beer & wine)

Of course, in case there is neither beer nor wine the disjunction is
false, i.e.,

impossible (not-beer & not-wine).

One sign that the possibilities are in a conjunction is that individ-
uals accept each of the preceding possibilities as inferences from the
disjunction (Hinterecker, Knauff, & Johnson-Laird, 2016), for example,

There is beer, or there is wine, or both.

Therefore, it is possible that there is beer.

The inference is invalid in all normal “modal” logics, which deal
with possibilities and which exist in infinitely many sorts
(Johnson-Laird & Ragni, 2019). Suppose that it is impossible that
there is beer, but there is wine. The disjunction in the preceding
inference is true in modal logics, but the conclusion is false.
Hence, the inference is invalid in modal logics because in this
example it leads from a true premise to a false conclusion. The
model theory postulates that the inference can be drawn unless
there is knowledge to the contrary, such as that it is impossible that
there is beer. An inference is valid according to a semantic prin-
ciple: there is no counterexample in which the premises are true
but the conclusion is false (Jeffrey, 1981, p. 1). The model theory
provides an algorithmic account of the cognitive processes that
underlie the sentential inferences that people make, and it assesses
the validity of a conclusion as necessary, possible, or impossible.
Here, we focus on the descriptive claims of the theory rather than
their normative status (see Johnson-Laird, Khemlani, & Goodwin,
2015; Johnson-Laird et al., 2019).

One consequence of the theory is that intuitive reasoning based
on mental models can lead to compelling illusions, which delib-
eration with fully explicit models can correct. Consider the fol-
lowing example, which is based on two “exclusive” disjunctions,
each referring to only two possibilities:

Either there’s beer or else there’s wine.

Either there isn’t beer or else there’s wine.

Can both of these assertions be true at the same time?

Most people say, “yes” (Johnson-Laird, Lotstein, & Byrne, 2012).
The mental models of the two disjunctions are respectively:

beer

wine

and:

not-beer

wine
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There is a model in common to the two disjunctions, which
represents the presence of wine, and so individuals respond, “yes.”
However, the fully explicit models of the two disjunctions are:

beer not-wine

not-beer wine

and:

not-beer not-wine

beer wine

There is no model common to the two disjunctions—they are
inconsistent with one another, and so they cannot both be true at
the same time.

Models normally represent what is possible according to the
truth of assertions. But, suppose a disjunction predicts the presence
of wine or beer, or both, but in fact for some reason neither of them
is there. The disjunction is false, but the situation can be described
using a counterfactual disjunction:

There would have been wine, or there would have been beer, or both.

Its models represent the fact and counterfactual possibilities. A
counterfactual possibility refers to something that once was pos-
sible but is not possible now. An impossibility is something that is
not possible according to an assertion. The model theory deals with
several distinct sorts of possibility (Johnson-Laird & Ragni, 2019),
but here we confine our research to epistemic possibilities, which
depend on knowledge, and are akin to subjective probabilities—
Lassiter (2017) even treats the two as identical. Table 1 presents
the possibilities and counterfactual possibilities—those that were
once possible but that didn’t happen—for factual and counterfac-
tual conditionals and disjunctions.

The Meanings of Conditionals

As Table 1 illustrates, conditionals and disjunctions refer to possi-
bilities. But, conditionals introduce a new factor. Unlike disjunctions

that combine main clauses, the if-clause of a conditional is subordinate
to its main then-clause. One sign of subordination is that pronouns in
such clauses can refer forward (a “cataphor”) to referents established
in the main clause, for example, “If he served tea, then the butler wore
white gloves.” Subordinate clauses can make presuppositions. For
example, the assertion “Before he left, he said goodbye” presupposes
that he left. Presuppositions have to hold for an assertion to be true or
false (see, e.g., Beaver & Geurts, 2014). But, an exception to this
principle occurs with conditionals. According to the model theory, a
conditional about a specific entity, such as a drink, for example,

If it’s hot, then it’s tea

asserts that it is possible that it is hot, and that in this case it is tea.
And the if-clause presupposes the possibility that it is not hot. This
presupposition fails in case it is impossible that it is not hot, that
is, it is certain that it is hot, and so it follows from the conditional
that it is tea. This analysis is general. Given If A, then C, the
if-clause presupposes that it is possible that not-A, but in case the
presupposition is false, it follows that A is certain.

This meaning for conditionals has several consequences. A
conditional, If A, then C, has a conjunction of two mental models
of possibilities:

A C

. . .

The first model makes explicit the possibility that the conditional
asserts, and the second model, which the ellipsis denotes, has no
explicit content but corresponds to the presupposition of the pos-
sibility of not-A. The fully explicit models of the conditional flesh
out these models into a conjunction of three exhaustive possibili-
ties that hold in default of knowledge to the contrary:

A C

not-A not-C

not-A C

Table 1
A Possibility Table for True Factual and Counterfactual Conditionals, and Disjunctions, About
Specific Entities or Events, Showing the Modal Status of Each Case in the Partition as Possible,
as Possible Once (But Did Not Happen), as Impossible, or as Factual, Given the Truth of
the Assertion

Cases in the partition A & C A & not-C Not-A & C Not-A & not-C

A factual conditional Possible Impossible Possible Possible
If A happened,
then C happened

A counterfactual conditional Possible once Impossible Possible once Factual
If A had happened,
then C would have happened

A factual disjunction Possible Possible Possible Impossible
A happened or
C happened or both

A counterfactual disjunction Possible once Possible once Possible once Factual
A would have happened or
C would have happened or both

Note. “&” denotes a conjunction in which A & C is equivalent to C & A.
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The models differ in their accessibility. The first of them is
immediately accessible because it is explicit in the conditional’s
mental models, the second of them is next in accessibility because
it holds whether the assertion is interpreted as a conditional or a
biconditional (If, and only if, A, then C), and the third of them is
least accessible because it holds only for a conditional interpreta-
tion. This trend in accessibility has been corroborated in many
studies in which participants list possibilities (e.g., Barrouillet &
Lecas, 1999). The conjunction of default possibilities distinguishes
conditionals from the “truth functional” material conditionals of
logic, which refer to a disjunction of true or false cases (see, e.g.,
Byrne & Johnson-Laird, 2009). Likewise, knowledge and meaning
can modulate the interpretation of compounds by blocking the
construction of models, or by adding temporal, spatial, and other
relations, to their interpretations (e.g., Johnson-Laird & Byrne,
2002; Juhos, Quelhas, & Johnson-Laird, 2012; Quelhas &
Johnson-Laird, 2017).

A well-known puzzle about conditionals is that people list the three
possibilities and the one impossibility for If A, then C, but tend to
judge that only two of them—those in which A holds—are relevant to
the truth or falsity of conditionals. Hence, they judge the not-A cases
in which the if-clause is false as irrelevant to the truth or falsity of
conditionals (e.g., Evans, 1972). The puzzle is that a case that is
possible for a conditional, such as not-A and not-C, ought to be one
that people judge relevant to its truth value. The model theory solves
the puzzle. The not-A possibilities are genuine, but presupposed, and
so they are possible whether the conditional is true or false. They are
therefore irrelevant to its truth value.

An unexpected consequence is that the probability of a condi-
tional should equal the proportion of A possibilities in which C
holds, because not-A possibilities are irrelevant to its probability
too. Thus, it follows that the probability of If A, then C equals the
conditional probability of C given A. This relation is a well-known
Equation that probabilists defend (Edgington, 2014; Elqayam &
Over, 2013; Oaksford & Chater, 2007; Pfeifer & Kleiter, 2010). As
we currently show, however, naive individuals violate the proba-
bility calculus in a fundamental way.

To explain the model theory’s account of counterfactual condi-
tionals, we first need to refute an argument due to Adams (1970),
which has led many theorists to suppose that factual and counter-
factual conditionals must have quite different sorts of semantics.
Lewis (1973), for instance, argued that counterfactuals require a
“possible worlds” semantics, whereas factuals are the material
conditionals of sentential logic (see also, Evans & Over, 2004;
Jeffrey, 1981; Pearl, 2013). In Adams’s argument, he contrasted
the factual conditional:

If Oswald didn’t shoot Kennedy, then someone else did

with the counterfactual conditional:

If Oswald hadn’t shot Kennedy, then someone else would have.

The factual conditional is true, whereas the counterfactual is de-
batable. So, there is a radical difference between them. But,
Adams’s comparison is misleading. Any counterfactual in English
has a parallel factual conditional, and the factual conditional that
parallels the preceding counterfactual is:

If Oswald hasn’t shot Kennedy, then someone else will.

And its truth is just as debatable. Adams’s factual conditional
above takes for granted that someone shot Kennedy,1 and so the
parallel counterfactual should too. The past tense of “do” occurs in
the factual conditional and does not cue a counterfactual interpre-
tation, and so it is necessary to be more explicit:

If Oswald hadn’t been the person who shot Kennedy, then someone
else must have been.

This counterfactual is true, just as the factual conditional is.
Adams (1975) considered counterfactuals as “epistemic past

tense’” conditionals, that is, they have the same probability at the
time of their utterance as factual conditionals on a prior occasion
have. Hence, a factual conditional could have a low probability at
the time at which the utterance of its counterfactual counterpart
could have a high probability. He worried about this conjecture,
because of his counterexamples in the previous paragraph. As we
showed, however, his examples are not genuine parallels. Of
course, factual and counterfactual conditionals do differ in mean-
ing, but not in the radical way that Adams’s argument implied
(pace, e.g., Lewis, 1973).

Table 1 shows how a fact transforms a factual conditional into
a counterfactual one. The fact matches a possibility, which be-
comes a factual case, the other possibilities become counterfactual
possibilities, and the impossibility remains impossible. For false
conditionals, the mappings swap the entries for the first two cases
in their partition. An analogous transformation occurs from factual
to counterfactual disjunctions. So, a systematic mapping exists
from factual to counterfactual compound assertions. They run in
parallel to one another (cf. Stalnaker, 1968, for such a treatment of
conditionals).

Although the meanings of factual and counterfactual condition-
als run in parallel, their mental models differ. A factual condi-
tional, as we have seen, has only one mental model with explicit
content, which represents the main possibility that the conditional
asserts. A counterfactual of the sort, If A had happened, then C
would have happened, has these mental models:

A C [possible once]

not-A not-C [fact]

. . .

