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Current emotion recognition computational techniques have been successful on associating the emotional

changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate

stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions

classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order

to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-

based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types

and incorporates additional features which are relevant for signal pre-processing and recognition classifica-

tion tasks, based on a dimensional model of emotions: Valence and Arousal. It aims to improve the accuracy of

the emotion classification task by combining mutual information based feature selection methods and ker-

nel classifiers. Experiments using our approach for emotion classification which combines efficient feature

selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the

approach when compared with state-of-the-art computational methods.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Emotions play a critical role in rational decision-making, percep-

ion, human interaction, and human intelligence. Hence emotions are

fundamental component of being human as they motivate action

nd add meaning and richness to virtually all human experience.

raditionally, in Human–Computer Interaction (HCI), users must

iscard their emotional selves to work efficiently and rationality with

omputers (Sourina, Wang, Liu, & Nguyen, 2011; Wright, 2010).

Interfacing directly with the human brain is made possible

hrough the use of sensors that can monitor some of the physical

rocesses that occur within the brain that correspond with certain

orms of thought. Researchers have used these technologies to build

rain–Computer Interfaces (BCIs), communication systems that do not

epend on the brain’s normal output pathways of peripheral nerves

nd muscles (Calvo & D’Mello, 2010). Instead, users explicitly manip-

late their brain activity that can be used to control computers or

ommunication devices.
� This research was partially supported by FONDECYT, Chile under Grant number

130035: “An Evolutionary Computation Approach to Natural-Language Chunking for
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State-of-the-art emotion recognition computational techniques

ave been successful on associating the emotional changes with

he EEG signals, and so they can be identified and classified from

EG signals if appropriate stimuli are applied. However, automatic

ecognition is usually restricted to a small number of emotions

lasses mainly due to signal’s features and noise, EEG constraints and

ubject-dependent issues.

Accordingly, in this research a novel feature-based emotion

ecognition model is proposed for EEG-based BCI interfaces. Unlike

ther approaches, our research explores a wider set of emotion

ypes, claiming that combining a mutual information based feature

election method (i.e., minimum-Redundancy-Maximum-Relevance)

nd kernel classifiers may improve the accuracy of the emotion

lassification task.

This work is organized as follows: Section 2 describes the

undamentals and state-of-the-art emotion recognition techniques,

ection 3 proposes a novel feature-based model for EEG emotion

ecognition, Section 4 discusses the main experiments conducted and

he results for different model settings and finally, Section 5 high-

ights the main conclusions of the research and some further work.

. Emotions recognition

Research of human emotional states via physiological signals in-

olves recording and statistical analysis of signals from central and
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parietal cortex. A popular physiological signal that is highly adopted

for human emotion assessment is the EEG, etc. Unlike other physio-

logical signals, EEG is a non-invasive technique with good temporal

and acceptable spatial resolution. Thus, EEG might play a major role

on detecting an emotion directly from the brain at higher spatial and

temporal resolution (Yisi, Sourina, & Minh, 2010).

A major problem with recognizing emotions is that people have

different subjective emotional experiences as responses to the same

stimuli (Wright, 2010; Yisi et al., 2010). Accordingly, emotions can be

classified into two taxonomy models:

(1) Discrete model: it is based on evolutionary features (Calvo &

D’Mello, 2010) that include basic emotions (happiness, sadness,

fear, disgust, anger, surprise), and mixed emotions such as Mo-

tivational (thirst, hanger, pain, mood), Self-awareness (shame,

disgrace, guilt), etc.

(2) Dimensional model: it is expressed in terms of two emotions

provoking people: Valence (disgust, pleasure) and Arousal (calm,

excitement) Yisi et al. (2010).

Emotion recognition enables systems to get non-verbal informa-

tion from human subjects so as to put events in context based on

underlying captured emotions. Humans are capable of recognizing

emotions either from speech (voice tone and discourse) with an ac-

curacy around 60% or from facial expressions and body movements

with an accuracy of 78–90%. However, the recognition task is strongly

dependent on the context and requires facial expressions to be delib-

erately performed or even in a very exaggerated manner, which is far

away from the natural way a user interact with intelligent interfaces.

