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A B S T R A C T

It has been known for many years that identifying familiar faces is much easier than identifying unfamiliar faces,
and that this familiar face advantage persists across a range of tasks. However, attempts to understand face
familiarity have mostly used a binary contrast between ‘familiar’ and ‘unfamiliar’ faces, with no attempt to
incorporate the vast range of familiarity we all experience. From family members to casual acquaintances and
from personal to media exposure, familiarity is a more complex categorisation than is usually acknowledged.
Here we model levels of familiarity using a generic statistical analysis (PCA combined with LDA) computed over
some four thousand naturally occurring images that include a large variation in the numbers of images for each
known person. Using a strong test of performance with entirely novel, untrained everyday images, we show that
such a model can simulate widely documented effects of familiarity in face recognition and face matching, and
offers a natural account of the internal feature advantage for familiar faces. Furthermore, as with human
viewers, the benefits of familiarity seem to accrue from being able to extract consistent information across
different photos of the same face. We argue that face familiarity is best understood as reflecting increasingly
robust statistical descriptions of idiosyncratic within-person variability. Understanding how faces become fa-
miliar appears to rely on both bottom-up statistical image descriptions (modelled here with PCA), and top-down
processes that cohere superficially different images of the same person (modelled here with LDA).

1. Introduction

The concept of familiarity is central to our understanding of face
recognition. It has been known for many years that perception of fa-
miliar and unfamiliar faces differs in a number of ways (for reviews see
Johnston & Edmonds, 2009; Young & Burton, 2017), and this point is
emphasised in theoretical models (Bruce & Young, 1986; Burton, Bruce,
& Hancock, 1999). For example, in studies of recognition memory, fa-
miliar faces are recognised faster and more accurately than unfamiliar
faces (Ellis, Shepherd, & Davies, 1979; Klatzky & Forrest, 1984;
Yarmey, 1971). This difference is not in any straightforward sense
purely a memory effect, because in more recent studies of perceptual
face matching, participants are again more accurate with familiar
(compared to unfamiliar) faces, when judging whether two images
depict the same person (e.g. Bruce, Henderson, Newman, & Burton,
2001; Bruce et al., 1999; Burton, Wilson, Cowan, & Bruce, 1999;
Megreya & Burton, 2006; Megreya & Burton, 2008).

Despite these differences, our working definition of familiarity has
been unsophisticated and our understanding of what happens when a
face becomes increasingly familiar has been limited at best. Almost all
studies compare unfamiliar, never previously seen, faces to highly

familiar people, often well-known celebrities. However, our daily ex-
perience tells us that familiarity is not simply a dichotomy. We all know
many people with varying levels of familiarity, from members of our
family encountered every day over long periods, to casual acquain-
tances perhaps seen occasionally on our route to work, or serving us in
an infrequently-visited café. In this paper, we aim to capture familiarity
in all its diversity. We present a model of face recognition which in-
corporates a large range of familiarity, and explore the consequences of
increasing familiarity.

One key effect of familiarity is that it leads to generalisable re-
presentations for recognition. Early memory studies consistently
showed that superficial image changes in pose, expression or lighting
were detrimental to memory for unfamiliar faces, but had very little
effect on familiar face memory (e.g. Bruce, 1982; Hill & Bruce, 1996;
O’Toole, Edelman, & Bülthoff, 1998; Patterson & Baddeley, 1977). This
has led to the idea that unfamiliar face processing is highly image-
bound (Hancock, Bruce, & Burton, 2000; Megreya & Burton, 2006). In
consequence, recognition declines as a function of differences between
study and test photos (Beveridge et al., 2011; Estudillo & Bindemann,
2014), since representations of unfamiliar faces are tied to the specific
images that were encountered. This image-dependence for unfamiliar

https://doi.org/10.1016/j.cognition.2017.12.005
Received 23 June 2017; Received in revised form 2 December 2017; Accepted 4 December 2017

⁎ Corresponding author at: Department of Psychology, University of York, York YO10 5DD, United Kingdom.
E-mail address: mike.burton@york.ac.uk (A.M. Burton).

Cognition 172 (2018) 46–58

0010-0277/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2017.12.005
https://doi.org/10.1016/j.cognition.2017.12.005
mailto:mike.burton@york.ac.uk
https://doi.org/10.1016/j.cognition.2017.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2017.12.005&domain=pdf


faces seems to hold even after extensive training involving repeated
exposure to a small number of different views of the same face (Liu,
Bhuiyan, Ward, & Sui, 2009; Longmore, Liu, & Young, 2008). In such
circumstances, particular training examples themselves become well-
recognised, but show little generalisation to novel examples of the
learned faces.

In marked contrast to unfamiliar face recognition, recognition of
highly familiar faces is very robust. We can tolerate severe image de-
gradation (Bruce et al., 2001; Burton et al., 1999) and considerable
image distortion (Hole, George, Eaves, & Rasek, 2002) with very little
effect on our ability to recognise the people we know. Why might this
be? One proposal that lies at the heart of the approach we develop here
is that our exposure to familiar faces has itself been highly diverse,
including the very wide variability in the appearance of any particular
individual that arises under everyday conditions (Burton, 2013; Jenkins
& Burton, 2011; Jenkins, White, Van Montfort, & Burton, 2011). To
illustrate this point, consider Fig. 1, comprising five photos of the actor
Hugh Jackman. These pictures vary due to characteristics of the person
(e.g. age, hairstyle, weight), the pose and facial expression, the image
capture conditions (e.g. lighting, viewpoint) and the capture device
(e.g. perspective settings, exposure levels). The images are therefore
superficially very different in a way that is typical of everyday, ambient
images (Burton, Jenkins, & Schweinberger, 2011). However, despite
this diversity, a viewer familiar with the actor can recognise Hugh
Jackman easily in all the photos. Our proposal in earlier work has been
that this is because we have already encountered his face in a wide
range of conditions, allowing us to have built up a representation of him
which includes information about the ways in which his face can vary.

The nature of face representations has, of course, been a long-
standing concern. In particular, many researchers have asked how it
might be possible to build a representation that can be accessed when
presented with any recognisable instance of a particular face (Bruce &
Young, 1986; Eger, Schweinberger, Dolan, & Henson, 2005). Most
conceptions, until recently, have emphasised what might potentially be
common to all images of a person. For example, the most widely used
idea involves the second-order configuration of distances between fa-
cial features (Carey & Diamond, 1977), though this is now known to run
into both empirical and conceptual difficulties (Burton, Schweinberger,
Jenkins, & Kaufmann, 2015; Maurer, Le Grand, & Mondloch, 2002).
Alternatively, it has been pointed out that there might be common
texture patterns across the face that can be captured through image
averaging (Burton, Jenkins, Hancock, & White, 2005). Such approaches
imply, at least implicitly, that familiarisation results in higher fidelity
representations which can become sufficiently refined to be recruited
when recognising a novel image of a known person. By focusing on
what might be common to all views of the same face, research in this
tradition thus often treats within-person variability – the extent to
which the same face can look different – as noise. Typical experimental
approaches in consequence tend to use highly controlled stimuli in

which images of different people are taken under very similar condi-
tions (lighting, pose, expression, camera).