Hence, when someone asserts in an appropriate context “if there
had been a circle . . . ,” listeners know that the speaker has in mind
that there is not a circle, and so the if-clause refers to a counter-
factual possibility. Likewise, the then-clause, “there would have
been a triangle” implies that there is not a triangle, but in the
counterfactual possibility in which there is a circle, there is a
triangle (Johnson-Laird & Byrne, 1991, pp. 68–69). Individuals
try to keep track of the epistemic status of their models—whether
they refer to facts, possibilities, or counterfactual possibilities.
Counterfactual compounds can elicit knowledge of the actual
status of the if-clause, the then-clause, and the relation between

1 We thank David Over for pointing out in his review of a draft of this
article that a similar observation that “Kennedy is dead” is true for the
factual but uncommitted for the counterfactual is made by Pearl (2011).
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them (Byrne & Tasso, 1999, p. 728; see also Byrne & Tasso, 1994,
p. 126). They may know not-A and not-C as a matter of fact, or
they may rely on the linguistic cue of the subjunctive mood to infer
not-A and not-C is the case.

Many studies have corroborated this account (for a review, see
Byrne, 2017). They show that tasks depending on the case of not-A
and not-C are easier for counterfactual conditionals than for fac-
tual ones, as shown in the inferences people make (e.g., Byrne &
Tasso, 1999), their judgments of what the conditionals imply (e.g.,
Thompson & Byrne, 2002; see also Fillenbaum, 1974), what they
look at when they hear a counterfactual (e.g., Ferguson & Sanford,
2008), and the time they take to read the not-A and not-C case
(e.g., Santamaría, Espino, & Byrne, 2005). Counterfactuals also
represent the case of A and C, just as factual conditionals do (e.g.,
Santamaría et al., 2005). Hence, people readily make the modus
ponens inference from counterfactual conditionals (Byrne &
Tasso, 1994). Consider this example:

If the burglar had been caught, then he would have been prosecuted.

The burglar was caught.

What follows?

It follows that the if-clause of the conditional is true, and the
status of the conditional is updated to refer to the same possibilities
as a factual one. Modus ponens follows at once: The burglar was
prosecuted. Likewise, modus tollens is easier with a counterfactual
than with a factual conditional, because the relevant mental model
is now explicit. The phenomenon is robust, and inexplicable on
other accounts.

The Probabilities of Compounds

Unlike theories founded on probabilities, the model theory im-
plies that numerical probabilities enter into the contents of reason-
ing only if the task invokes them (Johnson-Laird et al., 2015, p.
207). So, when individuals judge whether a compound is true or
false, the possibility of counterexamples is critical, but their prob-
ability only matters in tasks invoking probabilities. Likewise, a
single counterexample can suppress inferences from factual con-
ditionals (e.g., Byrne, 1989; Byrne, Espino, & Santamaría, 1999;
see also De Neys, Schaeken, & d’Ydewalle, 2003), and from
counterfactual conditionals (e.g., Espino & Byrne, 2019), but it is
taken into account for ordinal judgments on a probabilistic scale
(e.g., Markovits, Forgues, & Brunet, 2010; pace Geiger & Ober-
auer, 2007; Oberauer & Wilhelm, 2003). Likewise, a judgment of
a conditional yields “false” when counterexamples exist, and it is
not affected by whether their probability is high or low (Goodwin,
2014). The theory predicts, however, that this relative probability
will be reflected in ordinal judgments of the probability of a
conditional’s truth.

Naive individuals are able to estimate the probabilities of many
sorts of assertion. They can make simple inferences based on the
frequencies or chances of an event, either from the proportions of
equipossible models in which the event occurs, or from numerical
tags on these models (Johnson-Laird, Legrenzi, Girotto, Legrenzi,
& Caverni, 1999; Costello & Watts, 2016). But, they can also
make inferences about the probabilities of unique events for which
frequency data are not available, for example,

The probability that the next Supreme Court justice is opposed to
abortions is 90%.

They can use evidence and heuristics, as Tversky and Kahneman
showed in their seminal research (e.g., Tversky & Kahneman,
1983). But, the mystery is this: Where do the numbers come from
in such estimates?

A putative solution is based on the model theory (see Khemlani,
Lotstein, & Johnson-Laird, 2012, 2015). Possibilities underlie
probabilities: They are founded on the same semantics, but prob-
abilities concern relative proportions or their numerical values
(Johnson-Laird & Ragni, 2019). So, inferences from conditionals
can refer to possibilities (as in Hinterecker et al., 2016), and
probabilities can derive from them.

Estimates about unique events depend on the proportions of
possibilities in models of relevant evidence. In the event that
Trump nominates the next Supreme Court justice, the judge will be
right wing, and the model theory postulates that individuals can
adduce evidence:

Most right-wing judges are opposed to abortion.

A mental model of the evidence yields a relevant proportion based
on the quantifier, “most right-wing judges”:

right-wing opposed to abortion

right-wing opposed to abortion

right-wing opposed to abortion

right-wing

Intuition (in System 1) represents this proportion in an iconic
model of the subjective probability:

|------ |

where the left end of the scale represents impossibility, the right
end represents certainty, and the length of the icon represents the
probability. Various theories postulate that innumerate individuals
represent magnitudes in such non-numerical models (e.g., Carey,
2009). A comparable claim follows from the model above:

It’s highly likely that the next Supreme Court justice is opposed to
abortion.

Further evidence can shift the magnitude of the icon one way or
another, and so it can represent the probability of compound
assertions. A similar process occurs for conjectures, such as
whether there is an apple in the fruit bowl, or a pear, or both.
Individuals who know nothing about the situation are likely to
assume that each possibility is equiprobable (for corroboration, see
Johnson-Laird et al., 1999).

Most people do not know the correct ways to estimate the
probabilities of compound assertions, and the model theory pro-
poses that their intuitive estimates (in System 1) of the probability
of a conjunction or a disjunction of A and C is a rough average of
their estimates of the probability of A and the probability of C.
Their degree of belief in the compound depends on their degrees of
belief in its elements. Likewise, their intuitive estimate of the
probability of If A, then C relies on making an estimate of the
probability of C, and then nudging its value either higher or lower
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according to what effect, if any, they infer that A should have on
the probability of C. To estimate the probability of a counterfactual
conditional, If A had happened, then C would have happened,
individuals have to envisage the point in time at which A was a real
possibility and then rely on the same procedure as for the factual,
If A, then C, but with a further factor. They now know that the
probability of A is reduced, because it did not, in fact, happen. This
algorithm seems close to an implementation of Adams’s (1975)
conception of an epistemic past tense.

The model theory explains why Adams’s (1970) original exam-
ples about Kennedy’s assassination differ so radically. Individuals
know that someone shot Kennedy, and so they evaluate the factual
conditional (“If Oswald didn’t shoot Kennedy, then someone else
did”) in this context. They infer from someone shot Kennedy and
it was not Oswald, that it was someone else. So, the conditional is
true. For the counterfactual conditional (“If Oswald hadn’t shot
Kennedy, then someone else would have”), individuals envisage
the point in time in which one possibility was that Oswald did not
shoot Kennedy, and then consider any relevant evidence that
someone else thereafter will shoot him. In the absence of any
strong evidence for such an event, they infer that there are very few
possible scenarios in which it will happen. If asked for a numerical
estimate, they give a low probability.

The deliberations in System 2 are more sophisticated than those
for intuitions: they multiply their estimates for a conjunction, and
sum them for a disjunction, but they fail to consider the potential
dependence of one event on the other. And, for conditionals, they
estimate the proportion of cases of A in which C holds (a procedure
equivalent to the Equation for conditional probabilities). The
model theory of intuitive and deliberative probabilities is imple-
mented in a computer program, mReasoner, which integrates de-
duction and probabilities (Khemlani et al., 2015). It uses loops of
a small fixed number of iterations to form the intuitive averages of
two values on an icon: It moves them toward each other until they
meet. Deliberations, which are computationally more powerful,
can map the resulting iconic model into a numerical estimate of a
probability.

Experiments have corroborated the hypothesis that estimates of
the probability of A and of the probability of C underlie estimates
of the probability of a compound of A and C. Explicit estimates of
these three probabilities fix the “joint probability distribution
(JPD),” that is, the probabilities of each of the conjunctions in the
partition: A & C, A & not-C, not-A & C, and not-A & not-C. But,
the procedures described above for compounds should tend to
yield what mathematicians refer to as subadditive values for the
joint probability distribution, that is, they sum to more than 100%,
contrary to the probability calculus. Square roots, for instance, are
subadditive, for example, �(2 � 2) is less than �2 � �2, but
probability in the standard calculus is not subadditive, because the
probability of the complete joint probability distribution equals
the sum of the probabilities of its parts—each of the cases in the
partition. Moreover, granted that deliberations for conditionals
correspond to Bayes’s theorem, the model theory predicts that
conditionals should not be as subadditive as disjunctions for which
deliberations overlook the possible dependency between the two
events. Experiments corroborated the prediction: Estimates for
conditional probabilities and their two clauses were subadditive on
only 24% of trials, whereas estimates for disjunctions and their two
clauses were subadditive on 65% of trials (Khemlani et al., 2015).

For an inclusive disjunction, P(A or C), participants based their
intuitive estimates on a primitive average of P(A) and P(C), but for
a conditional probability, P(C|A), they treated A as evidence for
estimates of P(C). Participants in our first experiment had to make
a different sort of estimate: they estimated the probabilities of the
conjunction of a compound assertion with each of the four cases in
its partition. One such estimate, for example, was of the joint
probability of

If there is an apple, then there is a pear, and

there isn’t an apple and there isn’t a pear.

The sum of the four estimates according to the standard probability
calculus equals 100%.

The Model Theory’s Predictions

The model theory yields three principal predictions about con-
ditionals and disjunctions.

Prediction 1: Truth. Participants will judge that a compound
and each of the cases in its partition that are possible can be jointly
true. Judgments for disjunctions will not differ reliably over their
possibilities, because mental models represent each of them, and
so each of the three possibilities, A & not-C, not-A & C, A & C,
will tend to be judged to be true equally often. In contrast,
judgments for conditionals will show a reliable trend based on the
accessibility of their possibilities, and so there will be a greater
tendency to judge A & C to be true compared to not-A & not-C,
which in turn will have a greater tendency to be judged true
compared to not-A & C. Judgments of counterfactuals will parallel
those of factuals, given that their fully explicit models are the
same, differing only in their epistemic status.