Other kinds of techniques use audio signals, obtaining classifica-

tion accuracy close to 60–90% (Calvo & D’Mello, 2010), whereas some

other methods use non-linguistic vocalizations (i.e., laughs, tears,

screams, etc.) to recognize complex emotional states such as anxi-

ety, sexual interest, boredom. Bi-modal methods also combine audio

inputs and facial expressions based on the assumption that a human

emotion can trigger multiple behavior and physiological responses

whenever he/she experiences this emotion.

Nevertheless, most of these methods require humans to express

their emotional (mind) states in a deliberated and exaggerated man-

ner, so that emotions cannot spontaneously be expressed. On the

other hand, extracting information from facial expressions requires

monitoring a subject by using one of several cameras, whereas for

audio-based approaches, emotions are very hard to recognize when-

ever a subject does not speak or produce any sounds (Giakoumis,

Tzovaras, Moustakas, & Hassapis, 2011; Sourina et al., 2011).

A popular and effective non-invasive technique to measure

changes on brain activity is called (EEG), which transforms brain ac-

tivity into images of variations of electrical potential by using small

low-cost devices (AlMejrad, 2010). There are several approaches for

EEG-based emotion recognition which are usually based on four main

tasks (Calvo & D’Mello, 2010):

(1) Signal preprocessing: an EEG device can directly get signals

from the brain. However, there are some noise sources that

are not neurologically produced known as artifacts (i.e., blink-

ing, muscular effects, vascular effects, etc.), so digital signal

processing techniques must be applied to represent signals

using frequencies and harmonic functions (Petrantonakis &

Hadjileontiadis, 2010; Yisi et al., 2010).

(2) Feature extraction: EEG signals are highly dimensional so com-

putational processing becomes very complex. Hence different

features must be extracted in order to simplify the further

emotion classification task so to create input Feature Vectors

(FV). Typical methods include statistical metrics of the signal’s

first difference (i.e., median, standard deviation, kurtosis sym-

metry, etc.), spectral density (i.e., EEG signals with specific

frequency bands) Zhang, Yang, and Huang (2008), Logarith-

mic Band Power (Log BP) (i.e., power of a band within the
signal based on its oscillatory processes) Brunner, an C. Vi-

daurre, and Neuper (2011), Hjorth parameters (i.e., EEG sig-

nals described by activity, mobility and complexity) Zhang et al.

(2008), wavelet transform (i.e., decomposition of the EEG sig-

nal) Petrantonakis and Hadjileontiadis (2010), fractal dimen-

sion (i.e., complexity of the fundamental patterns hidden in a

signal) Zhang et al. (2008).

(3) Feature selection: one little used technique of feature se-

lection for emotions recognition combines a metaheuristic

method known as Genetic Algorithms (GA) and a Support

Vector Machines (SVM). This GA-SVM approach heuristically

searches for the best sets of features initially represented as

chromosomes of features which evolves as the GA goes on,

so that these can then be provided as an input to an SVM

classifier (Wang et al., 2011). A major drawback with this

method is the time spent to converge toward good results

and the redundancy of the selected features assessed in each

iteration of the GA.

In order to deal with this issue, other EEG feature selec-

tion technique known as minimum-Redundancy-Maximum-

Relevance (mRMR) selects the features that correlate the

strongest with a classification variable, reducing information

redundancy. This method selects features that are mutually

different from each other while still having a high correlation

make up the selection task of mRMR (Polat & Cataltepe, 2012),

by reducing redundancy between bad and good features using

Mutual Information (MI) methods, so that a subset of features

that represents best the dataset can be obtained.

(4) Emotions classification: once the FVs are extracted from the

previous task, emotions must be classified according to pre-

viously identified classes of emotions. Despite the large num-

ber of features used by these methods, no feature selection is

usually carried out. There are plenty of state-of-the-art classi-

fiers for automatic emotion identification. For example, Near-

est Neighbor classifiers used features such as FFT and Wavelets

to recognize 4 types of emotions (i.e., joy, sad, angry, relaxed)

achieving accuracies ranging from 54% to 67%. On the other

hand, statistical methods such as Quadratic Discriminant Analy-

sis (QDA) used several statistical features for negative and pos-

itive arousal levels with an average accuracy of 63% (Koelstra

et al., 2012; Petrantonakis & Hadjileontiadis, 2010; Wu et al.,

2010; Yisi et al., 2010).