The approach used here represents a break from this tradition. We
have recently followed an important insight of Bruce (1994) and sug-
gested that, rather than being irrelevant noise, within-person variability
can actually assist in finding information that is diagnostic of individual
identity (Burton, Kramer, Ritchie, & Jenkins, 2016). This is because
statistical analysis of multiple images of the same person shows that
within-person variability is, to some extent, idiosyncratic. So, the ways
in which one face varies are different from the ways in which another
varies. Under this proposal, it is important to sample widely over dif-
ferent, naturally occurring images of someone in order to become fa-
miliar with that person - because part of familiarisation is learning that
person’s unique variability.

This proposal that variability is central to creating effective re-
presentations of face identities is gaining experimental support. For
example, participants learn a face more effectively when exposed to
greater variation in the images they see (Menon, White, & Kemp,
2015a; Murphy, Ipser, Gaigg, & Cook, 2015; Ritchie & Burton, 2017).
So, while traditional approaches to face learning emphasise image-in-
dependent factors such as duration of exposure (Read, Vokey, &
Hammersley, 1990; Reynolds & Pezdek, 1992), this may not be so cri-
tical as the image-dependent type of exposure, and especially the range
of exposure. Likewise, if people have idiosyncratic facial variability,
then we would expect any training on a particular face to have rather
limited generalisability to other faces. Once again, this is borne out by
experiments studying training in face recognition. Facial learning can
be enhanced by various training regimes, but the benefits accrue only to
those faces encountered, and do not generalise to others (Dowsett,
Sandford, & Burton, 2016; Hussain, Sekuler, & Bennett, 2009).

Renewed interest in face learning, as described above, highlights the
fact that we need a better understanding of familiarity. Studies ma-
nipulating levels of familiarity do so, almost exclusively, through a
binary categorisation of faces as ‘familiar’ or ‘unfamiliar’, and tests of
learning tend to dichotomise responses as ‘seen’ or ‘unseen’. An ex-
ception is a series of experiments by Clutterbuck and Johnston (2002,
2004, 2005) who show that pairwise matching – i.e. the ability to
match two different images of a face – varies relatively smoothly with
levels of familiarity. Nevertheless, for the most part, familiarity is
treated in the research literature as a discontinuous variable with only
two states.

In this paper, we take the important step of examining familiarity as
a multi-valued function. We present a development of a previously
implemented computational model (Kramer, Young, Day, & Burton,
2017a) using minimal assumptions and standard image analysis tech-
niques involving a combination of Principal Components Analysis
(PCA) and Linear Discriminant Analysis (LDA). While this approach has
already been shown to simulate the specific property of image invariant
familiar face recognition (Kramer, Young, Day & Burton, 2017), these

Fig. 1. Unconstrained ambient images of the same person. Depicted variation is due to changes in pose, lighting, expression, age, camera settings, and so on. Image attributions from left
to right: Eva Rinaldi (Own work) [CC BY-SA 2.0], Grant Brummett (Own work) [CC BY-SA 3.0], Gage Skidmore (Own work) [CC BY-SA 3.0], Eva Rinaldi (Own work) [CC BY-SA 2.0], Eva
Rinaldi (Own work) [CC BY-SA 2.0].
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methods potentially offer a generic approach to exploiting statistical
regularities in the images. Here, we show that the same approach can
be used to simulate a range of key properties of face recognition across
different levels of familiarity.

Building on earlier research, Kramer, Young et al. (2017) demon-
strated that combining PCA with LDA is effective at capturing the
human-like property of good recognition of novel views of familiar
faces when the training involves a substantial number of images of each
face. To achieve this result, however, Kramer, Young et al. (2017) used
an implementation that involved training their model on a fixed
number of instances of each face. In this sense, their approach was
based on a specific combination of circumstances in which some faces
were uniformly familiar (trained across the same number of images)
and other faces were completely unfamiliar (untrained). This of course
approximates the binary way in which familiarity has often been con-
ceptualised in the research literature. Here we take the further critical
steps necessary to arrive at a more general understanding of familiarity,
building a model in which some identities are represented by only a
single photo, whereas others are represented by varying numbers of
different photos, creating a parallel with the different degrees of fa-
miliarity encountered in everyday life. Unlike many traditional models
based on a single standardised view of each face, we train the model to
recognise people based on prior exposure to widely varying images of
each face and evaluate its performance with a strong test involving
entirely novel, untrained and highly varied ambient images. The basics
of the approach we use are exactly the same as those used by Kramer,
Young et al. (2017); only the composition of the training or test image
sets is changed.

Computer simulation offers the considerable advantage of forcing
the theorist to make every aspect of a model fully explicit, but it also
carries the attendant risk of crafting a model that 'works' only under the
specific set of circumstances for which it was created. The best way to
mitigate this risk is to demonstrate that the model can encompass
phenomena that extend well beyond those from which it was derived
(Young & Burton, 1999). To show that our extension of Kramer, Young
et al. (2017) approach does indeed offer general insights into face fa-
miliarity we used it to simulate a range of key findings from the face
recognition literature. We demonstrate not only that our model benefits
from being trained across more exemplars but also that this increases
resistance to the effects of image degradation and can account for the
finding that increasing familiarity particularly enhances recognition
based on the face's internal rather than external features (Ellis et al.,
1979; Young, Hay, McWeeny, Flude, & Ellis, 1985). As a further de-
monstration of the model's applicability, we show that it can encompass
findings from widely used face matching tasks.

Having demonstrated the model's wide applicability, we finish by
investigating in more detail what lies behind these findings and their
implications for understanding the nature of face familiarity. We show
how LDA reshapes the perceptual space created by PCA, and that the
benefits of familiarity are largely but not entirely specific to each fa-
miliar face. Moreover, we examine the importance of supervised
learning to this process. Our approach involves a combination of an
unsupervised 'bottom-up' analysis (PCA of the image training set) with
supervised 'top-down' learning (via LDA) of the characteristics of a set
of trained identities. Supervised learning approximates what happens in
everyday life in that we will usually know who someone is during a
social encounter. By comparing the resulting PCA and PCA+LDA
spaces we investigate how far face recognition can be based on the
unsupervised image statistics of the perceptual input alone (via PCA)
and to what extent it benefits from a combination of top-down with
bottom-up influences (PCA+LDA). These observations have broad
implications for understanding the nature of perceptual expertise with
faces.

2. The model

We begin by implementing a basic model to demonstrate that in-
creasing familiarity with a face (as indexed by the number of different
photos of the face on which the model is trained) differentially en-
hances the recognition of new (untrained) images of that face. Having
established this parallel with behavioural demonstrations of image in-
variance for recognition of familiar faces, we turn to investigating
whether the same model can account for resistance to image degrada-
tion in recognising familiar faces, for the internal feature advantage for
familiar face recognition, and for performance in face matching tasks.
Finally, we explore in more detail what happens in the model as a face
becomes increasingly familiar.

2.1. Image sets

In order to model real-world exposure to faces, we collected am-
bient, everyday images. These were similar in nature to the ‘Labeled
Faces in the Wild’ database (Huang, Ramesh, Berg, & Learned-Miller,
2007), which attempts to incorporate natural variability across nu-
merous dimensions, including pose, lighting, expression, age, and
camera conditions. We used images in which no part of the face was
obscured (by clothing, glasses, hands, etc.). To facilitate the placement
of landmark fiducial points on each image, we also limited our image
poses to within approximately± 30° from full face. Beyond these limits
some fiducials would be obscured; for example when one edge of the
face is no longer seen as the view moves towards profile. Apart from
these minimal technical requirements, the face images were entirely
unconstrained.