Prediction 2: Probability. Participants’ estimates of the joint
probabilities of a compound and the cases in its partition will be
grossly subadditive, because they are making four judgments that
are each based on a process that tends to be subadditive. For
example, they may make intuitive estimates that the probability of
if A, then C and A & C is very high, the probability of If A, then
C and not-A & not-C is also quite high, the probability of If A, then
C and not-A & C is high, and the probability of If A, then C and A
& not-C is zero. When they translate these intuitions into numer-
ical chances out of 100, they may assign high numbers to reflect
their judgments of probability, for example, 90 to If A, then C and
A & C, 70 to if A, then C and not-A & not-C, and so on. As a result,
their numerical estimates will exceed 100, in violation of the
standard probability calculus. The prediction follows from the
model theory’s account of how individuals estimate the probabil-
ities of compound assertions (Khemlani et al., 2015). Conditionals
will yield less subadditivity than disjunctions, for which estimates
overlook the possible dependency between the two events. Coun-
terfactual conditionals will yield less subadditivity than factual
conditionals, because one of the cases in their partition corre-
sponds to the presupposed facts. When individuals know that the
sum of their estimated probabilities of the four cases in a com-
pounds’ partition should not sum to more than 100%, a subtle
interaction will occur. For conditionals, A and C will be judged
more probable for factual than counterfactual conditionals, be-
cause it has an explicit mental model for factuals but is only a
counterfactual possibility in the mental models for counterfactuals.
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In contrast, not-A and not-C will be judged less probable for
factual than counterfactual conditionals, because it has no mental
model for factual conditionals but does for counterfactual condi-
tionals for which it is a fact.

Prediction 3: Counterexamples. Judgments of the truth-
values of compounds will reflect only the possibility of a coun-
terexample, and so participants will tend to judge as true condi-
tionals with no counterexamples more often than conditionals with
counterexamples, regardless of the number of counterexamples. In
contrast, their estimates of the probabilities of their truth-values
will be sensitive to the probability of counterexamples, and so they
will estimate the probability of truth as highest for conditionals
with no counterexamples, as intermediate for conditionals with a
few counterexamples, and as lowest for conditionals with many
counterexamples.

Alternative Theories of Compounds

Four main alternative psychological theories of compound as-
sertions exist. They are based on inference rules from standard
logic, on suppositions, on probabilistic logic, and on causal Bayes
networks. We consider each sort of theory in turn.

Theories Based on Logical Inference Rules

Theories based on mental proofs using formal inference rules
from standard logic treat conditionals, If A, then C, as material
conditionals, which are truth-functional, that is, they are true in any
case in their partitions except for A and not-C in which case they
are false (e.g., Rips, 1994). But, such interpretations yield “para-
doxes,” for example, conditionals are true provided that their
if-clauses are false, so the following sort of inference is valid:

The government is not going to allow fracking.

Therefore, if the government is going to allow fracking, then it will
lose the next election.

The inference is absurd. But, one way in which to try to save the
material conditional, following Grice (1989), is to appeal to the
conventions governing conversation. A speaker asserting the con-
ditional above would not do so if she believed that the government
was not going to allow fracking. So, the utterance conveys a
conversational implicature that its if-clause is true. This implica-
ture prevents the paradox above. A conversational implicature is
not a valid deduction, and so it can be cancelled, as in this
utterance:

It’s sensible of the government not to allow fracking, because it will
lose the next election if it does.

Its first clause cancels the implicature that the subsequent if-clause
is true. So, we are back to a material conditional in this example,
and because its if-clause is false, the conditional itself is bound to
be true, granted that the government is not going to allow fracking.
The absurd consequence is a prediction about the next election that
is bound to be true too. In sum, Grice’s conversational implicatures
cannot save the approach to conditionals based on standard logic.
Such theories also cannot explain the difference in accessibility of
the cases in a conditional’s partition or the parallel between factual
and counterfactual compounds, because factual compounds are

“truth functional,” and counterfactuals cannot be truth functional
(see, e.g., Jeffrey, 1981, Ch. 4). We say no more about theories
based on logical inference rules.

The Suppositional Theory of Conditionals

The suppositional theory of conditionals postulates that if trig-
gers a supposition of its clause, and individuals evaluate the
then-clause in this hypothetical situation (Evans & Over, 2004).
The theory rejects the material conditional of logic, and instead
postulates that conditionals have no truth value in the cases in
which their if-clauses are false. People therefore understand a
factual conditional by adding its if-clause to their beliefs and
calculating the probability of its then-clause. They think about true
if-clauses only and not about their falsity or whether or not it
would imply the then-clause (e.g., Handley, Evans, & Thompson,
2006; see also Oaksford & Chater, 2007). In general, proponents of
suppositions have more recently adopted a probabilistic approach
to conditionals (see, e.g., Evans, 2012; Over, 2009) to which we
now turn.

Probabilistic Logic

Various theories of conditionals are based on Adams’s (1998)
probabilistic conditional (see, e.g., Liu, Lo, & Wu, 1996; Oaks-
ford & Chater, 2007; Oaksford, Chater, & Larkin, 2000; Over,
Hadjichristidis, Evans, Handley, & Sloman, 2007; Pfeifer &
Kleiter, 2005, 2010). On this account, “an ordinary conditional
assertion if p then q is interpreted as q is probable given p”
(Evans, Handley, & Over, 2003, p. 322). Hence, people believe
a conditional if its corresponding conditional probability is high
enough to warrant the judgment (Oberauer & Wilhelm, 2003, p.
685). As we saw earlier, the model theory also implies this
Equation for the subjective probability of a conditional, but not
for its meaning.

Over and Cruz (2017) remarked that probabilists have ne-
glected counterfactuals, but they have noted commonalities
between factual and counterfactual conditionals (e.g., Elqayam
& Over, 2013; Evans & Over, 2004; Over et al., 2007). Adams
(1975) proposed that the probability of a counterfactual at the
present time is the same as the probability of the corresponding
factual conditional at a previous time. And to understand a
counterfactual is to estimate its believability. Such an estimate
depends on its conditional probability, that is, the likelihood of
its then-clause given its if-clause. Individuals think about only
one situation at a time (the singularity principle) and so the
counterfactual is represented in a single mental representation
(Evans, 2007, p. 74). The theory allows that individuals can
represent an implicature of the facts A and C (Evans, Over, &
Handley, 2005, p. 1049). However, a significant modification to
Adams’s (1998) account of factual conditionals is that the
probability of a counterfactual, If A had happened, C would
have happened, combines its corresponding conditional proba-
bility with the degrees of belief in each of the implicated facts,
A and C (Elqayam & Over, 2013).

Few experimental studies have tested such probabilist ideas
about counterfactuals (Over & Cruz, 2017). But, one study ob-
served no reliable differences between indicative and counterfac-
tual conditionals in participants’ tendency to produce conclusions
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consistent with a conditional probability interpretation for various
inferences such as modus ponens (Pfeifer & Tulkki, 2017). In
another study (Over et al., 2007, Experiment 3), participants
judged the probability of counterfactuals such as:

If New York had not been attacked by terrorists in 2001, then the
United States would not have attacked Iraq

and the probability of each of the four cases in its partition, but
from a point in time prior to the events in 2001, for example,

New York will not be attacked by terrorists and the United States will
not attack Iraq.

The participants were told that the four probabilities should sum to
100%. Their estimates of the probability of a counterfactual, If A
had not happened, then C would not have happened, correlated
with the estimates of the earlier probability of not-C given not-A,
which the experimenters computed from the estimates of the
relevant cases in the partition. This result corroborates both the
probabilist account and the model theory.

Otherwise, probabilist theories appear to have the following
consequences. First, they make no predictions about disjunctions
or about differences between them and conditionals. They make no
predictions about differences between factual and counterfactual
conditionals, because they make no claims about the possibilities
to which compound assertions refer. Second, they predict that
estimates of the joint probabilities of a compound and the cases in
a compound’s partition should tend to be coherent rather than to
violate the probability calculus. Of course, if individuals have
beliefs about the probability of various cases in the partition, they
may estimate different probabilities for them, but nonetheless they
should sum to 100 (Pfeifer & Kleiter, 2010). Third, probabilist
theories predict that judgments of the truth values of compounds
and estimates of the probability of their truth-values will both be
sensitive to the probability of counterexamples. Conditionals with
no counterexamples and those with a low probability of counter-
examples will both tend to be judged to be true, because the
meaning of a conditional tolerates exceptions, and both will tend to
be judged to be true more often than conditionals with many
counterexamples.

Causal Bayes Networks and Counterfactuals

An alternative probabilistic theory of counterfactual condi-
tionals is due to Pearl (2009, 2011, 2013; see also Spirtes,
Glymour, Scheines, et al., 2000). It treats inferences from
factual conditionals and disjunctions in the same way as stan-
dard logic. It treats counterfactual conditionals as concerning
causation (cf. Lewis, 1973, for an analogous distinction).
Pearl’s aim was to get scientists and statisticians to take cau-
sation seriously in structural equations, and to enable them to
compute both deterministic causes and causal probabilities. His
starting point was Bayes networks. They are a parsimonious
way to represent interrelated conditional probabilities in place
of the full joint probability distribution. In a network, an arrow
from one variable to another stands for a direct relation, but a
route from one variable to another may also be indirect. Each
node in the network can be linked to a representation of the
conditional probability of the variable’s value given its inputs.
Pearl’s concept of causation is that it is a summary of what

happens when an intervention establishes a counterfactual con-
ditional. For example, suppose you want to determine whether
daily exercise causes a reduction in blood pressure. You may
observe a correlation, but a decisive test calls for an experiment.
In daily life, whether or not a person does daily exercise
depends on many vagaries, for example, the person is a former
athlete, which in turn may also have a direct effect on blood
pressure. So, a causal network will have a direct link from
“former athlete” to “blood pressure,” and an indirect link be-
tween the two via “exercises daily.” An intervention severs
these links in the network (using a so-called do-operator). In a
corresponding actual experiment, the participants would exer-
cise daily or not depending only on the condition in the exper-
iment to which they were assigned. Once you have a causal
network of this sort, you can assign a probability distribution to
it, and Pearl (2009) gave a procedure by which to compute the
probability of a counterfactual: “If a person had exercised daily
then the person would have lowered blood pressure” (Ch. 7).
Pearl’s approach solves problems for Lewis’s (1973) counter-
factual approach, such as overdetermination in which an effect
has multiple causes (see also Lagnado, Gerstenberg, & Zultan,
2013; Oaksford & Chater, 2017).