. An adaptive BCI-based emotions recognition model

In this work, a novel approach that combines minimum-

edundancy-Maximum-Relevance (mRMR) based feature selection

asks and kernel classifiers for emotions recognition is proposed. The

ethod takes EEG signals received from BCI devices and incorporates

elevant features in order to detect several kinds of emotional states

y using state-of-the-art classifiers. The main contribution of this re-

earch is that unlike other automatic emotion recognition methods

ur approach

(1) Incorporates a feature selection task into the classification

task.

(2) Uses multi-label classifiers to simultaneously recognize a

wider range of emotion types based on a dimensional model.

The overall model is composed of three tasks: signal preprocess-

ng, feature extraction and selection, and emotions classification (see

ig. 1).

.1. EEG signal preprocessing

In order to train the emotions classifier, a set of previously

motion-labeled EEG data extracted from subjects self-assessing
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Fig. 1. Steps in our emotions recognition approach.
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1 http://www.eecs.qmul.ac.uk/mmv/datasets/deap.
heir emotional states was taken. It Arousal and Valence dimensions

hat were triggered from external stimuli. Since EEG brain signals

ontain much noise, the following basic preprocessing steps were

erformed:

• Resolution reduction: it optimizes the used memory by reducing

a signal resolution. Since useful data for emotions recognition are

found under 40 Hz (Yisi et al., 2010), resolution can be reduced to

128 Hz, preserving the original signal’s information.
• Electrooculography removal: electrooculography (EOG) measures

the corneo-retinal standing potential that exists between the

front and the back of the human eye. In order to remove the noise

produced from this kind of eyes movement, a method for remov-

ing EOG artifacts in the EEG called Automatic Removal of Ocular

Artifacts is applied.
• Band filter: it filters EEG signals by generating bands that are use-

ful for emotion recognition (e.g., 4 Hz–45 Hz).

.2. Feature extraction and selection

EEG signals are highly dimensional data which may contain a lot

f useless features. In order to reduce dimensionality, a large set of

elevant features are extracted to create easy-to-process FVs for each

timuli. These included statistical features (S), band power (BP) for

ifferent frequencies, Hjorth parameters (HP) and fractal dimension

FD) for each channel. Statistical features included median, standard

eviation, kurtosis coefficient, etc. Furthermore, bands of frequency

or each EEG channel correspond to theta (4–8 Hz), low alpha (8–

0 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–45 Hz).

In order to select a relevant set of features from the previously

xtracted candidate features so that further classification can be

ore accurate, the minimum-Redundancy-Maximum-Relevance

mRMR) method was used (Wu et al., 2010; Yisi et al., 2010). It selects

he features that correlate the strongest with the classification vari-

ble, reducing information redundancy between bad and good fea-

ures using Mutual Information (MI) methods, so that the best set of

eatures can be selected. It is based on two underlying conditions:

inimum redundancy and maximum relevance. Let S be a set of fea-

ures, the minimum redundancy condition is defined as:

inWI,WI = 1

|S|2

∑
fi, f j∈S

I( fi, f j) (1)

Where I(fi, fj) is the MI between features fi and fj, and |S| = n is

he number of features from the set. The discriminant power of each

eature regarding the emotion classes is then measured as the MI be-

ween features and classes. Since I(C, fi) expresses the relevance of

eature f for a class C, the maximum relevance condition can be seen
i
s:

axVI,VI = 1

|S|
∑
fi∈S

I(C, fi) (2)

Thus, finally obtained sets must accomplish the optimization con-

itions for Eqs. (1) and (2) simultaneously, into a single function,

here the first and second condition are named MID and MIQ, re-

pectively (max(VI − WI) and max(VI/WI)). In addition, each feature

as converted into a discrete value by using the transformation func-

ion of Eq. (3), where μ is the median of a subject’s feature values, and

is the standard deviation of values for the same feature (a common

alue of α = 0.5 is used).