Based on these criteria, we collected a large set of 4154 colour
images using Google Image search. These images included 335 different
identities, where the majority were White but other ethnicities fea-
tured, and approximately half were women. Many were Hollywood
actors, although people from other professions (athletes, politicians,
etc.) were also represented. The ‘level of familiarity’ was represented by
varying the number of images of different faces in the set, ranging from
a single image (for 161 identities) up to 159 images for the most ‘highly
familiar’ individual. For the remaining identities, the number of images
per face varied widely: M=22.16 images, SD=26.20. In all cases, we
simply took the first n images (where n was the number of images re-
quired) returned by Google Image search that met the pose criteria
given above. In this way we sought to ensure that as far as possible the
images would reflect the variability that might be encountered for each
face.

Images were cropped to include only the head, rescaled to 190
pixels wide x 285 pixels high, and represented in RGB colour space
using a lossless image format (bitmap).

2.2. General procedure

We used LDA to train our model to group different images of the
same person together. This technique fits exemplars (here faces) to a
space in which intra-class differences are minimised, while inter-class
differences are maximised, i.e. faces of the same person are clustered
together. This is a technique which has been used in many previous
models of face recognition (e.g. Belhumeur, Hespanha, & Kriegman,
1997; Jing, Wong, & Zhang, 2006; Kramer, Young et al., 2017) and is
sometimes referred to as the Fisherface approach because the dis-
criminant function used is due to R.A. Fisher (1936). When classifying
images, it is common to have fewer sample vectors (images) than fea-
tures (pixels). In such cases, LDA cannot be carried out without first
reducing the number of feature dimensions. This can be done in a
number of ways, including morphological analysis of faces to create a
reduced-dimensional description (e.g., Chen, Liao, Ko, Lin, & Yu, 2000).
A more popular approach is first to subject the faces to Principal
Components Analysis (PCA), resulting in a low-dimensional description
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of ‘eigenfaces’ representing the variability in the image set (e.g., Bekios-
Calfa, Buenaposada, & Baumela, 2011). In our studies, we adopted this
PCA-based approach to dimension reduction, as follows.

All images were shape-standardised by morphing them to a tem-
plate derived from the average shape of the entire set (Burton, Miller,
Bruce, Hancock, & Henderson, 2001; Craw, 1995). This standardisation
was based on the alignment of 82 fiducial points for each image (e.g.,
corners of eyes, corners of mouth, etc.; for technical details, see Burton
et al., 2016, and for downloadable face processing software, see
Kramer, Jenkins, & Burton, 2017b). Assignment of these fiducial points
was carried out using a standard semi-automatic process requiring just
five manually-entered landmarks (see Kramer, Young et al., 2017, for
details). PCA was then computed on these normalised images. In order
to reduce the number of dimensions describing the resulting space
without significant loss of variability, we retained the highest 335
components only. This corresponds to the number of identities and is
therefore the minimum number of PCs required for the subsequent LDA.
These principal components explained 95.6% of the variance in the
image RGB information. The images’ projections on these principal
components were then entered into an LDA, where each class re-
presented an identity. The result is a reshaped space comprising 334
dimensions (the number of identities minus 1). Again, to reduce the
number of dimensions describing the PCA+LDA space without sig-
nificant loss in performance, we retained the first 143 components,
which accounted for 95.0% of the ‘discriminability’ from the overall
LDA space.

Our face identity training involved applying this PCA+ LDA pro-
cedure to a large set of training images in order to produce a space that
could best distinguish the 335 identities. The actual size of the training
set was subject to minor variations when essential to address specific
questions, as noted below. For example, a small proportion of the 4154
available images was left untrained when these were needed to serve as
novel test items for familiar face recognition (e.g. in Section 3.1,
below).

Although our analysis was based primarily on shape-normalised
images, we do not wish to imply that face shapes are unimportant in
recognition or familiarisation. Normalised faces still carry considerable
information about the shape of the original – for example shape-from-
shading cues are retained in gradients of intensity within the image.
While some previous work has attempted to separate shape from tex-
ture (e.g. Andrews, Baseler, Jenkins, Burton, & Young, 2016; Itz, Golle,
Luttmann, Schweinberger, & Kaufmann, 2017), we remain neutral here
about their relative influence, and about their relative contribution to
the normalised representations we employ. In order to establish whe-
ther the normalization process removes useful information, however,
we also ran the PCA+LDA procedure described above on the shape
vectors comprising raw fiducial points of the original images and on the
shape vectors calculated in terms of differences from the average fi-
ducial position. We describe these simulations below.

3. Simulations

3.1. Familiarity improves recognition

A basic requirement for a model of familiarity is that recognition is
more accurate for more familiar faces. Novel, previously unseen (i.e.
untrained) images of well-known faces should be better recognised than
novel images of less well-known people. To examine this, we first
sampled one image of each to-be-trained person to act as untrained
‘test’ images. This was possible for all the identities represented by at
least two images (i.e. 174 identities). We then ran the PCA+ LDA
procedure, as described above, without these test photos (i.e. with 3980
training images). Next, we projected each untrained test image into the
resulting space, and computed its distance from representations of the
known faces. This procedure was repeated for 100 iterations, each time
randomly selecting the image of each identity to be used as the test

image. Model accuracy was then calculated by averaging responses
across all iterations, producing a proportion of iterations in which the
model was correct.

There are two common ways to judge successful recognition in this
type of model. One is to measure the distance between the test item and
all other images, counting the ‘nearest neighbour’ image as the model's
‘decision’, with this being correct or incorrect if the nearest neighbour is
a photo of the same (correct) or a different (incorrect) identity.
Alternatively, we can calculate a centroid for each known identity – i.e.
the mean position of all its exemplars in the PCA+LDA space – and
represent the model’s decision as the nearest centroid.

We examined both of these metrics because they can be seen as
approximating instance-based approaches to face recognition in which
recognition will be in terms of the most similar variant encountered
before (the nearest neighbour measure), such as Hay (2000), or the
more abstractive type of model in which recognition is based on a re-
presentation that can generalise across many instances (the nearest
centroid measure), such as Bruce and Young’s (1986) concept of 'face
recognition units' or Burton et al.’s (2005) image averaging approach.
Distinguishing between instance-based and abstractive accounts has not
been easy in terms of behavioural data (e.g. Ellis, Young, Flude, & Hay,
1987; Hay, 2000; Young & Bruce, 2011), and we also found that the
nearest neighbour and nearest centroid measures generated highly
comparable patterns. We therefore chose to focus on the nearest cen-
troid measure here for two reasons. First, the nearest centroid approach
approximates what remains the dominant theoretical perspective (e.g.
Bruce & Young, 1986). Second, creating a single centroid for each
known face avoids the danger of inflating the recognition rate at low
levels of performance through the possibility of random 'hits' resulting
from the presence of multiple instances for the more familiar faces.
While we have chosen a centroid approach to decisions in the model,
we do not wish to exclude other possibilities, and so in the simulations
below we also report summary statistics for the nearest neighbour
measure when it can be used, to illustrate that the pattern is always the
same.