Sloman and Lagnado (2005) proposed that humans rely on such
networks for causal reasoning. They argued that people can envis-
age an intervention using the do-operator, and set a variable to a
particular value to see what the consequences are. Following Pearl
(2009, Section 1.4.4), they propose a three-step procedure for
answering a counterfactual question:

If B had not occurred, would D still have occurred?

First, you infer what follows from the network using standard
logic, for example, given D occurred, then its precursors A, B, and
C also occurred. Second, the question refers to a counterfactual
possibility in which B did not occur. So, you make an intervention
and the do-operator prunes the causal links to B, and sets B to not
having occurred. Third, you infer the consequences of your inter-
vention, for example, in a network in which A causes B and C,
which each cause D, then given that A occurred, C occurred, which
suffices for D to occur. So, the answer to the question is “yes” (see
also Sloman, 2013). Reasoning about interventions cannot be
carried out in standard logic, but experiments corroborated the
predictions. However, subsequent studies have shown that con-
trary to pruning, reasoners do think about causes upstream from
the point of intervention (Rips, 2010; see also Rips & Edwards,
2013).

Individuals recognize the difference between observations
and interventions, including counterfactual interventions for
which the real state is known, hypothetical interventions for
which the real state is not known (Lucas & Kemp, 2015; Meder,
Hagmayer, & Waldmann, 2009), and interventions informed by
explanations and norms (Dehghani, Iliev, & Kaufmann, 2010).
They also use heuristics to determine the best intervention by
identifying nodes as causes or effects of a target node (Meder,
Gerstenberg, Hagmayer, & Waldmann, 2010). We return to
causal Bayes networks in the General Discussion, but, they do
not appear to make any of the model theory’s three principal
predictions: (1) that participants will judge the joint truth of
conditionals and disjunctions with the possibilities to which
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they refer, (2) that their estimates of the probabilities of their
joint truth will be more subadditive for disjunctions than for
conditionals, and (3) that their judgments of the truth of com-
pounds given counterexamples will be insensitive to their prob-
ability unlike their estimates of the probability of truth.

Experiment 1a

Our initial experiment tested the model theory’s Predictions 1
and 2. It examined participants’ judgments of the joint truth and
joint probability of compound assertions and each of the cases in
their partitions. The compounds were conditionals or disjunctions,
and factual or counterfactual. For example, to test the first predic-
tion for a counterfactual conditional,

If there had been an apple in the fruit bowl, there would have been a
pear

the participants judged whether its conjunctions with each case in
its partition, for example,

There was an apple in the fruit bowl and there was a pear

can both be true. This task should not be confused with one in
which participants select potential evidence bearing on the truth
or falsity of a conditional, which leads them to treat cases in
which the if-clause is false as irrelevant—a sensible reaction
according to the model theory. In contrast, the present task is in
effect asking whether the pairs of sentences are consistent with
one another. (We discovered the hard way that framing the task
in terms of “consistency” confuses participants, and so the
experiment frames it in an equivalent way: “can both the
assertions be true?”; see Khemlani, Orenes, & Johnson-Laird,
2014). To test the second prediction, the experiment calls for
them to then estimate the chances out of 100 that both assertions
are true. The model theory predicts that a conditional can be
jointly true with any case in its partition except A & not-C, but
the other cases should yield the following trend in acceptance:
A & C, not-A & not-C, and not-A & C. An inclusive disjunction,
A or C, or both, can be jointly true with any case in its partition
except not-A & not-C, and its possibilities should be equally
accessible. According to the model theory’s second prediction,
estimates of the joint probability of a compound and the cases
in its partition should be highly subadditive, greater for dis-
junctions than conditionals, and greater for factual compounds
than counterfactual compounds. To test this prediction, we
chose materials, such as “if there was an apple in the fruit bowl
then there was a pear” for which participants would not have
strong beliefs on which to base their judgments.

Method

Participants. The participants were 94 volunteers recruited
from the online platform Prolific (www.prolific.ac), restricted
to English speaking countries. They were paid £1.25 sterling for
their participation in the experiment, which took about 15–20
min. For all the studies, the participants gave their informed
consent, and we report all our manipulations and measures, and
each study’s sample size was determined prior to data collec-
tion. We had planned a sample size of 80 participants to ensure

sufficient power to observe a small to medium effect and set the
preprogrammed recruitment stopping rule to recruit until 100
participants had been assigned by the program (on the assump-
tion that some participants would fail the attention checks). The
materials were presented using SurveyGizmo software (www
.surveygizmo.com). Prior to analysis, we eliminated the data
from eight participants: two because they failed questions com-
monly used in online experiments to check that they had paid
attention and six because they made bizarre estimates of prob-
ability, for example, negative numbers, or estimates of over 400
on at least one trial. As a result, the experiment tested 72
women and 22 men, ranging in age from 19 to 71 years with a
mean of 39 years. All of the experiments received ethical
approval from the School of Psychology Ethics Committee at
Trinity College Dublin.

Design, materials, and procedure. The participants carried
out eight trials, two for each of four sorts of compound assertion:

1. Factual conditionals, for example, “If there was an apple
in the fruit bowl, then there was a pear.”

2. Counterfactual conditionals, for example, “If there had
been an apple in the fruit bowl, then there would have
been a pear.”

3. Factual disjunctions, for example, “There was an apple in
the fruit bowl or there was a pear, or both.”

4. Counterfactual disjunctions, for example, “There would
have been an apple in the fruit bowl or there would have
been a pear, or both.”

We devised eight sets of contents, which were about flowers,
fruit, vegetables, and other foods, which were in vases, bowls, and
other receptacles (see the online supplemental materials). The
eight contents were assigned at random to the eight problem forms.
The problems were presented to each participant in a random
order.

The participants were instructed to take part in the study only if
they were prepared to consider the descriptions seriously and to
give some thought to answering the questions carefully. Their task
is illustrated in the following example of a trial for a counterfactual
conditional (adapted from Goodwin & Johnson-Laird, 2018):

Consider the following if–then statement:

If there had been a rose in the vase, then there would have been a
daffodil.

Now consider each of the four and statements on the left below. For
each statement, please indicate whether it and the if–then statement
can both be true.

Alongside that judgment, please also indicate your estimate of the
chances that both are true. In the case that you judge that a pair of
statements cannot both be true, then plainly the chances that they are
both true must be 0.

The if–then statement is repeated here:

If there had been a rose in the vase, then there would have been a
daffodil.
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Could both this statement
and the if–then statement

above both be true?

What are the chances
that both this

statement and the
if–then statement

above are both true?

Write “yes” or “no” Write a number
from 0 (no

chance at all) to
100 (completely

certain).
There was a rose and

there was a daffodil.
_____ _____

There was a rose and
there was no daffodil.

_____ _____

There was no rose and
there was a daffodil.

_____ _____

There was no rose and
there was no daffodil.

_____ _____

As the example illustrates, the participants made four judgments
of joint truth and four judgments of joint probability for each
compound and the cases in its partition, that is, a total of 64
judgments. They were given two practice problems based on a
factual conditional and a factual disjunction in which they made
judgments only of joint truths.

Results and Discussion

The dataset for all of the experiments is available at https://osf
.io/be9ck/ and https://reasoningandimagination.com/data-archive/.
Table 2 presents a summary of the overall proportions of judg-
ments that a compound and each case in its partition could both be
true. As the model theory predicts, the participants tended to judge
that conditionals can be jointly true with the cases A and C, and
not-A and not-C, and that they cannot be jointly true with the case
A and not-C. These judgments do not reflect a response bias
because the judgment of joint truth was reliably higher for A and
C than for A and not-C (Wilcoxon’s test, z � 8.61, p � .001, r �
.63). Their only judgments that were not reliably different from
chance were for the joint truth of the conditionals with the case
not-A and C. Some conditionals may have been interpreted as
biconditionals of the sort, If, and only if, A, then C, for which the
correct judgment is that this case cannot be jointly true. Likewise,
the model theory predicts that the judgments of the four cases

should be the same for both factual and counterfactual condition-
als. They were identical on at least one of the two trials with
factual and counterfactual conditionals for 77 out of the 94 par-
ticipants, and identical on both trials for 55 of them (binomial test,
with a prior of .25, given the four cases, p � .001).

As Table 2 also shows, the participants tended to judge that
disjunctions can be jointly true with the cases of A and C, A and
not-C, and not-A and C, and that they could not be jointly true with
cases of not-A and not-C. These judgments did not reflect a
response bias, because the judgment of joint truth was reliably
higher for the case of A and C than for the case of not-A and not-C
(Wilcoxon’s test, z � 8.44, p � .001, r � .62).

Table 3 summarizes the participants’ mean estimates of the joint
probability of a compound and each case in its partition. If these
estimates are to be consistent with the probability calculus, they
should never sum to more than 100. In fact, as the model theory
predicts, the four sums were highly subadditive, ranging from 240
to 270 chances out of 100. Overall, 92 out of the 94 participants
made subadditive estimates (binomial test, p � 1 in 10 million).

As Table 3 suggests, estimates of the probabilities for disjunc-
tions were more subadditive than those for conditionals (Wilco-
xon’s test, z � 3.86, p � .001, r � .28), and those for factuals were
more subadditive than those for counterfactuals (Wilcoxon’s test,
z � 2.1, p � .036, r � .15). These two variables did not interact
reliably (Wilcoxon’s test, z � 1.4, p � .16). But, factual condi-
tionals were more subadditive than counterfactual conditionals
(Wilcoxon’s test, z � 2.32, p � .026, r � .16), whereas no reliable
difference occurred between factual and counterfactual disjunc-
tions (Wilcoxon’s test, z � .87, p � .385). The complete set of
statistical comparisons is with Table S1 in the online supplemental
materials.

Overall, the results supported the model theory’s first two pre-
dictions. The decline in the participants’ tendency to endorse the
joint truth of conditionals, If A, then C, over the cases A and C,
not-A and not-C, not-A and C, corroborated the theory’s first
prediction, as did the endorsement of the disjunctions and their
possible cases, which did not differ in reliability. The vast subad-
ditivity of the participants’ estimates of the joint probabilities of
the compounds and cases in the partition corroborated the model
theory’s second prediction. So, too, did the greater subadditivity of
disjunctions over conditionals, and the greater subadditivity of
factual over counterfactual conditionals. Probability estimates of a
single compound and of its constituent propositions tended to be
subadditive (Khemlani et al., 2015), so the theory predicts that four
such estimates should amplify the effect. Its magnitude, however,
was massive.