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x ≥ μ + σ

2

0 if μ − σ

2
≤ x < μ + σ

2

−1 if x < μ − σ

2

(3)

.3. Emotions classification

In order to recognize different emotion classes, a multi-class Sup-

ort Vector Machine (SVM) was trained for a set E = {�xi, yi}N
i=1

, where

is the number of samples built from previously selected features,

�i is composed of an FV and yi the dimension class of �xi (i.e., Arousal

nd Valence). The classifier builds and trains k(k − 1)/2 SVMs, where

is the number of classes for yi. For our approach, three classes

ere considered for each dimension. Each of three SVM uses RBF

ernels and the overall classification is then carried out by using a

ne-versus-One voting mechanism in which a finally assigned class

abel will become those having the higher accuracy among the vot-

ng SVMs. Classes produced for each dimension are divided accord-

ng to a range of values for each dimension [1, 9], into three sets: [1,

.66], [3.66, 6.33] and [6.33, 9] based on Eq. (4), where r(i) indicates

he point in which the i-th division of the range of values is created,

ax v − min v is the difference between the maximum and minimum

alue for each dimension, and k is the number of sets to be created.

(i) =
(

i ∗ max v − min v
k

)
+ min v (4)

Previously trained multi-class SVMs are then used to classify

rousal and Valence dimension classes for unseen FVs extracted from

ifferent EEG signals extracted from the same subject as our model is

ubject-dependent.

. Experiments

In order to assess the accuracy of our emotion classification ap-

roach into different dimensions, a computational prototype was

uilt and run on DEAP datasets. Different experiments were con-

ucted in order to tune different parameters of the finally im-

lemented model. In addition, comparisons with other state-of-art

ethods were also performed and discussed.

Accuracy for different classifiers configurations was measured as

he proportion of correctly classified signals versus the total number

f signals. In the case of the SVM classifier, the performance is based

n different types of kernel functions (Sourina et al., 2011). In addi-

ion, the mRMR feature selection method was used for tunning and

raining purposes (Wang et al., 2011).

All the experiments used the standard DEAP (Dataset for Emotion

nalysis using EEG, Physiological and Video Signals)1 dataset (Koelstra

t al., 2012) which contains a set of EEG physiological signals and

ideo records of 40 stimuli tests for 32 human subjects, i.e., 1280

http://www.eecs.qmul.ac.uk/mmv/datasets/deap
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Fig. 2. Average classification accuracy for dimension Arousal and mRMR.

Fig. 3. Average classification accuracy for dimension Valence and mRMR.

Table 1

Parameters setting for GA-SVM-based feature selection.

Configuration Pm Pc Selection Crossover

C1 1.0 0.80 Roulette One point

C2 0.8 0.66 Roulette One point

C3 1.0 0.80 Tournament One point

C4 0.8 0.66 Tournament One point

C5 1.0 0.80 Roulette Two points

C6 0.8 0.66 Roulette Two points

C7 1.0 0.80 Tournament Two points

C8 0.8 0.66 Tournament Two points
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stimuli tests each associated to their corresponding Arousal and Va-

lence dimensions. Furthermore, training and testing the models were

conducted by using m- f old cross-validation (with best results ob-

tained for m = 8).

4.1. Data acquisition

Stimuli tests were conducted by using musical video records from

DEAP as they are more suitable than other stimuli to evoke emotional

reactions. The stimuli testing procedure was carried out as follows:

• Each subject watched a musical video as his/her EEG physiological

signals and facial expressions are recorded.
• Each subject indicated his/her emotional state according to di-

mensions Arousal and Valence.

While DEAP data contain EEG signals extracted from a 32-channel

BCI device, experiments only used information on 14 relevant

channels.

4.2. Parameters tunning

In order to tune our model, mRMR was compared against other

state-of-the-art features selection method such as GA-SVM. At the

same time, three kernel configurations were tested for the SVM by

using different kernel functions and degrees (RBF and γ = 0.2, RBF

and γ = 0.05 and Polynomial and degree = 5).
Fig. 4. Average accuracy for classifying
Feature selection methods for different sets of candidate features

ere tested by its ability to find the best features for the same SVM

lassifiers. Overall results for mRMR can be seen in Figs. 2 and 3, for

rousal and Valence dimensions, respectively. Those results are ob-

ained for SVMs using RBF kernels with γ = 0.05. Note the average

ccuracy slightly drops as a larger set of features is selected. The best

lassification accuracy was obtained for a set containing 35 and 29

eatures for Arousal and Valence, respectively (dotted lines), whereas

orst accuracy for the configuration is obtained for set sized greater

han 173 for both dimensions.

On the other hand, GA-SVM uses a GA to find an optimal subset of

eatures, so the quality of evolved solutions is strongly dependent on

ow genetic operators modify initial hypotheses as the GA goes on:

utation (probability Pm), crossover (type and probability Pc), parents

election (i.e., tournament, roulette). Table 1 shows the different con-

gurations for this task.