Fig. 2 shows the relationship between familiarity (i.e. number of
training images) and the proportion of ‘correct’ identifications of un-
trained test images, based on the nearest centroid measure. Each data
point in Fig. 2 represents the average proportion of correct decisions
across test images for a specific identity. As can be seen, some faces are
easier to recognise than others, even at low levels of familiarity (i.e.

Fig. 2. The proportion of correct recognitions of untrained novel face images using the
‘nearest centroid’ measure increases for more familiar faces (where familiarity is re-
presented by the number of training images). Each point represents the average across
test images for a specific identity (but note that several of these data points are over-
lapping). The fitted curve represents an exponential function. Although some faces are
easier to recognise than others, even at low levels of familiarity, there is a substantial
correlation between familiarity and recognition rate (rs= 0.74), such that novel photos of
increasingly familiar people are correctly recognised more often than novel photos of less
familiar people.
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with few training images); this corresponds to the well-known phe-
nomenon of facial distinctiveness (Valentine, 1991; Valentine & Bruce,
1986). More importantly there is a clear, highly significant association
between familiarity and recognition rate, such that novel photos of
increasingly familiar people are correctly recognised more often than
novel photos of less familiar people, rs(172)= 0.74, p < .0001. For the
nearest neighbour measure, rank correlation gave a closely comparable
value of rs(172)= 0.72, p < .0001.

A pitfall that needs to be avoided in statistical learning studies is
that of overfitting, in which the model finds essentially spurious
random patterns in the data. To guard against overfitting, the data
presented in Fig. 2 used a strong test of recognition based on correct
classification of novel (untrained) images of the target faces. As an
additional precaution, however, we ran simulations in which PCA was
carried out as usual but the image identities were randomly scrambled
at the LDA stage. This gives data of the same order, but with no top-
down structure, i.e. it attempts to use LDA to cluster together random
sets of images of different people. If such a model were nevertheless
able to learn an effective categorisation, this would provide evidence
against the utility of our approach and instead imply that overfitting
remains possible despite the precaution of using novel test images. In
fact, and reassuringly, this procedure caused performance to collapse
completely, resulting in mean recognition rates of 0.01 for both cen-
troid and nearest neighbour measures. This collapse in performance
shows that random patterns in the data are of little use in classifying the
identities of these highly variable face images.

As noted above, we also evaluated whether familiarity can improve
recognition based only on the 2D shape information given by the raw
positions of the fiducials in each image, or by their differences from the
average locations. A combined PCA+LDA of the locations of the 82
fiducial points in the unstandardised images showed that performance
was very poor (mean recognition rates of 0.03 for both centroid and
nearest neighbour measures), and it remained poor when we applied
the same technique to shape vectors calculated in terms of differences
from the average fiducial position (mean recognition rates still 0.03 for
both centroid and nearest neighbour measures). These poor levels of
performance do not of course show that 2D shape information is irre-
levant, but they do show that the information about fiducial locations in
each image removed by our normalization procedure is of no value over
and above the normalised information itself.

3.2. Familiarity confers resistance to image degradation

As well as being recognisable across many different views in normal
conditions, familiar faces can also often be recognised from degraded
images such as those created by low resolution video surveillance
cameras (Bruce et al., 2001; Burton et al., 1999). To operationalise
image degradation in our model, we constructed images where a pro-
portion of the pixels were replaced by the average RGB pixel values of

the entire set, as illustrated in Fig. 3. This manipulation results in
images with the same dimensions as the whole set, which can therefore
be used to test recognition in exactly the same way. However, those
pixels that were replaced by the average values become completely
uninformative for face identity.

We tested the model's performance with images degraded by 25%,
50%, and 75%, by projecting each test image into the PCA+LDA space
in its degraded form and measuring recognition based on the nearest
centroid and the nearest neighbour. We repeated this procedure across
100 iterations, each time randomly selecting the test image for each
identity. Model accuracy was calculated by averaging responses across
all 100 iterations, producing a proportion of iterations in which the
model correctly identified the novel test image for each face from its
degraded version.

Fig. 4 shows the model's performance. With 25% image degrada-
tion, we found a significant relationship between face recognition ac-
curacy and familiarity (nearest centroid, rs = 0.83; nearest neighbour,
rs= 0.77), with well-preserved performance on the more familiar faces
(i.e. those with the largest number of training images). With 50% de-
gradation, there was a clear overall detriment, but still a significant
relationship between face recognition accuracy and familiarity (nearest
centroid, rs = 0.83; nearest neighbour, rs = 0.72). At 75% degradation,
in which the large majority of pixels carry no identity information,
performance was at floor.

3.3. Recognition from internal and external features

Increasing familiarity with a face differentially enhances

Fig. 3. An illustration of the image degradation manipulation. A shape-standardised full-face image is shown at the far left, and the average of all images from the training set at the far
right. Intermediate images have 25%, 50%, and 75% of their pixels (selected at random) replaced with those of the training set average image. Original image attribution: Eva Rinaldi
(Own work) [CC BY-SA 2.0].

Fig. 4. Effect of image degradation on recognition of untrained novel images, using the
nearest centroid measure. Fitted curves represent exponential functions. Performance
with the undegraded images is included for comparison. Performance following 25% and
50% degradation remains strongly influenced by the number of training images (our
proxy for familiarity). At 75% degradation the model's performance is at floor, and
therefore not visible.

R.S.S. Kramer et al. Cognition 172 (2018) 46–58

50



recognition based on its internal features such as eyes, nose and mouth,
compared with external features such as hair and face shape. Although
well-replicated in behavioural studies (Clutterbuck & Johnston, 2002;
Ellis et al., 1979; Young et al., 1985), we are not aware of any previous
attempts to simulate this pattern of increasing reliance on internal
features of familiar faces.

To operationalise comparison of internal and external features in
our model, we constructed images preserving only these aspects, as il-
lustrated in Fig. 5. A template for the internal feature region of the face
was defined using 16 fiducial points to create a boundary around the
largest area that included the eyes, nose, and mouth, while remaining
within the overall envelope of the face outline. As all the images had
been shape-normalised, the same template could always be used. This
template was then used to create images in which either the external or
the internal parts were replaced by the average RGB pixel values of the
entire set. This manipulation results in images with the same dimen-
sions as the whole set, which can therefore be used to test recognition in
exactly the same way. However, when the internal features are replaced
by the average values they become completely uninformative for face
identity, and when the external features are replaced with average
values then they become uninformative.

Next, we projected each test image into the PCA+LDA space in its
internal features or external features form and measured recognition.
We repeated this procedure across 100 iterations, each time randomly
selecting the test image for each identity. Model accuracy was calcu-
lated by averaging responses across all 100 iterations, producing a
proportion of iterations in which the model correctly identified the
novel image for each face based on its internal or external features.
These proportions were then correlated with the familiarity of the
identities (i.e., the number of images of each identity that went into the
training set).

We found significant relationships between face recognition accu-
racy and familiarity for both internal and external features (Fig. 6).
However, recognition of internal features showed a stronger association
with familiarity (nearest centroid, rs = 0.76; nearest neighbour,
rs = 0.77) in comparison with recognition of external features (nearest
centroid, rs= 0.30; nearest neighbour, rs = 0.59). So, while increased
familiarity supports better recognition in general, this effect is more
pronounced for the internal features, and seems to account for more of
the effect of familiarity on full (unedited) face recognition shown in
Fig. 2.