A potential alternative to the model theory’s prediction of sub-
additivity, which we owe to Mike Oaksford (personal communi-
cation, September 2018), is that the participants carried out a
different task. They did not estimate the joint probability of, say,
If A, then C, and A and not-C, but instead they estimated the
conditional probability of not-C given A. Likewise, for the case in
the partition of A and C, they estimated the conditional probability
of C given A, and likewise for the other cases. This alternative
hypothesis, however, runs into several difficulties. There is no
obvious reason why the participants should convert the task into
one calling for a conditional probability (see the presentation of a
typical trial above). Moreover, when participants estimate the
probability of A, the probability of C, and the conditional proba-

Table 2
The Mean Proportions of Judgments in Experiment 1a That the
Compound and Each Case in the Partition Can Both Be True

Truth judgments

Compound assertions

Conditionals Disjunctions

Factual Counterfactual Factual Counterfactual

Cases in the partition
A and C .96 .93 .97 .95
Not-A and not-C .84 .86 .18 .13
Not-A and C .49 .46 .79 .83
A and not-C .10 .10 .79 .85

Note. All but two proportions (.46 and .49) in this table were either
significantly greater than or significantly less than the chance value of .5
(Wilcoxon tests, p � .001, where Bonferroni corrected alpha is p � .003).
See Table S1 in the online supplemental materials for standard deviations.
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bility of one given the other, they are reliably subadditive (Khem-
lani et al., 2015), and the hypothesis offers no explanation for this
result. Furthermore, the sum of the two preceding conditional
probabilities ought to be no more than 100, but as Table 3 shows
it was 128 chances out of 100. The hypothesis also fails to explain
the vast subadditivity of the joint estimates with disjunctions: no
plausible reason exists to suppose that disjunctions should trigger
estimates of conditional probabilities of one disjunct given the
other. Of course, the participants erred in judging impossible cases
as capable of joint truth and in estimating them as having proba-
bilities greater than zero. Yet, even if we discount these estimates,
the remaining subadditivity was vast.

Experiment 1b

In case the gross subadditivity in the previous experiment was a
result of a misunderstanding, this experiment both simplified the
task and clarified the import of an estimate of 100 chances. The
experiment called only for estimates of the probability of each case
in a compound’s partition, that is, the judgments were no longer
joint with the compounds. The experiment also compared the old
instructions for estimating probabilities with a new instruction that
emphasized that an estimate of 100 implied that the case held in
each and every possibility.

Method

Participants. The participants volunteered on the online plat-
form Prolific and were paid £1.25 sterling for their participation.
We eliminated the data of 17 potential participants, six because
they had carried out a similar task, five because they failed the
attention test, one for being underage, and the remainder for
making the same estimate for all problems, or failing to answer all
questions. There were 81 resulting participants: 60 women, 20
men, and one individual with a nonbinary gender, and their ages
ranged from 20 to 73 years with a mean of 40 years.

Design, materials, and procedure. The design was based on
the previous experiment but with two changes. First, the participants
were assigned at random to one of two groups for which their
instructions for making their probability estimates differed slightly.

One group of participants (n � 43) was told to write a number from
0 (no chance at all) to 100 (completely certain). Another group of
participants (n � 38) was told to write a number from 0 (no chances
at all) to 100 (all chances, each and every one). The point of this
second formulation was to ensure that the participants grasped the
significance of an estimate of 100. Second, the participants no longer
made joint judgments of the truth or probability of the compound
together with a case in the partition. Instead, they made judgments
only of each case in the partition, albeit in the context of a compound.
An example of the task is as follows:

Consider the following if–then statement:

If there had been a rose in the vase, then there would have been a
daffodil.

Now consider each of the four and statements on the left below. For
each statement, please indicate whether it can be true.

Alongside that judgment, please also indicate your estimate of the
chances that it is true. In the case that you judge that it cannot be true,
then plainly the chances that it is true must be 0.

The if–then statement is repeated here:

If there had been a rose in the vase, then there would have been a
daffodil.

Could the
statement on

the left be
TRUE? Write
‘Yes’ or ‘No’

What are the
chances that the
statement on the

left is TRUE? Write a
number from

0- ‘no chances
at all’ to 100- ‘all

chances, each
and every one’.

There was a rose and
there was a daffodil. e e

There was a rose and
there was NO daffodil. e e

There was NO rose and
there was a daffodil. e e

There was NO rose and
there was NO daffodil. e e

The order of the four cases in the partition was random on every
trial. The contents of the problems were similar to those in the
previous experiment, and they were assigned to the problems in
two random ways. Each participant received one of these sets at
random, and the eight problems in a different random order.

Results and Discussion

The two groups of participants, who had slightly different instruc-
tions, did not differ reliably in either judging truth or estimating
probabilities (see the online supplemental materials for the statistics),
and so we combined their results for further analysis. Table 4 sum-
marizes the proportion of judgments that each of the cases in a
compound’s partition could be true. As it shows, the results replicate
those of the previous experiment. The complete statistical compari-
sons are with Table S2 of the online supplemental materials.

Table 5 summarizes the participants’ mean estimates of the
probabilities of each case in the four sorts of compounds’ parti-
tions. Once again, as the model theory predicts, the four sums were
subadditive, ranging from 204 to 220. Overall, 66 out of the 81

Table 3
Mean Estimates of the Joint Probability (From 0 to 100) in
Experiment 1a of a Compound Assertion and Each Case in
Its Partition

Probability estimates

Compound assertions

Conditionals Disjunctions

Factual Counterfactual Factual Counterfactual

Cases in the partition
A and C 86 83 83 78
Not-A and not-C 72 72 49 45
Not-A and C 53 47 68 71
A and not-C 42 38 70 72

Sum 253 240 266 270

Note. The sum of probabilities for each of the four sorts of compound
was reliably greater than the probability calculus’s normatively correct sum
of 100 (Wilcoxon tests in each case, z � 8.2, p � .001, r � .60.) See Table
S1 in the online supplemental materials for standard deviations.
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participants made subadditive estimates (Binomial test, p � .001).
The subadditivity of the cases in the partition did not differ
significantly depending on the compound: those with disjunctions
did not differ reliably from those with conditionals, those with
factuals did not differ reliably from those with counterfactuals, and
these two variables did not interact reliably (see the online sup-
plemental materials). The subadditivity was likewise smaller than
in the previous experiment, though still massive. The reason seems
clear: The task focused participants on cases in the partition and
thereby reduced the contextual effects of the compounds. Of
course, it does not eliminate these effects: Cases in which a
compound would be true still elicited much higher probabilities
than cases in which it would be false.

A putative alternative explanation is that participants imagined
a different background situation for each case in the partition
rather than imagining a constant situation. However, we arranged
the four judgments vertically beneath each other in a grid to ensure
that participants treated them as having a constant background,
basing our procedure on an already established one (Goodwin &
Johnson-Laird, 2018). The order in which participants received the
four cases in the partition was fixed in Experiment 1a and ran-
domized in Experiment 1b, but this factor made little difference.
Yet, if participants were entertaining different backgrounds for
each comparison, it might be expected to affect their estimates.

Experiment 1c

The previous experiments established robust evidence for the
model theory’s first two predictions: participants judged that each
predicted possibility in a compound’s partition could be true and they
estimated the corresponding probabilities as subadditive. In Experi-
ment 1a, the participants judged whether a case in the partition and the
compound statement could both be true, and estimated the chances
that they were both true: Disjunctions were more subadditive than
conditionals, and factual conditionals were more subadditive than
counterfactual conditionals. In Experiment 1b, in which the com-
pounds provided a context, the participants judged only whether a
case in the partition was true and estimated the chances that it was
true: Subadditivity was still massive, but its differences from one sort
of compound to another were now no longer reliable. Studies of the
probabilities of conditionals have sometimes instructed participants
that the sum of estimates of cases in the partition should not exceed

100% (e.g., Over et al., 2007). The advantage of this procedure is that
it draws attention to the relative probabilities of different cases.
Experiment 1c used this procedure.

The model theory predicts that an interaction should emerge
reflecting two differences. First, A and C is the most salient
possibility for factual conditionals—the one case represented ex-
plicitly in a mental model (see Table 1), whereas it is merely a
counterfactual possibility in the mental models for counterfactual
conditionals. Second, not-A and not-C has no corresponding ex-
plicit mental model for factual conditionals, whereas it is a fact and
is represented in a mental model for counterfactual conditionals.
Hence, the theory predicts a novel interaction: A and C should be
more probable for factual than for counterfactual conditionals,
whereas not-A and not-C should be less probable for factual than
for counterfactual conditionals. No sign of such an interaction
occurred in the previous studies, perhaps because nothing in them
led participants to consider the relative sizes of their estimates, but
the task in the present experiment allowed us to test the interaction.
It is an instance of the model theory’s second prediction, which
relates probabilities to possibilities.

Method

Participants. The participants volunteered on the online plat-
form Prolific and were paid £ 1.25 sterling for their participation.
We eliminated 26 potential participants for similar reasons to those
in the previous studies. There were 72 resulting participants: 49
women, 22 men, and one individual who identified as agender, and
their ages ranged from 18 to 76 years with a mean of 35 years.

Design, materials, and procedure. The design, materials,
and procedure, were similar to those for Experiment 1b except that
the participants were told that the chances for the four statements
together must not sum to more than 100, as the following example
of the task shows:

Consider the following if–then statement:

If there had been a rose in the vase, there would have been a daffodil.

Now consider each of the four and statements on the left below. For
each statement, please indicate whether it can be true.

Table 4
The Mean Proportions of Judgments in Experiment 1b That
Each Case in the Partition Could Be True

Truth judgments

Compound assertions

Conditionals Disjunctions

Factual Counterfactual Factual Counterfactual

Cases in the partition
A and C .98 .96 .99 1.0
Not-A and not-C .88 .86 .10 .15
Not-A and C .35 .41 .91 .91
A and not-C .06 .08 .91 .93

Note. All but one of the proportions (.41) in this table were either
significantly greater than or significantly less than the chance value of .5
(Wilcoxon tests, p � .001, where Bonferroni corrected alpha is p � .003).