Preliminary runs showed the GA usually converges toward good

olutions between 80 and 100 generations. Fitness evaluation of can-

idate solutions in the GA uses the classification accuracy (acc) of the

VM, so it is computed as seen in Eq. (5), where f itness = accuracy

here wa = 1 (weight of acc), w f = 0 (weight of the number and cost

f the features), n is the number of features, ci is the cost of extracting

he i-th feature, and xi represents the absence/presence of a selected

eatured (0 or 1).

tness = wa ∗ acc + w f ∗
(

n∑
i=1

ci ∗ xi

)−1

(5)

Classification results using GA-SVM feature selection for different

opulation sizes, and RBF kernel (γ = 0.05) and dimensions, can be

een in Figs. 4 and 5, where Ci represents the i − th configuration for

he GA (Table 1). Unlike mRMR techniques, there is no a clear trend on

he evolution of candidate solutions. However, as the size of the GA

opulation increases, the average accuracy increases too. Hence best

esults were obtained for population sizes of 90 and 100 for Arousal

nd Valence, respectively. However, no significant differences are ob-

erved for both dimensions. Thus, best setting results are obtained

sing configurations C , C and C .
Arousal dimension using GA-SVM.
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Fig. 5. Average accuracy for classifying Valence dimension using GA-SVM.

Table 2

Best results for setting parameters for different feature selection methods.

Method Dimension Accuracy (%) Std. dev (%) No. of

features

mRMR Arousal 60.72 9.08 35

mRMR Valence 62.39 9.90 20

GA-SVM Arousal 56.69 9.34 95

GA-SVM Valence 53.46 9.05 94
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Finally, Table 2 shows the best setting results for each dimension,

eature selection method, and the number of selected features. The

VM classifier using RBF Kernel with γ = 0.05, produces the highest

ccuracy, and the performance of mRMR is better than GA-SVM for
Fig. 6. Classification accuracy per dimension for each subject.
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Fig. 7. Classification accuracy of the pr
he selected features. Note also mRMR generates features sets that are

maller than for GA-SVM, which makes it more suitable for real-time

pplications as it requires less work to extract features and achieve

ood classification accuracy.

.3. Overall evaluation

A final overall experiment compared our approach against some

tate-of-the-art methods. To this end, the best previously tunned con-

gurations were used: mRMR-based feature selection, 35 features for

imension Arousal and 20 features for dimension Valence, and RBF

ernel with γ = 0.05 for the SVM classifier. The model was then

rained using 40 stimuli tests for each of the 31 subjects of the dataset.

Experimental results are shown in Fig. 6, indicating a median of

0.7% and 62.33%, for dimension Arousal and Valence, respectively

i.e., std. dev. of 9 is close to the median of both dimensions).

Graphic of Fig. 7 shows the classification accuracy for each dimen-

ion and subject. In addition, the lower row for each figure shows the

umber of subjects for whom certain features were selected, where

arker points represent a larger number of subjects. This suggests

here is no relationship between the selected features for one or other

ubject. Nevertheless, best selected features for both dimensions, cor-

espond to the statistical measures extracted from each channel (left-

and side).

Classification accuracy of our model was also compared against

ther approaches, indicating very promising results when dealing

ith combination of methods and different classes of emotions as
oposed model for each subject.
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Table 3

Comparing our recognition approach and some state-of-the-art methods.

Method No. of classes Accuracy Accuracy

per dimension (Arousal) (%) (Valence)

Our model 2 73.06 73.14%

Our model 3 60,7 62,33%

Our model 5 46.69 45.32%

Spectral density 3 96.5 –

and SVM

Band power 2 62 67.6%

and Naive Bayes

e
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seen in Table 3, even for recognition using two classes per dimen-

sion (high/low). Experimental results for different approaches for EEG

emotion recognition show our model’s performance is similar to oth-

ers but for a higher number of classes.

The table includes results for classifying 2 and 5 classes per di-

mension, indicating promising results for fair parameters settings. It

suggests results for two classes per dimension are better than other

approaches using the same DEAP dataset. Note also that the table also

indicates that our model is capable of recognizing a wider range of

emotion classes based on the dimensions (Arousal and Valence), with

no need to use additional emotions classifiers. Hence our technique

can recognize several emotion types simultaneously by using a single

multi-class kernel classifier. Note that spectral density and SVM does

well for recognizing emotions within the Arousal dimension, but it

has not been assessed for more than 5 classes/dimensions as for our

case.