Interestingly, these results are not simply due to the amount of
pictorial information available from internal versus external features. In
fact, in our cropped images, the internal features occupy 11,952 pixels,
whereas the external features occupy 18,537 pixels. If all other things

were equal, then, internal features could provide less RGB information
regarding the individual faces than could external features, yet it was
the internal features that proved most recognisable, especially for the
more familiar faces. This implies both that the internal features are
themselves more informative and that the PCA+ LDA space has be-
come somewhat tuned towards the use of internal features, beyond the
raw amount of information available.

3.4. Face matching

3.4.1. Unfamiliar face matching
So far, we have shown that our basic model, derived from a sub-

stantial training set of highly varied naturalistic ambient images, de-
monstrates a graded familiarity effect in its ability to correctly 're-
cognise' (i.e. classify) untrained novel exemplars, and that this applies
particularly to classification based on internal facial features. To test
the model's applicability further, we sought to determine whether it
could also fit known findings from perceptual matching tasks, where
familiarity is known to exert a strong influence, with relatively poor
performance in unfamiliar face matching and excellent performance
with familiar faces (Bruce et al., 1999, 2001; Burton et al., 1999;
Megreya & Burton, 2006; Megreya & Burton, 2008).

Before turning to the role of familiarity in face matching, though,

Fig. 5. An illustration of the internal and external
feature manipulation. A shape-standardised full-face
image (left), its internal features (middle), and its
external features (right). To create images with the
same dimensions as the original shape-standardised
image, missing regions are completed with unin-
formative RGB values using the average of the entire
set of images. Original image attribution: Liam
Mendes (Own work) [CC BY-SA 2.0].

Fig. 6. The proportion of correct recognitions of untrained novel face images from in-
ternal and external features using the nearest centroid measure. Each point represents the
average across test images for a specific identity. Familiarity (represented by the number
of training images) has more effect on recognition from internal than external features.
Exponential trendlines are displayed for performance based on the internal features
(solid) and the external features (dashed).
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we sought first to check that the model was able to simulate perfor-
mance for unfamiliar face matching. To achieve this, we used stimuli
from a widely adopted standard human test of unfamiliar face
matching; the Glasgow Face Matching Test (GFMT; Burton, White, &
McNeill, 2010). Ability to simulate this test of unfamiliar face matching
forms a starting point from which any enhancement of performance
with more familiar faces can be evaluated.

The full (long) version of the GFMT (Burton et al., 2010) comprises
168 pairs of faces, half of which match and half of which do not. Ex-
amples of images used to create the GFMT are shown in Fig. 7. Parti-
cipants simply indicate whether the face identities match or mismatch
on each trial. The difficulty of the task stems from the fact that many
image properties are unconstrained, making it hard for participants to
know which image differences are relevant and which are irrelevant to
the unfamiliar face identities. In the standardised version of the GFMT
the images are presented in greyscale, but because of the way we im-
plemented the current PCA+LDA model we used the original colour
images for our simulation here. While using colour vs. greyscale images
will undoubtedly have some effect, the role of colour in human per-
ception of identity is limited (Kemp, Pike, White, & Musselman, 1996).

To evaluate the model's performance with the GFMT images, we
created a PCA+ LDA space through training all 4154 images in our
stimulus set and then projected the pairs of images from each GFMT
trial into this PCA+LDA space. Note that all faces from the GFMT are
unfamiliar here – none have been used in the training set.

The simplest way to represent the model's performance is in terms of

the Euclidean separation between pairs of images in PCA+LDA space.
This is shown in Fig. 8, where the between-image distances are lower on
average for same identity than for different identity pairs of unfamiliar
face images, t(166)= 10.05, p < .001, Cohen’s d=1.55. So the model
is capable of separating 'same' from 'different' identity pairs to some
degree, though there is clear overlap in the distributions.

The overlapping distributions mimic what is seen in human per-
formance on the GFMT, which is often far from perfect. With a beha-
vioural measure of this type, in which every pair of images is physically
different to some degree, human participants have to adopt their own
criterion for how different the images of each face must be in order to
assign them to 'same' or 'different' response categories. As Fig. 8 shows,
overall performance will vary according to how this criterion is set, and
of course one of the key purposes of the GFMT is to measure individual
differences that will in part reflect this criterion setting. In this respect,
we note that calculating the distance between pairs of GFMT images
and setting the ‘match decision’ threshold value to give comparable
levels of performance across match and mismatch trials (as is observed
on average with human viewers) produced performance levels of 82%
and 77% accuracy for ‘same’ and ‘different’ face pairs by the model,
compared to mean human performance of 92% and 88%, respectively
(Burton et al., 2010). Although our computer model was trained on
ambient images of many international celebrities, and has never been
exposed to images of the type shown in Fig. 7, it can achieve levels of
matching performance within the range of human participants on these
images.

As human participants show substantial individual differences on
the GFMT, however, a better way to evaluate the model's performance
may be in terms of whether it tends to make mistakes on the same item
pairs that human observers find difficult. We found significant corre-
lations in the expected directions involving the model distance between
the image pairs and overall human performance for same trials,
rs(82)=−0.23, p= .039, and for different trials, rs(82)= 0.28,
p= .009.

3.4.2. Face matching as a function of familiarity
Having established how to apply our model to unfamiliar face

matching, we investigated how an increase in familiarity affects face

Fig. 7. Two example pairs of images used to create trials in the Glasgow Face Matching
Test (Burton et al., 2010). The top row shows two images of different identities, while the
bottom row illustrates a ‘same identity’ image pair. Note that all faces in the GFMT are
unfamiliar and that all test items involve pairs of photographs with substantial superficial
differences.
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matching – that is, correctly perceiving that two novel instances of a
face are the same person. It is well-established that face matching is
easier for familiar than unfamiliar faces (Bruce et al., 2001; Johnston &
Edmonds, 2009; Megreya & Burton, 2006) and so this is a key re-
quirement for a model of familiarity. Moreover, in addition to the basic
familiar/unfamiliar dichotomy, there is already evidence that matching
performance is predicted by degree of familiarity (Clutterbuck &
Johnston, 2002, 2004, 2005). This makes matching a good candidate
for simulation in our model.

To simulate unfamiliar face matching, we had measured the dis-
tances between pairs of images of faces that had not been explicitly
represented in our model's PCA+LDA space. This is in line with the
idea that unfamiliar face matching will rely heavily on image similarity
(Hancock et al., 2000; Megreya & Burton, 2006). In contrast, familiar
face matching need not rely much on image similarity – if two images
are both recognised as Jennifer Lawrence, then they can be matched
easily, regardless of their image similarity, on the basis of a more
conceptual match. To simulate the impact of this conceptual matching,
we investigated how the model dealt with pairs of novel images of a
trained identity at different levels of familiarity.

In this simulation, we manipulated the level of familiarity of a
specific face in the context of the larger model, with all its complexity
and variability. To do this, we constructed variants of the model which
differed only in terms of the number of items ‘known’ (i.e. the number
of training images) for one particular individual – all the training
images for the remaining 334 people remained the same in each model
variant. We took the identity for whom we had the largest number of
images (159 for Jennifer Lawrence) in our initial set and then varied the
number of images of the actress included in the model's training set
(from 0 to 151), measuring how this affected matching performance
across pairs of novel images of Jennifer Lawrence's face.