Table 5
Mean Estimates of the Probability (From 0 to 100) in
Experiment 1b of Each Case in the Partition of the Four Sorts
of Compound

Probability estimates

Compound assertions

Conditionals Disjunctions

Factual Counterfactual Factual Counterfactual

Cases in the partition
A and C 80 78 68 67
Not-A and not-C 64 64 29 34
Not-A and C 35 35 56 59
A and not-C 28 27 59 60

Sum 207 204 212 220

Note. The sum of probabilities for each of the four sorts of compound
was reliably greater than the correct sum of 100 in the probability calculus
(Wilcoxon tests in each case, z � 6.5, p � .001, r � .51).
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Alongside that judgment, please also indicate your estimate of the
chances that it is true. In the case that you judge that it cannot be true,
then plainly the chances that it is true must be 0. The chances for the
four statements together must not exceed 100.

The if–then statement is repeated here:

If there had been a rose in the vase, then there would have been a
daffodil.

Could the
statement on

the left be
TRUE? Write
‘Yes’ or ‘No’

What are the
chances that the
statement on the

left is TRUE? Write a
number from

0- ‘no chances
at all’ to 100- ‘all

chances, each
and every one’.

Your four answers
must sum to 100.

There was a rose and
there was a daffodil. e e

There was a rose and
there was NO daffodil. e e

There was NO rose and
there was a daffodil. e e

There was NO rose and
there was NO daffodil. e e

Results and Discussion

Table 6 summarizes the proportion of judgments that each of the
cases in a compound’s partition could be true. As it shows, the
results corroborated the model theory’s first prediction and repli-
cated those of the previous experiments: there was the same trend
over the three cases that are true for conditionals, but not for
disjunctions. The complete statistical comparisons are with Table
S3. in the online supplemental materials.

Table 7 summarizes the participants’ mean estimates of the
probabilities of each case in the four sorts of compounds’ parti-
tions. Of course, the estimates cannot be subadditive, because the
participants were told that they must not sum to more than 100.
But, the theory predicts the subtle interaction, as the “possibility”
tables for the factual and counterfactual conditionals in Table 1
shows, and the results corroborated it. The probability estimates of
A and C were greater for factual than for counterfactual condition-

als, whereas the probability estimates of not-A and not-C were
smaller for the factual than for the counterfactual conditionals.
This interaction was significant as a test of the difference scores
revealed (Wilcoxon’s test, z � 3.23, p � .001, r � .269), and the
two designed comparisons were, too: estimates of A and C were
greater for factuals than for counterfactuals (Wilcoxon’s test, z �
3.526, p � .001, r � .294), whereas estimates of not-A and not-C
were smaller for factuals than for counterfactuals (Wilcoxon’s test,
z � 1.959, p � .05, r � .163). No other comparison between
factual and counterfactual compounds was reliable (see the online
supplemental materials). The results therefore supported an in-
stance of the model theory’s second prediction: estimates of the
probabilities of cases in the partition reflected the difference be-
tween the mental models of factual conditionals and those for
counterfactual conditionals. The meaning of factual conditionals
parallels counterfactual conditionals, as is clear from their fully
explicit models, but the differences in their initial representations
in mental models gives rise to the interaction.

There were no reliable differences between factual and counterfac-
tual conditionals in judgments of truth, as Table 6 shows. Of course,
the A & C case is true for both sorts of conditional, even if it has a
different epistemic status, and it is represented in the mental models
for both, and so the theory predicts no difference. But the not-A &
not-C case, although true for both sorts of conditional, is represented
in the mental models only of the counterfactual and so a difference
might have been expected. Previous studies with similar tasks have
also failed to find such a difference for neutral content, although it is
observed for contents such as causal relations (Thompson & Byrne,
2002). One explanation is that the task explicitly draws participants’
attention to the not-A & not-C case even for the factual conditional;
the difference is more readily observed in tasks that require the
participant to generate this case spontaneously, such as inference tasks
(e.g., Byrne & Tasso, 1999).

Participants estimated the probability of the A and C case for
conditionals overall to be high (43 chances out of 100 overall), and the
probability of the A and not-C case to be low (six chances out of 100
overall), which indicate that asserting a conditional suggests a positive
�P (the probability of C given A minus the probability of C given
not-A). However, participants also estimated the probability of the
not-A and not-C case to be high (36 chances out of 100).

Experiment 2a

The evidence so far has supported the model theory’s first two
predictions, concerning the truth of cases in the partition and their

Table 6
The Mean Proportions of Judgments in Experiment 1c That
Each Case in a Compound’s Partition Could Be True

Truth judgments

Compound assertions

Conditionals Disjunctions

Factual Counterfactual Factual Counterfactual

Cases in the partition
A and C .97 .91 .98 .96
Not-A and not-C .88 .88 .14 .15
Not-A and C .42 .43 .94 .90
A and not-C .11 .13 .94 .92

Note. All but two of the proportions (.42 and .43) in this table were either
significantly greater than or significantly less than the chance value of .5
(Wilcoxon tests, p � .001, where Bonferroni corrected alpha is p � .003).

Table 7
Mean Estimates of the Probability (From 0 to 100) in
Experiment 1c of Each Case in the Partition of the Four Sorts
of Compound

Probability
judgements

Conditionals Disjunctions

Factual Counterfactual Factual Counterfactual

Cases in the partition
A and C 46 40 34 34
Not-A and not-C 34 38 6 8
Not-A and C 14 14 29 28
A and not-C 5 7 30 30

Sum 99 99 100 99
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probabilities. We turn now to an examination of the theory’s third
principal prediction: judgments of the truth values of compounds
should reflect the possibility of counterexamples, but not reflect
their likelihood. Hence, a conditional about a particular entity
chosen from a set, such as

If the wine is Italian, then it is red

should be judged to be true for a frequency distribution in which
an Italian wine is certain to be red, but it should be judged to be
false, or neither true nor false, for frequency distributions in which
an Italian wine could be red or white. This latter judgment should
occur whether the likelihood of a counterexample, such as a white
wine, is high or low. In a previous study, Goodwin (2014) had
shown that factual conditionals, both specific and general, tended
to be judged as true only in cases of certainty, and not true in any
other case regardless of the chances of counterexamples. The aim
of the present experiment was to extend Goodwin’s findings to
counterfactual conditionals, such as

If the wine had been Italian, then it would have been red.

The experiment accordingly compared three sorts of situation for
factual and counterfactual conditionals: those in which the condition-
al’s truth was certain, of a high probability, or of a low probability.

Method

Participants. The participants were 107 volunteers recruited
on the online platform Crowdflower (www.figure-eight.com).
There were 45 women and 62 men, ranging in age from 18 to 64
years with a mean of 37 years. The participants were recruited
from Level 3 on the platform (i.e., those who have completed
surveys with a high quality of performance). Another seven par-
ticipants began the experiment but were eliminated prior to anal-
ysis based on screening criteria used in the previous studies. The
participants took about 5 min to complete the experiment, and
received a nominal payment of US$0.30.

Design and materials. The participants were assigned at ran-
dom either to factual conditionals (n � 55):

If the wine was Italian, then it was red

or else to counterfactual conditionals (n � 52):

If the wine had been Italian, then it would have been red.

They judged each conditional as true, false, or neither, for three
different distributions affecting the conditional probability that a
specific wine was red given that it was Italian: certainty, high
probability, and low probability. The three distributions were for
the frequencies of 100 wines in four categories based on whether
a wine was Italian or French and on whether it was red or white.
Table 8 presents these three distributions (based on Goodwin,
2014).

Procedure. The materials were presented using Survey-
Gizmo. The participants were instructed that they would be given
three short descriptions to read, and that they had to answer a
question about each one. The instructions emphasized that al-
though the three descriptions might seem similar, they were each
different, and so they should read each one carefully, paying
particular attention to the numbers. A typical trial was as follows:

The wine list that you are reading lists 100 different wines. Each wine
is either from Italy or France, and is either red or white. The following
numbers represent the overall frequencies of the different kinds of
wine that are available:

Italian red 50
Italian white 0
French red 50
French white 0
TOTAL 100

As part of a game with friends, you decide that one of them will choose
your wine completely at random from the menu. Imagine that after this
selection takes place, someone describes the wine you could have ended up
with using the following statement:

If the wine had been Italian, then it would have been red.

Given the selection of available wines, please indicate whether you think
this statement is true, false or neither true nor false:

True e

False e

Neither true nor false e

The participants made their judgment by clicking on one of the
three boxes.

Results and Discussion

Table 9 presents the number of participants making the three
sorts of judgment for the factual and counterfactual conditionals
for three distributions concerning their truth: certainty, high prob-
ability, and low probability. The number of participants judging
that the conditionals were true did not differ between the factual
group and the counterfactual group (Mann–Whitney’s U � 1171,
z � 1.813, p � .07), and the two groups did not differ reliably for
any of the three distributions (see the Fisher’s exact tests, ps � .4,
in the online supplemental materials). But, as the model theory
predicts, more participants judged that the certain conditionals
were true than that the high and low probability conditionals were
true, Cochran’s Q(2) � 73.84, p � .001, Kendal’s w � .345. For
neither the factual conditionals nor the counterfactual conditionals
was there any reliable difference for the proportions of true judg-
ments between the high probability and the low probability con-
ditionals (Fisher’s exact test, p � .25, and p � .085, respectively).

In sum, the certain conditionals tended to be judged as true,
whereas those of a high or low probability tended not to be (see the

Table 8
The Three Different Distributions in Experiment 2a for the
Probability That an Arbitrary Choice of an Italian Wine Yields
One That is Red

The wines The three distributions

Country Color Certainty High probability Low probability

Italian Red 50 45 30
Italian White 0 5 20
French Red 50 20 20
French White 0 30 30
Total 100 100 100
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online supplemental materials, for further statistical comparisons).
These results corroborated the model theory’s third prediction.
They bore out Goodwin’s (2014) results with factual conditionals,
and showed that they generalize to counterfactual conditionals.
The failure to detect a difference in the judgments of high and low
probability conditionals is contrary to the probabilistic conditional.
People appear to consider a conditional to be true only if its
probability is 1. A defense of probabilist views could be that
people have different thresholds for characterizing a statement as
true depending on the instructions and type of materials (Marko-
vits & Handley, 2005; Oberauer & Wilhelm, 2003; Oberauer,
Weidenfeld, & Fischer, 2007). However, conditionals with a high
but not certain probability tended not to be judged true reliably
more often than false, for factual conditionals: 17 versus 13,
�2(1) � .465; and for counterfactual conditionals: 20 versus 12,
�2(1) � .157. A counterfactual with a probability of 0 is con-
sidered false, and one with a probability of 1 is considered true,
and people can use a rich array of terms for counterfactuals
whose probability falls between 0 and 1, such as “probably
true,” “very likely to be false,” “almost certainly true” and so
on. A high proportion of participants judged that a conditional
with high or low probability was neither true nor false rather
than false. And, as Table 9 shows, some participants judged that
certain conditionals were neither true nor false. Such judgments
may have reflected an ambiguity in the instructions, and so we
used a different formulation in the next experiment to make
them clearer.