5. Conclusions

In this paper, an EEG feature-based emotion recognition method

was proposed. Unlike other approaches, the approach uses the mRMR

feature selection method as a signal preprocessing step so as to im-

prove the predictive accuracy of an SVM emotion classifier based on

two-dimension emotions model (i.e., Valence and Arousal). In addi-

tion, compared with state-of-the-art emotion recognition methods,

our approach deals with a higher number of emotion classes (i.e., 8)

on a standard DEAP dataset, which makes the problem more realistic

but at the same time, the training task becomes more demanding.

Accordingly, one of the contributions of this research is that it

incorporates a statistical-based feature selection task into the clas-

sification task. Furthermore, our approach which combines feature

selection and kernel classifiers uses multi-label classifiers to simulta-

neously recognize a wider set of emotion classes based on a dimen-

sional emotion model.

In order to assess the effectiveness of our kernel-based classifier,

several preliminary experiments were conducted so as to produce the

best parameters settings. It included tunning feature selection meth-

ods, emotion classifier, signal preprocessing tasks, etc. Preliminary

experiments showed that our mRMR-based feature selection method

outperformed the most popular feature selection strategy (GA-SVM)

for both dimensions (Arousal and Valence) when classifying emotions

(Accuracy of 60.72% and 62.4% versus 57% and 53.4%). In addition, for

both dimensions, our method reduced the number of relevant fea-

tures of almost to capable of reducing in 63% with a higher accuracy.

Classification accuracy of our model was then compared against other

competitive current approaches to emotion recognition: SVM-based

spectral density and Bayes-based Band Power (BP). An important is-

sue with these two techniques is that either the EEG signal they anal-

yse must be within very specific frequence bands (i.e., spectral den-

sity) or the power of the frequence band within a signal is strongly

dependent on its oscillatory processes. Hence they might not very
ffective when attempting to classify a wider set of emotion classes

i.e., a higher number of classes per dimension).

Overall results showed that our methods outperformed those of

he state-of-the-art for the same number of classes per dimension

i.e., 73% versus 62%). In addition, our approach was capable of clas-

ifying a higher number of classes per dimension whenever no other

tate-of-the-art method did it for em Valence (i.e., 62.33% versus no

ccuracy known in spectral density for 3 classes per dimension). Note

hat spectral density does it well for recognizing emotions within

he Arousal dimension, but it has not been assessed for more than

classes/dimensions as for our research. Thus, our mRMR-based

motion classification approach outperformed other state-of-the-art

ethods. Furthermore, the method is promising when considering a

igher number of classes per dimension (i.e. 3 and 5), that had not

een proven in the literature. This also showed our method recog-

izes a higher number of emotion classes without using additional

motions classifiers.

Accordingly, combining features-selection methods (mRMR) and

VM classifiers using RBF kernels yield significant improvements in

ccuracy. In words, our method requires less work to classify based on

smaller set of selected so as to achieve higher accuracy than other

echniques.

.1. Further research

There are some open issues which may be addressed so as to pro-

uce more accurate results and robust emotion recognition methods,

ncluding:

• Parameters design and analysis: running time was a constraint

when assessed different configurations for our model as ana-

lyzing EEG signals became a very demanding task. As a conse-

quence, experiments were designed only for a small set of set-

tings. Hence more exhaustive setup evaluations may be required

on the model’s parameters to evaluate the extent to which dif-

ferent frequence bands, number of subjects, EEG oscillations, etc.

affect the effectiveness of the approach.
• Specific-purpose training dataset creation: while there are some

training corpus for emotion recognition purposes such as DEAP

(Koelstra et al., 2012), large-scale and well-balanced dataset are

required so as to avoid bias and overfiting of the classification task.
• Higher number of classes per dimension: while recognizing a higher

number of emotion classes (i.e., 3 or 5) was a main purpose of the

proposed method, it might be not enough to deploy real-world

EEG-based emotion recognition applications (i.e., videogames,

brain-controlled wheelchairs, etc.) as these must adjust to a sig-

nificantly big set of emotional states. Hence further experiments

may be needed to modify the model so that it can effectively rec-

ognize more than 3 levels per dimension.
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