For a single model iteration, we chose a random set of 151 training
images plus two test images, from the 159 available for this identity.
We constructed models containing the 334 other identities and incre-
mental steps of ten training set images of Jennifer Lawrence by using 0
images or 1 image to create a baseline, and then images 1–11, 1–21,
1–31, etc. To test how familiarity (as represented by increasing the
number of training images) affected face matching performance, we
projected two novel test images of Jennifer Lawrence into the
PCA+ LDA space derived for each incremental model. For these two
novel images, we then calculated three principal measures: (1) the
distance from each image to Lawrence’s centroid (the distance to JL
centroid measure), (2) the distance from each image to the nearest non-
Lawrence centroid (the distance to nearest non-JL centroid measure),
and (3) the distance between the pair of test images themselves (dis-
tance between novel images measure).

This process was repeated for 20 iterations, each time randomly
selecting which images of Lawrence to use as training and novel images.
We averaged across iterations and present the data in Fig. 9. A com-
parable procedure using the nearest neighbour measure produced the
same pattern.

Fig. 9 makes clear that the possibility of conceptual matching in-
creases as familiarity increases, as evidenced by the increasing se-
paration between the distance to JL centroid and distance to nearest
non-JL centroid measures. Interestingly, it also shows that the centroids
for faces other than JL's become more distant from the JL centroid as
familiarity increases, reflecting the reshaping of the overall space pro-
duced by LDA. The Spearman correlation between familiarity (number
of training images) and distance to the nearest non-JL centroid (aver-
aged over the 20 iterations) is rs(14)= 0.95, p < .001.

Less obviously, the distance between the pairs of novel images of
Jennifer Lawrence also reduces slightly as familiarity increases (i.e.
there is a small downward slope to the 'distance between novel
images'). The Spearman correlation between familiarity (number of
training images) and distance between the two novel images (averaged
over the 20 iterations) is rs(15)=−0.96, p < .001. This seems to

reflect a more local reshaping of the region of PCA+ LDA space that
represents JL's face as familiarity with her increases. This observation
led us to look further at the underlying mechanisms and the extent to
which they might operate in an identity-specific manner.

3.5. Underlying mechanisms

Our simulations have shown a clear advantage for increasingly fa-
miliar faces when tested using face recognition and face matching. This
is consistent with key findings across decades of face research and offers
insights into the nature of face familiarity. In this final empirical sec-
tion, we examine underlying mechanisms in more detail.

In a previous study, we established that the combined use of LDA
with PCA offers much better performance for recognising novel images
of familiar identities than a PCA-based system alone (Kramer, Young
et al., 2017). We suggested that a combination of LDA with PCA is
particularly useful because each face has its own idiosyncratic forms of
variability that need to be learnt as it becomes familiar (cf. Burton et al.,
2016). This idiosyncratic variability limits the usefulness of generic
methods such as PCA that represent only the variability of the entire set
of training images without taking the idiosyncrasies of particular faces
into account. Here, we put this suggestion to a formal test.

As already noted, Fig. 9 shows that the between-pair distances of
novel images of Jennifer Lawrence decrease slightly as the number of
training images increases. That is, as the model becomes more familiar
with Jennifer Lawrence's face, novel instances of her become closer
together in PCA+LDA space. Although a far more gradual process than
the familiarity benefits seen with face recognition (where we see a steep
increase in recognition accuracy as familiarity increases), this clustering
of novel images illustrates how the underlying space in the model
changes across familiarity. It is noteworthy that we should observe such
a clear relationship, because the relative contribution of the Jennifer
Lawrence images to the whole model is very small as training images
are added; all the other 334 known people and 3995 images remain
unchanged as novel images of Jennifer Lawrence are added. The fact
that the region of the PCA+LDA space that represents Jennifer Law-
rence's face should change in this way underscores the key point that
the variability in images of her face must be to some extent idiosyn-
cratic and therefore needs to be represented separately from the other
3995 images in the set (Burton et al., 2016).

To demonstrate more formally how the combination of PCA with
LDA reshapes the space corresponding to each familiar identity, we
used the face of Ryan Reynolds, for whom there are 104 images in our
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initial database. We removed 4 randomly selected images and then
randomly split the remaining images into sets of 80 training images and
20 test images. The 80 training images of Ryan Reynolds were then
included alongside all of the remaining 4050 images of all other iden-
tities at the PCA stage. At the subsequent LDA stage, however, the 80
images of Ryan Reynolds were either left in (the trained identity con-
dition) or left out (the untrained identity condition). We then calculated
all pairwise distances between the 20 novel images of Reynolds after
projecting these into the PCA+ LDA space, and compared the mean of
those distances across the trained identity and untrained identity con-
ditions. This procedure was repeated across 20 iterations involving
different random samples of 80 and 20 images from the Ryan Reynolds
set.

Results are presented in Fig. 10, which shows that the distance
between novel images of Ryan Reynolds is reduced by training with
other images of him using the PCA+LDA procedure (the trained
identity condition), in comparison to when images of Reynolds were
included only in the PCA stage (the untrained identity condition). Note
that the data in Fig. 10 involve entirely novel images that were not used
in the PCA or LDA stages, but that exactly the same sets of novel images
are tested across the trained identity and untrained identity conditions.
The difference between these conditions is therefore entirely attribu-
table to the consequences of training (or not training) the identity using
a different set of images at the LDA stage. Clearly, then, identity
training with LDA has the effect of reshaping the underlying PCA-based
space in a way that brings any instances of the trained face into closer
proximity to each other.

The benefit accruing to familiar face recognition from LDA, as an
example clustering algorithm, is therefore clearly established relative to
the unsupervised statistical analysis offered by PCA alone. However,
our approach also allows us to go further and ask whether the re-
presentations of previously unseen faces derive any benefit from being
projected into a space based on familiarity with known faces. The issue
is important because many researchers claim that we are generic ex-
perts at perceiving face identity (Carey, 1992), whereas the view put

forward here is that this characterisation in terms of face identity ex-
pertise is correct only for familiar faces (cf. Young & Burton, 2017). In
effect, we have been demonstrating through our simulations based on
image statistics that someone can become a Jennifer Lawrence face
expert or a Ryan Reynolds face expert without actually testing whether
these forms of expertise might also to some extent enhance the per-
ception and recognition of other, unfamiliar faces.

We therefore sought to address the issue of whether the reshaping of
PCA space that results from applying LDA is entirely person-specific? If
the reshaping is completely idiosyncratic to each known face, there will
be no accrued benefit from learning several different face identities
through LDA on ability to represent the identities of unfamiliar faces in
PCA+ LDA space, whereas if the reshaping is only partly idiosyncratic
then we might expect some improvement in the ability to represent
unfamiliar face identities as more familiar faces are known.

To test whether learning familiar face identities can enhance re-
presentations of unfamiliar face identities, we examined the similarity
between pairs of images of the same unfamiliar face when measured
within a purely PCA-based space, or when measured within a
PCA+ LDA space built to recognise other faces. Do we gain something
from tackling unfamiliar face matching within a reshaped space derived
through optimising the recognition of familiar identities?