According to the model theory, the failure to detect a difference
in the judgments of high and low probability conditionals occurs
because judgments of truth value do not depend in a systematic
way on probabilities less than certainty. Our final experiment
examined the model theory’s prediction that sensitivity to the
probability of counterexamples should occur for judgments on a
probabilistic scale.

Experiment 2b

According to the model theory, probabilities tend to be invoked
only when the task refers to them. Hence, the present experiment
compared two groups of participants who had to make different
judgments: one group judged truth or falsity as in the preceding
experiment, and the other group made judgments of the probabil-
ities of truth values on a 7-point Likert-type scale, ranging from

certainly true through equally probable to be true or false to
certainly false. The preceding experiments showed that the results
for factual conditionals parallel those for counterfactuals, and so
the experiment examined only counterfactual conditionals. It
tested them with the same three distributions as those in the
preceding experiment: certainty, high probability, and low proba-
bility. The model theory’s third prediction is that judgments of
truth value should not be affected by probabilities: compound
assertions are true depending only on the occurrence of instances
of the possibilities to which they refer and the nonoccurrence of
counterexamples. Hence, they are true only in the distribution in
which they are certain. Because the model theory postulates that
probabilities tend to be invoked only when the task refers to them,
participants who estimate the probability of a conditional’s truth
values should produce estimates that differ for the three distribu-
tions of frequencies.

Method

Participants. The participants were 104 volunteers recruited
through the online platform Prolific. There were 28 men, 75
women, and one participant who reported a gender of queer. Their
ages ranged from 18 to 65 years with a mean of 33 years. A further
three individuals were rejected for the usual reasons before the
data analysis. The participants were paid a nominal sum of 50
pence sterling for taking part in the experiment, which took about
5 min.

Design, materials, and procedure. The participants were as-
signed at random either to the verification group (n � 53), who
judged the conditionals as true, false, equally possible to be true,
or it is impossible to say whether the statement is true or false, or
to the probabilistic group (n � 51), who estimated the probability
that the conditionals were true or false on the 7-point Likert scale
shown below. The participants evaluated each conditional for the
three distributions, which were presented in a random order: dis-
tributions in which the truth of a conditional was certain, of a high
probability, or of a low probability. A typical trial for the verifi-
cation group was as follows:

Given the selection of available wines, please indicate whether you
think this statement is true, false or equally possible to be true or false.
If you think that it is impossible to say whether the statement is true
or false, please tick that option instead:

True e

False e

Equally possible to be true or false e

It is impossible to say whether the statement is true or false e

As the example illustrates, we disambiguated the neither true
nor false option used in the previous experiment by providing two
options: equally possible to be true or false and it is impossible to
say whether the statement is true or false.

A typical example of a trial for the probabilistic group was:

Given the selection of available wines, please indicate your level of
certainty that this statement is true, false or that it is equally probable
to be true or false. If you think that it is impossible to say whether the
statement is true or false, please tick that option instead:

Table 9
The Numbers of Participants in Experiment 2a Judging That
Factual and Counterfactual Conditionals Were True, False, or
Neither True nor False, in the Certain, High Probability, and
Low Probability Situations

Scenarios True Neither False

Factual (n � 55)
Certain 40 10 5
High probability 17 25 13
Low probability 11 33 11

Counterfactual (n � 52)
Certain 45 6 1
High probability 20 20 12
Low probability 11 28 13
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	3 	2 	1 0 �1 �2 �3
certainly

false
probably

false
equally

probable
to be true or false

probably
true

certainly
true

It is impossible to say whether the statement is true or false e

The three frequency distributions of the wines were the same as
those in the previous experiment, but we made one modification to
their statement to reinforce a counterfactual interpretation of the
conditionals:

Someone who sees which wine was selected describes the wine you
could have ended up with using the following statement:

If the wine had been Italian, then it would have been red.

Hence, the wine you did get was not Italian. The procedure was the
same as the previous experiment.

Results and Discussion

Table 10 presents the numbers of participants judging the three
sorts of counterfactual conditional in the verification group, and
Table 11 presents the numbers of participants making each of the
seven judgments on the Likert-type scale in the probabilistic
group. As in the previous experiment, more participants judged
that the certain conditionals were true than judged that the high and
low probability counterfactuals were true, collapsing the results
over the two groups, Cochran’s Q(2) � 26.0, p � .001, Kendal’s
w � .245. When the participants judged truth or falsity (see Table
10), there was no reliable difference for judgments of truth be-
tween the high and low probability conditionals (Fisher’s exact
test, p � .16).

Most of the responses to the high and low probability condi-
tionals were “equally possible to be true or false” or “impossible to
say”: 70% for the low probability conditionals (20 � 17 � 37) and
66% for the high probability ones (17 � 18 � 35), as Table 10
shows. These estimates could occur because the participants judge
that the conditionals do not fall into the other two available
categories of “true” or “false,” or because they considered these
conditionals to be undecidable.

However, when the participants made estimates of the proba-
bility of truth values, the picture changed. As Table 11 shows,
conditionals that were certain still elicited judgments of true (�3)
more often than highly probable (�2), whereas this pattern
switched round for the high probability conditionals (Fisher’s
exact test, p � .001). But, the two distributions for conditionals of
high and low probability differed reliably, Kolmogorov–Smirnov

two-sample test, �2(2) � 19.7, p � .001, with more �2 judgments
for high probability conditionals, and more �1 judgments for low
probability conditionals (Fisher test, p � .001).

The results corroborated the model theory’s third prediction:
Judgments of truth values are based on possibilities rather than
frequency distributions, whereas probabilistic estimates of truth
values are based on frequency distributions. In both tasks, indi-
viduals distinguished between conditionals certain to be true and
those that had only a high or low probability of being true. In the
verification task, judgments did not discriminate reliably between
high and low probabilities. But, in the probabilistic task, judgments
were sensitive to frequency distributions. For a distribution in
which an Italian wine had a 90% chance of being red, individuals
tended to rate a counterfactual conditional:

If the wine had been Italian, then it would have been red

as highly probable. But, for a distribution in which an Italian wine
had only a 60% chance of being red, they tended to rate the
counterfactual conditional as only probable. In sum, tasks matter in
assessments of truth or falsity: judgments of truth-values reflect
only possibilities, whereas estimates of the probabilities of truth
values reflect frequency distributions.

General Discussion

The model theory postulates that a compound assertion of two
clauses, such as a conditional or a disjunction, can refer to certain
cases in its partition as factual, possible, counterfactually possible,
and impossible. Our five experiments have borne out this account,
and corroborated as robust its three principal predictions.

First, participants judged that each of the possible cases in a
compound’s partition can be true jointly with the compound. The
frequency with which such judgments occurred depended on the
mental models of the compound. So, judgments for disjunctions
did not differ reliably over their three possibilities, whereas judg-
ments of conditionals had a reliable trend based on the accessibil-
ity of the cases. For If A, then C, the most frequent judgments of
truth occurred for the case of A and C, which corresponds to an
explicit mental model for both factual and counterfactual condi-
tionals. And the case of not-A and not-C is more accessible than
not-A and C, because the former is possible given either a condi-
tional or a biconditional interpretation, whereas the latter is pos-
sible only for a biconditional interpretation. Likewise, only the
former has an explicit mental model for a counterfactual condi-
tional. The fourth case, A and not-C, is impossible, and so it tends
to be judged as false. These judgments occurred for joint truth
values with the compound (Experiment 1a) and for truth values in
the context of the compound (Experiments 1b and 1c). A previous
study yielded such results for the joint truth of factual conditionals
and cases in the partition (Goodwin & Johnson-Laird, 2018), and
so the present experiments extended them to counterfactual con-
ditionals and to disjunctions. Judgments of the truth values of
counterfactual compounds ran in parallel to those of factual com-
pounds.

Second, participants’ estimates of the joint probabilities of a
compound and each case in its partition were grossly subadditive,
that is, they summed to over 200% (Experiments 1a and 1b). The
model theory predicts this phenomenon. Estimates of the proba-
bility of A, the probability of C, and the probability of a compound

Table 10
The Numbers of Participants in Experiment 2b Judging the
Truth Values of Counterfactual Conditionals in the Verification
Group (n � 53)

Scenarios True
Equally possible to

be true or false False
Impossible

to say

Certain 31 14 4 4
High probability 11 17 7 18
Low probability 6 20 10 17
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of A and C, tend to be subadditive, because of the intuitive
methods on which naive individuals rely, which we described
earlier (see Khemlani et al., 2012, 2015). So, estimates of the joint
probability of a compound with each case in its partition should
elicit four instances of the phenomenon, and lead to the gross
subadditivity that occurred in our experiments. As the theory also
predicts, disjunctions led to more subadditivity than conditionals.
Individuals’ intuitive estimates (System 1) of the probability of A
or C, or both, are a rough average of the probabilities of A and C,
and their deliberative estimates (System 2) tend to add these two
probabilities. In contrast, their intuitive estimates of the probability
of If A, then C nudge the probability of C either upward or
downward according to their judgment of A’s effects, and their
deliberative estimates are based on the subset of cases of A in
which C occurs, that is, a correct Bayesian estimate of the condi-
tional probability of C given A. The difference was robust: the
mean estimate of the partition for disjunctions was 18% higher
than the mean estimate of the partition for conditionals (Experi-
ment 1a). Likewise, subadditivity was greater for factual than for
counterfactual conditionals. Subadditivity, though to a lesser de-
gree, occurred when individuals judged the probabilities of cases
in the partition in the context of the compounds (Experiment 1b).
But, in this study, there was no reliable difference between dis-
junctions and conditionals, or between factual and counterfactual
conditionals: the task seems to have focused participants on cases
in the partition and thereby reduced the effects of the compounds,
though cases in which a compound would be true still elicited
much higher probabilities than cases in which it would be false.

When individuals were told that their estimates of the probabil-
ities of the four cases in a compounds’ partition should sum to no
more than 100%, a subtle interaction occurred: the case of A and
C had higher probability estimates for factual conditionals than for
counterfactual conditionals, whereas the case of not-A and not-C
had lower probability estimates for factual conditionals than for
counterfactual conditionals. Of course, A and C is a possibility for
factual conditionals but a counterfactual possibility for counterfac-
tual conditionals. In contrast, not-A and not-C is a fact for coun-
terfactual conditionals but only a possibility for factual condition-
als. The interaction did not occur in the first two experiments,
perhaps because the need to estimate joint probabilities with com-
pounds led participants to neglect the relative sizes of their esti-
mates.

Third, an arbitrary choice of, say, a bottle of wine, from differ-
ent frequency distributions can make the truth of a conditional
such as:

If the wine had been Italian, then it would have been red

certain, highly likely, or less likely. The model theory predicts that
judgments of the truth or falsity of the conditional depend only on
the possibility of counterexamples, not their probability, and they
did (Experiment 2a). It predicts that compounds refer to possibil-
ities, and so probabilities enter into reasoning only if a task or its
contents refers to them. So, one way to invoke them is to ask
individuals to rate the probability that an assertion is true. When
individuals rated the truth values of conditionals on a seven-point
scale, they became sensitive to the difference between a high
probability of truth and a low probability of truth. They tended to
rate a counterfactual conditional, such as:

If the wine had been Italian, then it would have been red

as �2 (probably true) given that the probability of a red Italian
wine was 90%, but only �1 given that the probability of a red
Italian wine was only 60% (Experiment 2b).

Overall, the experimental results bore out the model theory’s
predictions. As it predicts, the results about probabilities showed
that the participants made each estimate of cases in a partition
independently without realizing that they should sum to no more
than 100% (except when so instructed). Other current results also
corroborate the theory. From information about what was not the
case, for example, “the wine was not red,” individuals inferred
what was the case, for example, “it was French” in a binary context
of Italian or French wine, for factual and counterfactual condition-
als. And they inferred what was not the case, for example, “it was
not Italian,” in a multiple context of Italian or French or Spanish
wine (Espino & Byrne, 2018). They selected paraphrases referring
to possibilities for factual conditionals and paraphrases referring to
counterfactual possibilities for counterfactual conditionals (Quel-
has, Rasga, & Johnson-Laird, 2017, 2018). In sum, the two sorts of
conditional, factual and counterfactual, differ but do not call for
radically different sorts of semantics: Their meanings run in par-
allel and can be mapped one from the other as in Table 1.

The model theory postulates that compounds refer to conjunc-
tions of possibilities that hold unless there is knowledge to the
contrary. Following Zimmermann (2000); Geurts (2005) proposed
that disjunctions are treated as conjunctions of alternative possi-
bilities in a semantics based on “possible worlds.” The model
theory is similar but generalizes the approach to all compounds
including conditionals, applies it to counterfactual compounds,
bases its semantics on finite alternatives of the sort that hold for
everyday probabilities, and stipulates that possibilities hold in
default of knowledge to the contrary. Geurts took illusory infer-

Table 11
The Numbers of Participants in Experiment 2b Estimating the Probabilities of the Truth Values of Counterfactual Conditionals for
Each Value on the Likert-Type Scale, or as “Impossible to Say,” in the Probabilistic Group (n � 51)

Scenarios
�3

(Certainly true)
�2

(Probably true)
�1 0 (Equally probable to

be true or false)
	1 	2

(Probably false)
	3

(Certainly false)
Impossible

to say

Certain 31 4 0 11 1 4 0 0
High probability 1 29 4 8 1 3 4 1
Low probability 1 6 17 13 0 6 4 4
Total 33 39 21 32 2 13 8 5
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ences to hold for conditionals because the correct evaluation of
them depended on a truth functional analysis. Our earlier example
of an illusion depending on disjunctions, which refer to possibil-
ities, shows that this view is mistaken.

Turning to potential alternative accounts, the suppositional
theory of conditionals postulates that conditionals have no truth
value in the cases in which their if-clauses are false (Evans &
Over, 2004). Yet, contrary to this hypothesis, our results show
that individuals judge that these cases can be true either jointly
with a conditional or given the context of a conditional (Ex-
periments 1a–1c). Perhaps the result could be accommodated in
a revision that allowed conditionals to be true or false when
their if-clause is false, based not only on the de Finetti table but
its further specification in the Jeffrey table. But, theories of
conditionals based on Adams’s (1998) probabilistic conditional
(Oaksford & Chater, 2007; Over et al., 2007; Pfeifer & Kleiter,
2010; Oberauer & Wilhelm, 2003) fail to explain several phe-
nomena—the joint truth of a conditional with those cases in its
partition in which its if-clause is false, the massive subadditivity
in estimates of probability, and the paraphrases of conditionals
in terms of real possibilities and counterfactual possibilities.
The subadditivity in our experiments violates one of the axioms
of the probability calculus in its standard formulation, and so it
shows that naive human reasoners fail to grasp the foundations
of the probabilistic approach to conditionals. Another problem
for probabilist approaches is the distinction that individuals
make between judgments of truth and estimates of the proba-
bility of truth. The former do not reliably reflect differences in
less than certain probabilities of conditionals; the latter do (see
Experiments 2a and 2b). This distinction should not occur
according to a strict interpretation of probabilist theories, unless
they invoke pragmatic factors. Not all probabilistic approaches
assume that people are always coherent in their probability
judgments: They may begin by being less so and their coher-
ence may increase as a result of explicit reasoning in some
circumstances (e.g., Evans, Thompson, & Over, 2015).

Another approach outlined earlier is Pearl’s (2009, for example)
use of Bayesian networks to explain how counterfactual condition-
als assert causal relations. In several ways, Pearl’s account and the
model theory are similar. They concur that probabilities are de-
grees of belief. They concur that causation is deterministic, not
probabilistic, but that ignorance about hidden causal factors forces
theorists to introduce probabilities (see, e.g., Chater & Oaksford,
2013). And they also concur that to understand a counterfactual, If
A had happened, then C would have happened, reasoners simulate
what happens by removing A from their model of the world, and
using knowledge to constrain the simulation (see, e.g., Byrne,
2005; Johnson-Laird et al., 2019). In principle, everything in a
Bayesian network can be represented in fully explicit models. The
variables in the network and their associated conditional probabil-
ities call for models that have numerical probabilities (see
Johnson-Laird et al., 1999). Inferences in the model theory are
always defeasible, and so the interventions that underlie causal
counterfactuals elicit a process that modifies the original premises,
and generates a causal explanation to resolve the conflict between
the original premises and the facts of the matter (Johnson-Laird et
al., 2015). On the one hand, naive individuals do not know how to
compute the probabilities of compound assertions, and so they err
in ways that do not occur in a network (Khemlani et al., 2015). On

the other hand, they can make kinematic simulations in which
loops occur, and loops cannot be represented in Bayes networks
(see Khemlani, Mackiewicz, Bucciarelli, & Johnson-Laird, 2013).
Likewise, models can represent counterfactuals that are not causal,
such as the following (pace Pearl, 2009, Ch. 7):

If the officer hadn’t given the order then the soldiers wouldn’t have
fired

The soldiers fired because they were under an obligation to obey
officers’ orders. The order didn’t cause them to shoot, because
they could have disobeyed it. Bayes networks, of course, make
none of the three predictions that our experiments have corrobo-
rated. These issues do not matter to Pearl’s original goals, which
were to show scientists that causation was worth taking seriously,
and to establish how to compute the probabilities of causal coun-
terfactuals. However, the issues do count against the direct impor-
tation of Bayesian networks into psychological theories of condi-
tionals.

Various future lines of research could be fruitful. One such line
is to examine the probabilities of counterfactuals that express
causal and other relations. Discoveries about how people make
inferences from counterfactuals have generalized from neutral
contents about locations, for example, “If Linda had been in
Dublin, then Cathy would have been in Galway” (Byrne & Tasso,
1999), to definitional counterfactuals, for example, “If it had been
a dog then it would have had four legs” (Thompson & Byrne,
2002), and to causal counterfactuals, for example, “If the water had
been heated to 100 degrees, it would have boiled” (Frosch &
Byrne, 2012). Likewise, the results of our experiments with neutral
contents may extend to the subadditivity of judgments of proba-
bility for causal and definitional counterfactuals. However, infer-
ences from deontic contents, for example, “If the nurse had had to
clean up blood, she would have had to wear gloves” (Quelhas &
Byrne, 2003), and inducements, for example, “If you had tidied
your room, I would have given you an ice cream” (Egan & Byrne,
2012) exhibit important differences from other contents. Indeed,
Johnson-Laird and Ragni (2019) have argued there can be no
probabilist theory of speech acts that create deontic obligations,
such as:

You must tidy your room

You cannot create an obligation, using an assertion such as “The
probability that you tidy your room is 1.” Hence, an examination
of the subadditivity of probability estimates of the truth of deontic
counterfactuals could also be informative.

What, then, should readers take away from our research? If and
or refer to real or counterfactual possibilities. Possibilities lie at the
roots of the meanings of assertions, and they hold in default of
knowledge to the contrary. Facts overturn real possibilities, creat-
ing counterfactual possibilities in their place—cases that were
once possible but that did not occur. Real possibilities also lie at
the roots of the probabilities of assertion, but probabilities intro-
duce differences in the proportions or frequencies with which
possibilities occur (Johnson-Laird & Ragni, 2019). Hence, the
following inference yields a necessary conclusion:

It is probable that the Democrats will win the next election.
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Therefore, it is possible that the Democrats will win the next election.

But its converse is invalid. Logic and the probability calculus are
each incomparable intellectual inventions, and it may be regretta-
ble that they are remote from the roots of human reasoning. In
contrast, mental models are heirs to mammalian perception, and
they have the advantage of parsimony—they impose a lighter load
on working memory than, say, truth tables. But, parsimony is
perilous. It leads, as our studies show, to huge overestimates of
probabilities, which violate a fundamental axiom of the probability
calculus. The meanings of if and or are not to be found in logic or
probability, but in humble possibilities, the forerunners of truth
and uncertainty.
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