To answer this question, we collected two images for each of 40 new
identities using Google Image search, following the same guidelines
described earlier. Half of these celebrities were women, and all were
White. None of these identities appeared in our training set. In order to
determine whether our identity-derived space produced benefits for
unfamiliar face matching, we projected the 80 new images into our
model’s PCA+ LDA-trained space. For comparison, we also projected
these images into the space derived from carrying out only the PCA
stage of our model. In both cases, the training set was identical, but for
the PCA-alone model, identity information was not used in order to
derive dimensions that best discriminated between face images.

Using the 80 novel images, we simulated 40 ‘same’ trials with the
two images of each identity. As a measure of the model’s performance,
we calculated the Euclidean distances in PCA space and in PCA+LDA
space between these pairs of images. In order to generate 40 ‘different’
trials, we paired one image for each identity with a foil chosen from the
other images in this set. We took care to match the two faces on basic
descriptors like sex, hair colour, the presence of stubble, and age, ac-
knowledging the limitations inherent in such a small sample of faces.
For each of these trials, we again calculated the Euclidean distances in
PCA space and in PCA+ LDA space between the two images.

Fig. 11 illustrates these ‘same’ and ‘different’ identity distances
when the images are projected into PCA-based and PCA+ LDA spaces.
We find that there is no statistically significant difference between the
two types of trial for the PCA-alone model, t(78)= 1.02, p= .313,
Cohen’s d=0.23. In contrast, the PCA+LDA model successfully dis-
criminates between ‘same’ and ‘different’ identity image pairs, t
(78)= 4.90, p < .001, Cohen’s d=1.10.

This result is an important one. Using the same training image set,
we can derive dimensions that best capture the variance in the images’
pixel values (PCA) or we can calculate dimensions that are optimal for
identity discrimination (PCA+LDA). This latter case appears to result
in a reshaped space well suited to discriminating the identities of novel
images of both familiar (trained) faces and, to some extent, of un-
familiar (untrained) faces. Even though the faces used here never ap-
peared in the training set, we find that the PCA+ LDA space provides
some support for establishing similarity in identity beyond superficial
image similarity that extends to completely new faces.

4. Discussion

We set out to test the idea that familiarity can be thought of as
involving bottom-up low level image descriptions, together with a top-
down mechanism for cohering superficially variable images of the same
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person. Using a combination of PCA and LDA, we successfully re-
produced key findings in the literature regarding how people perform
in face recognition and face matching tasks. Crucially, we were able to
show familiarity advantages for entirely untrained images with a model
based only on the optimal separation of identities in PCA+LDA space.
The benefits of increasing familiarity - as defined by the number of
different training images used for a given face - accrued in terms of
better recognition of novel exemplars of the trained faces, better face
matching, better resistance to the effects of image degradation, and
better recognition from internal than external features.

The combination of bottom-up image description, with top-down
clustering, has been used in previous models (e.g. Bekios-Calfa et al.,
2011). In our own previous work (Kramer, Young et al., 2017) we have
used this approach to classify sex and race from familiar and unfamiliar
faces. However, previous models, including our own, treated familiarity
as a bivalent variable, in which ‘familiar’ faces were uniformly familiar.
For the reasons described above, that is an incomplete approach to
understanding familiarity which is self-evidently graded, i.e. we know
some faces better than others. Here we show that the same general
approach used in understanding other aspects of face perception, can
also be used to begin to understand the much more complex nature of
familiarity itself.

The contrast between familiar and unfamiliar faces is often linked,
either explicitly or by implication, to the idea of qualitative differences
between the processing of familiar and unfamiliar faces (Bruce &
Young, 1986; Burton et al., 1999; Hancock et al., 2000; Megreya &
Burton, 2006). For example, the perception of faces that have never
been encountered before is so image-dependent that participants ex-
perience little difficulty in being taught the incorrect information that
two different images of the same face belong to different people
(Longmore et al., 2008). Yet at the other extreme, the recognition of
highly familiar faces is so fluent that we can find it hard to see how
different two images of a familiar person actually are (Jenkins et al.,
2011) and relatively difficult to remember the details of specific images
that have been seen (Armann, Jenkins, & Burton, 2016). Our results
show how despite familiarity lying along a graded continuum it remains
reasonable to look upon the extremes of familiarity as involving

differences that are to all intents and purposes so large as to appear
qualitative in nature, but they also show how there can be gradations in
performance between these extremes.

Given the highly unconstrained nature of the images used in the
simulations above, sampled from internet search and with no control of
low-level image properties, the performance we report is surprisingly
good, as well as having human-like properties. Of course, we do not
wish to claim that the human brain explicitly uses PCA or LDA. Instead,
the model presented here demonstrates that a clustering algorithm,
cohering together multiple instances of the same person, can use simple
intensity (pixel) level statistical structure to deliver apparently high-
level information in the form of face recognition. The model provides
an existence proof of this, without commitment to specific im-
plementation.

None the less, one might ask how far learning faces from photo-
graphs is truly representative of natural face learning? At the present
state of knowledge we cannot be completely certain, but some points
stand out. First, although photographs are entirely static, recognition of
static images is so good that any idiosyncratic patterns of facial
movement convey no measurable benefit under normal circumstances;
substantial image degradation is needed before any effects of facial
movement become apparent (Lander, Christie, & Bruce, 1999; O'Toole,
Roark & Abdi, 2002). Second, while faces learnt from single photo-
graphs show remarkably poor generalisation (Bruce, 1982; Longmore
et al., 2008), it is none the less clear that faces can be learnt from
multiple variable photographs of the same face in ways that show
properties comparable to natural recognition (S. Andrews, Jenkins,
Cursiter, & Burton, 2015; Dowsett et al., 2016). Moreover, the degree of
variability in exposure to such multiple images is predictive of how well
this learning can generalise to new exemplars (Ritchie & Burton, 2017).
Both phenomena fit with the observation that variability in the views of
faces to which we are exposed is typical of our everyday lives. On
balance, then, the available evidence suggests that there is nothing
special (or unrepresentative) about learning faces from photos.

In common with other graphical approaches, we began by stan-
dardising the positions of key fiducial positions in each image (Beymer,
1995 Craw, 1995; Vetter & Troje, 1995). Behavioural studies show that
such stimuli remain easily recognisable to human observers (Andrews
et al., 2016; Burton et al., 2005). The analyses were then conducted
entirely on pixel-based surface colour and brightness values. These
surface properties involve a combination of the surface reflectances of
different parts of the face (known as its albedo map in the computer
science literature), prevailing illumination conditions (such as direction
of lighting) and camera characteristics. In any given image, there will
be an unspecified mix of these different factors. Importantly, our model
did not make any attempt explicitly to represent shape information
concerning the second-order configuration of features, three-dimen-
sional information about head shape, knowledge of how expressions
can alter the face, and other visual properties often thought to be in-
volved in face recognition. Indeed, with these highly variable everyday
images we found that 2D shape information from the fiducial locations
alone was of limited value in comparison to the surface properties of the
shape-normalised images. This does not mean that shape is irrelevant;
there is evidence that human observers can be sensitive to shape
properties (Andrews et al., 2016; O'Toole, Vetter & Blanz, 1999). In this
respect we note that some shape information will still be available in
the standardised images via patterns of shape from shading, texture
changes due to opening or closing the mouth and eyes, and so on (cf.
Sormaz, Young, & Andrews, 2016). Whether or not this is the under-
lying cause, the simulations show that learning from covariation of
surface information within and between identities is sufficient to un-
derpin human-like performance.

Our simulation exploring the importance of internal versus external
facial features proved consistent with the behavioural evidence that
people rely to a greater extent on the internal features for more familiar
faces (Clutterbuck & Johnston, 2002; Ellis et al., 1979; Young et al.,
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Fig. 11. Mean Euclidean distances between ‘same’ and ‘different’ identity pairs of novel
images of unfamiliar faces in PCA-space (image similarity only) and PCA+LDA-spaces
(image similarity plus identity training for familiar faces). Error bars show 95% con-
fidence intervals. There is a clear benefit to determining that different images of un-
familiar faces represent the same identity in the PCA+LDA space, despite it having been
trained on other faces.

R.S.S. Kramer et al. Cognition 172 (2018) 46–58

55



1985). While we found that in general novel images of more familiar
identities were better recognised when projected into the PCA+ LDA
space, this relationship between familiarity and accurate recognition
was stronger for internal features than external features.

This ability to simulate the importance of the internal features for
familiar face recognition directly addresses an important debate con-
cerning the origins of this finding, which has been interpreted in two
very different ways. The interpretation originally offered by Ellis et al.
(1979) was that the internal facial features receive most attention in
social encounters because of their critical role in social signals such as
gaze and facial expression. They therefore become differentially re-
presented for familiar faces because these are the features that have
been most looked at (Ellis et al., 1979). In contrast, an alternative in-
terpretation offered by Young et al. (1985) was that while external
features, and especially the hair, can often dominate any particular
photo of an unfamiliar person, this is not a very diagnostic feature of
identity, because it is easily changeable. Therefore, over increasing
exposure, people may come to rely on aspects of the face which change
less across encounters (Bonner, Burton, & Bruce, 2003; Osborne &
Stevenage, 2008; Young, 1984; Young et al., 1985). In fact, by pre-
senting only the internal features, researchers have been able to im-
prove unfamiliar face learning (Longmore, Liu, & Young, 2015) and
matching accuracy in some conditions (Kemp, Caon, Howard, & Brooks,
2016).

These interpretations of the internal feature advantage for familiar
faces differ in the emphasis they place on properties that are intrinsic to
how images of faces themselves vary in the everyday world (the 'image-
based' interpretation favoured by Young et al., 1985) or on the way
these facial images are analysed by human perceivers (the more 'social'
interpretation suggested by Ellis et al., 1979). Our data were consistent
with the key prediction of the image-based account, that differential
salience of the internal features will accrue to familiar faces simply on
the basis of the nature of everyday image variability. Young et al.
(1985) had in fact suggested that it might be possible to tease apart
image-based and more social explanations “by studying how the dif-
ferential salience of the internal features is established as faces become
increasingly familiar” (Young et al., 1985, p.745). While PCA+LDA is
clearly not intended as a full model of brain processes involved in face
recognition, it does offer an effective way of finding the information
sufficient to support recognition.

From a more general perspective, our simulations show how in-
creasing familiarity with a face leads to better performance. This needs
to be considered with respect to previous suggestions that averaged
images can capture the essential invariant characteristics of a specific
face identity by eliminating identity-irrelevant variability between
images (Burton et al., 2005; Jenkins & Burton, 2008). We do not wish to
deny the value of that observation, but it is important to appreciate that
this is not how the present approach works. Instead, rather than seeking
to average away image variability, what we do here is to make use of it.
What LDA achieves is to maximise between-identity distances (the se-
paration between images of different faces) while minimising the
within-identity distances (by clustering images of the same face close
together). Faces that include more images in the training set will
therefore have a greater influence on the resulting dimensions, but
averages are never calculated by the model (though our centroid
measure of its performance involves an averaged location in the re-
presentational space).

We think that LDA may be particularly useful in this respect because
each face has its own idiosyncratic forms of variability across different
image views (cf. Burton et al., 2016). As we noted, whereas many re-
searchers claim that we are generic experts at perceiving face identity
(Carey, 1992), the view put forward here is that this characterisation is
mainly correct for familiar faces (Young & Burton, 2017). Figs. 9 and 10
show how training the identity of a familiar face with LDA reshapes the
underlying PCA-based space in a way that brings entirely novel in-
stances of the trained face into closer proximity to each other than they

would be from their image descriptions alone. This observation em-
phasises the importance of supervised learning to finding identity-spe-
cific variability. An approach based purely on an unsupervised analysis
of the image statistics of the perceptual input alone (i.e. PCA of the
image training set) does not do so well (Fig. 11). This is consistent with
studies of human face learning, in which expectations about identity
(e.g. how many individuals to expect in a set of faces) has a marked
influence on the perception of identity (Andrews et al., 2015; Menon,
White, & Kemp, 2015b).

Taking the question of underlying mechanisms a step further,
however, we were also able to demonstrate that LDA reshapes the un-
derlying PCA-based space in a way that confers some benefit to re-
presenting the identities of entirely unfamiliar (untrained) faces (see
Fig. 11). This result speaks to a long-standing problem in face research –
the extent to which general processes operate when recognising faces.
At one extreme, images of unfamiliar faces have been held to be unable
to recruit privileged or special processing available to familiar faces
(Megreya & Burton, 2006; see also Hancock et al., 2000). From the
simulations presented here, this now seems too strong a claim, though it
remains the case that models of face processing which ignore pervasive
differences between familiar and unfamiliar faces are inadequate
(Young & Burton, 2017). In the PCA+LDA approach, we seem to have
a useful integration. Familiar faces shape similarity space in a way
which benefits them optimally, but which also provides some benefit to
unfamiliar face processing. Hence although our primary expertise in
face recognition is for the identities of familiar faces, this has con-
sequences for recognition of unfamiliar faces too.

The fact that LDA reshapes the underlying PCA-based space has
profound implications for the widely-used face space metaphor. Face
space is conceived as a set of hypothetical multidimensional linear
vectors that represent the differences between faces (Valentine, 1991,
2001). Face space models then try to represent each face identity as a
discrete point in this multidimensional space, noting that some faces
will be closer together or further apart from each other. Although the
dimensions of face space remain unspecified, the underlying assump-
tion of linearity has strong parallels with PCA approaches and has been
shown to approximate cell responses in the monkey brain (Chang &
Tsao, 2017). However, our demonstrations here show that a completely
linear space based on image properties alone does not cope well with
the problem of within-person variability and that LDA can be used to
reshape the space into something more useful. If we use a pretentious
analogy, the presence of a highly familiar face distorts space in a way
that resembles a large mass distorting the space around it in Einstein's
theory of relativity. A related point concerning distortions of a hy-
pothetical face space created by familiar attractors had been suggested
by Tanaka, Giles, Kremen, and Simon (1998).

In sum, our aim here was to present a model of how face familiarity
might be conceptualised. We have presented simulations that show our
model performs realistically on face recognition and matching tasks,
with increasingly familiar faces being better matched and recognised,
showing resistance to degradation, and increasing dependence on their
internal features. To our knowledge, we are the first to model varying
degrees of face familiarity in a single system, and to explore how well
such a system can encompass established results from a range of key
findings based on data for human participants. We hope to have taken
the first steps towards providing a working account of the mechanisms
that exploit face variability to achieve familiarity.
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